
Bucanon introduction:

How to do boolean algebra with the bucanon

program

www.bucephalus.org

September 5, 2002

The working panel

The Bucanon panel is the working area for the user of both the Bucanon applet and the
Bucanon application. It has the following structure:

output parameter: Notation Formation Ordered Simplified

(input area)

actions: clear eval table double table
PDNF PCNF

XPDNF XPCNF

(output area)

From top to bottom the Bucanon panel has four areas:
• A row of output parameter buttons, where the settings for the output can be altered.

For now you don’t need to bother with their meaning and just leave all the settings to their
default values.

• An input area. Here is the place to insert your input formulas. In particular these can be
boolean formulas, which are defined below.

• A row of action buttons. After the input of a formula, one of the actions can be applied to
it. The clear button deletes every previous input and output. Furthermore, the following
actions are of interest and sufficient to (efficiently) solve all problems and questions of
boolean algebra / propositional logic:

eval table PDNF PCNF

We will explain them below.
• The output area, i.e. the place where the results appear.

Syntax of boolean formulas

Boolean formulas are strings which are defined according to the rules given in figure 1. So
one example of a boolean formulas is given by

[a , -b , [c -> d] , ! , ’[a ; ’b ; !] , c]

1

boolean formula ϕ
atom α non-empty string of letters (A,..,Z,a,...,z),

digits (0,1,...,9), and the understroke ()
boolean junction

bit value
zero bit ?
unit bit !

negation (in stroke notation) ’ϕ
negation (in arithmetic notation) -ϕ
conjunction (in stroke notation) [,] or [,ϕ] or [ϕ1,. . . ,ϕn] with n ≥ 2
conjunction (in arithmetic notation) [*] or [*ϕ] or [ϕ1*. . . *ϕn] with n ≥ 2
disjunction (in stroke notation) [;] or [;ϕ] or [ϕ1;. . . ;ϕn] with n ≥ 2
disjunction (in arithmetic notation) [+] or [+ϕ] or [ϕ1+. . . +ϕn] with n ≥ 2
subjunction [ϕ -> ϕ]
equijunction [ϕ <-> ϕ]

Figure 1: syntax of boolean formulas

standing for

“a and not b and (if c then d) and true and not(a or not b or true) and c”.

Note that:
• There are two alternative notations for negation, conjunction and disjunction:

stroke notation arithmetic notation
negation ’x -x

conjunction [,] or [,x] or [*] or [*x] or
[x1,. . . ,xn] with n ≥ 2 [x1*. . . *xn] with n ≥ 2

disjunction [;] or [;x] or [+] or [+x] or
[x1;. . . ;xn] with n ≥ 2 [x1+. . . +xn] with n ≥ 2

You can use either notation, even in a mixed mode like in [’a , -b , [c + -d] , -a] for
“not a and not b and (c or not d) and not a”. But note that you cannot change the notation
inside one junction, e.g. [a , b * c , d] for “a and b and c and d” is not permitted and
generates an error message. The output is always either completely in stroke or completely
in arithmetic notation. The default is stroke notation and you can change it with the
notation ouput parameter button.

• The use of ? for zero or false and ! for unit or true in the Bucanon syntax is less common.
As a rule to memorize these symbols, you can think of the shape of “?” as “circle and dot”,
which is “zero bit”. Accordingly “!” is “stroke and dot”, which is “unit bit”.

• The bracket symbols are part of the syntax and cannot be left or added arbitrarily. For
example, the input of [a] for a or a * b for [a * b] is not correct.

table

The table action displays the bit value or truth table of the given input formula. For
example for the formula [a , c , ’b], standing for “a and c and not b”, the output will be

a b c [a , c , ’b]

? ? ? ?

! ? ? ?

? ! ? ?

! ! ? ?

? ? ! ?

! ? ! !

? ! ! ?

! ! ! ?

eval

2

The eval action basically means that the bit values are eliminated in boolean formulas ac-
cording to the usual rules for the boolean junctors. For example
• [! , ?] for “true and false” becomes ?, i.e. “false” after evaluation,
• [-! + ? + ?] for “not true or false or false” turns into ?,
• [’a , ?] for “not a and false” becomes ?, while
• [’a , !] evaluates to ’a and
• [a -> [b * ?]] for “if a then (b and false)” first evaluates to [a -> ?]and finally becomes

’a.

You can also check if two boolean formulas ϕ1 and ϕ2 are sub– or equivalent:
• Input the formula

[ϕ1 => ϕ2]

and after the evaluation either ! or ? will be the result, depending on the fact if ϕ1 does
entail ϕ2 or not.
For example the input [[a,b] => a] evaluates to !, since it is “true“ that “(a and b)
entails a”.

• Accordingly one can determine the equivalence of ϕ1 and ϕ2 by evaluating the input

[ϕ1 <=> ϕ2]

For example [’[a,b] <=> [’a;’b]] turns into ! after evaluation, because it is true, due
to de Morgans law, that “not(a and b) is equivalent to (not a or not b)”.

The equivalence can also be used to determine if a boolean formula ϕ is valid etc:
• ϕ is valid or a tautology if and only if [ϕ <=> !] evaluates to !.
• ϕ is satisfiable if and only if [ϕ <=> ?] evaluates to ?.
• ϕ is a contradiction if and only if [ϕ <=> ?] evaluates to !.

Occasionally it may also be useful to list all the atoms occuring in a formula ϕ. This is done
by evaluating the input form

@ϕ

For example,
@[d , ’b , a , ’[’b + ! + [a -> b] + d]]

evaluates to
[a b d]

The result is always an ordered list, according to a predefined linear order between atoms.

These methods for generating tables, evaluating sub– and equivalences and deciding the va-
lidity of formulas are the standard straight forward methods of propositional logic. But they
are not practical for less trivial cases in general, because their computational costs explode
exponentially: It takes up to 2n recursive steps to decide the validity of a boolean formula
with n atoms.

PDNF and PCNF

Much more efficient is the application of the two boolean canonizers PDNF and PCNF
for the generation of the unique prime disjunctive / conjunctive normal form of a given
input formula.

A disjunctive normal form or DNF has the following form (we use the default stroke
notation in the sequel):

[[λ1,1,. . . ,λ1,n1] ; . . . ; [λm,1,. . . ,λm,nm]]

where each λi,j is a literal, i.e. either an atom α or a negated atom ’α. In our definition
we additionally demand that each of the literal conjunctions [λi,1,. . . ,λi,ni] is normal, i.e.
ordered in the sense that αi,1 < · · · < αi,n1 for the atoms of the given literals.

An example of such a DNF is given by

[[’a,b,d] ; [a,b,’c,d] ; [’b,’d] ; [’a,c,’d] ; [’c,d]]

We say that a normal literal conjunction γ = [λ1,...,λn] is a prime factor of a given
formula ϕ, if γ itself is subvalent to ϕ (i.e. the evaluation of [γ => ϕ] is !) and each

3

elimination of literals violates this relation (i.e. [[λ1,λi−1,λi+1,. . . ,λn] => ϕ] evaluates to
?, for every i = 1, . . . , n).

A prime DNF or PDNF now is defined as a DNF ∆ = [γ1,. . . ,γm], where {γ1, . . . , γm} is
exactly the set of all its prime factors. It can be shown that every formula ϕ has an equivalent
PDNF ∆, and this form ∆ is unique (up to the order of its arguments γ1, . . . , γm). It is
generated by the according Bucanon action button after the input of ϕ.

For example, let ϕ be the input formula [[a,b] -> ’a]. Its PDNF is given by [[,’b] ;

[,’a]].

This example PDNF is a proper DNF, of course, but it looks a bit artificial. It is custom in
propositional logic not to use unary conjunctions like [,’b] and [,’a] and rather write them
as ’b and ’a. We call this conventional form the simplified version. The “simplified / not
simplified” option is one of the Bucanon output parameter settings and it is set to “simplified:
yes” by default. So the simplified version of our example output becomes [’b ; ’a], and that
is what the program returns.

Simplified basically means that unary conjunctions and disjunctions are eliminated and
that nullary junctions like [,] and [;] are replaced by the bit values ! and ?, respectively.
Accordingly, the (P)DNF [;[,]] is replaced by !.

Next to the PDNF canonization there is the PCNF canonization that generates the prime
conjunctive normal form of the given input formula, which has the form

[[λ1,1;. . . ;λ1,n1] , . . . , [λm,1;. . . ;λm,nm]]

in its non–simplified version and in stroke notation.

The two boolean canonizers can be efficiently applied to the standard problems as follows (we
assume that the simplified output parameter is set to its default value yes):
• Let ϕ1 and ϕ2 be two boolean formulas.
• [ϕ1 => ϕ2] is true iff the PDNF of [ϕ1 -> ϕ2] is ! iff the PCNF of [ϕ1 -> ϕ2] is !.
• [ϕ1 <=> ϕ2] is true iff the PDNF of [ϕ1 <-> ϕ2] is ! iff the PCNF of [ϕ1 <-> ϕ2] is

!.
• Let ϕ be a boolean formula.
• ϕ is valid iff the PDNF of ϕ is ! iff the PCNF of ϕ is !.
• ϕ is satisfiable iff the PDNF of ϕ is different from ! iff the PCNF of ϕ is different from !.
• ϕ is a contradiction iff the PDNF of ϕ is ? iff the PCNF of ϕ is ?.

4

