
The Bucanon Manual

www.bucephalus.org

September 6, 2002

Contents

1 The Bucanon panel 2

1.1 The Bucanon panel . 2

1.2 Output parameters . 2

1.3 Actions . 3

2 Syntax 4

3 Semantics 6

3.1 Denotational semantics . 6

3.2 Operational semantics . 6

3.3 Evaluation . 8

3.4 Double tables . 8

4 Normal Forms 10

4.1 Literals . 10

4.2 Syntactical order relations . 10

4.3 DNF’s and CNF’s . 10

4.4 Ordered DNF’s and CNF’s . 11

4.5 Simplified DNF’s and CNF’s . 11

4.6 PDNF’s and PCNF’s . 12

4.7 Boolean canonizations . 12

4.8 XPDNF’s and XPCNF’s . 13

4.9 Ordered XPDNF’s and XPCNF’s . 13

4.10 Simplified XPDNF’s and XPCNF’s . 13

4.11 Theory canonizations . 13

1

1 The Bucanon panel

1.1 The Bucanon panel

The Bucanon panel is the working area for the user of both the Bucanon applet and the
Bucanon application. It has the following structure:

output parameter: Notation Formation Ordered Simplified

(input area)

actions: clear eval table double table
PDNF PCNF

XPDNF XPCNF

(output area)

From top to bottom the Bucanon panel has four areas:
• A row of output parameter buttons, where the settings for the output can be altered.
• An input area. Here is the place to insert your input formulas.
• A row of action buttons. When you input a formula, press one of the action buttons, and

the according results will appear in
• the output area.

1.2 Output parameters

The first row of the Bucanon panel contains four output parameters and each of these
parameters is set to one of two values:
• The notation output parameter is either stroke (which is the default setting) or arith-

metic. The syntax of formulas comes with two different notations for negation, conjunction
and disjunction:

stroke notation arithmetic notation
negation ’x -x

conjunction [,] or [,x] or [*] or [*x] or
[x1,. . . ,xn] with n ≥ 2 [x1*. . . *xn] with n ≥ 2

disjunction [;] or [;x] or [+] or [+x] or
[x1;. . . ;xn] with n ≥ 2 [x1+. . . +xn] with n ≥ 2

The parameter determines in which notation the formulas will appear in the output area.
(For input formulas, both notations can be applied, even in a mixed way, no matter how
the notation parameter is set.)

• The formation parameter is set to either one of the following three values:
• line: Output formulas are written from left to right, e.g.

[’[a , ’b , c] => [’a ; b ; ’c]]

• tree: Output formulas are displayed in their tree structure, e.g.
[’[a

, ’b

, c]

=> [’a

; b

; ’c]]

• custom (max l): The tree structure is only applied when the formula length exceeds
the defined maximal line length l. For example, with l = 20 we get

2

[’[a , ’b , c]

=> [’a ; b ; ’c]]

This usually gives the most compact representation, so the formation parameter is set to
custom with max l := 80 by default.

• The ordered output parameter determines, if the arguments of the output normal forms
have to be in an ascending syntactical order or not. For a precise definition see below. The
default setting is ordered: no.

• In a simplified normal form, nullary an unary conjunctions and disjunctions are replaced
by bit values or the argument only. For example, a is the simplified form of the DNF
[+[*a]] and the unit bit ! is the simplified version of the CNF [*]. For a precise definition
see below. The default setting is simplified: yes.

1.3 Actions

clear Clears the input and output area.

eval Generates the evaluation of the input formula. Evaluated formulas don’t have bit values
(i.e. ? for false and ! for true) as subformulas. For example. [!,a,[?;’!;!],’b]

becomes [a,’b] after evaluation. For subvalences (i.e. [. . . =>. . .]) and equivalences
(i.e. [. . . <=>. . .]) the according truth value (i.e. ? or !) is generated.

table The truth or bit value table of the input formula is displayed.

double table The table is a vector of bit values on one list of atoms. A double table is a
matrix of bit values where the one list of atoms is divided into two lists. The double
table is constructed after you specified one of these lists (namely the left one).

For example, the table of [a,c,’b] for “a and b and not c” is the following one. Next to it
there is the double table of the same formula after specifying [a b] as the left atom list

a b c

? ? ? ?

! ? ? ?

? ! ? ?

! ! ? ?

? ? ! ?

! ? ! !

? ! ! ?

! ! ! ?

? ! c

? ? ? ?

! ? ? !

? ! ? ?

! ! ? ?

a b

PDNF The Prime Disjunctive Normal Form of the input formula is generated, i.e. the DNF
where the arguments of the disjunction are exactly all the irreducible or prime literal
conjunctions.

PCNF The Prime Conjunctive Normal Form of the input formula is generated, which is the
dual form of the PDNF.

XPDNF The eXtended Prime Disjunctive Normal Form of a given input formula ϕ has the
form [∆ || α1 . . . αn], where ∆ is the PDNF of ϕ and the αi are the atoms that
occur in ϕ, but not in ∆.

XPCNF Generates the eXtended Prime Conjunctive Normal Form of the given input for-
mula.

For a proper definition see the chapter on normal forms below.

3

2 Syntax

Well–defined strings of the Bucanon program are made of the following characters:
• An identifier character, which is either a letter (A,. . . ,Z,a,. . . ,z) a digit (0,1,. . . ,9) or the

understroke ().
• An operator character, which is either of the following

? ! ’ , ; - * + < > = | @

• A bracket characters [or]

• A white space character, which is the blank or line feed.

Well–defined symbols or words are
• Identifiers, which are non–empty strings of identifier characters. Six examples of identifiers

are given by
hallo world HalloWorld x0 X0a13 234abc 1

• Operator symbols, which are exactly the following

? ! ’ , ; - * + -> <->

=> <=> || <| |> @| @ -@ +@

• Bracket symbols [or]

Well–defined formulas are made of well–defined symbols according to the rules in the right
column of figure 1. So basically a formula is either a theory formula or a atom list formula.
Theory formulas are a proper superset of the more common boolean formulas.

Note that there are two alternative notations for negation, conjunction and disjunction, called
stroke and arithmetic notation:

stroke notation arithmetic notation
negation ’x -x

conjunction [,] or [,x] or [*] or [*x] or
[x1,. . . ,xn] with n ≥ 2 [x1*. . . *xn] with n ≥ 2

disjunction [;] or [;x] or [+] or [+x] or
[x1;. . . ;xn] with n ≥ 2 [x1+. . . +xn] with n ≥ 2

In the sequel we use the standard LaTeX symbols as described in the middle column of figure
1. In particular, we use the standard ¬,∧,∨ for negation, conjunction and disjunction. For
example the (true) formula in LaTeX notation

[[[¬a ∨ b] ⇑ c a] ⇔ [¬a ∨ ? ∨ [! ∧ d ∧ ¬d]]]

can be written in Bucanon notation as

[[[’a + b] <| c a] <=> [-a;?;[!,d,-d]]]

Between any two symbols in these formulas, any amount of white space is allowed without
changing the formula. (Note however, that an atoms list [α1 α2 . . . αn] requires at least one
white space character between each atom.)

The bracket symbols are part of the syntax and cannot be left or added arbitrarily. For
example, the input of [a] for a or a∧ b for [a∧ b] would lead to error massages in both cases.

The use of ? for zero or false and ! for unit or true in the Bucanon syntax is less common.
As a rule to memorize these symbols, you can think of the shape of “?” as “circle and dot”,
which is “zero bit”. Accordingly “!” is “stroke and dot”, which is “unit bit”.

4

Formulas

in LaTeX notation in Bucanon notation
formula

theory formula τ
atom α non-empty string of letters (A,. . . ,Z,a,. . . ,z), non-empty string of letters (A,. . . ,Z,a,. . . ,z),

digits (0,1,. . . ,9), and the understroke () digits (0,1,...,9), and the understroke ()
boolean junction

bit value
zero bit ? ?

unit bit ! !

negation ¬τ ’τ
-τ

conjunction [∧] or [∧τ] or [τ1 ∧ · · · ∧ τn] with n ≥ 2 [,] or [,τ] or [τ1,. . . ,τn] with n ≥ 2
[*] or [*τ] or [τ1*. . . *τn] with n ≥ 2

disjunction [∨] or [∨τ] or [τ1 ∨ · · · ∨ τn] with n ≥ 2 [;] or [;τ] or [τ1;. . . ;τn] with n ≥ 2
[+] or [+τ] or [τ1+. . . +τn] with n ≥ 2

subjunction [τ1 → τ2] [τ1 -> τ2]
equijunction [τ1 ↔ τ2] [τ1 <-> τ2]

boolean relation
subvalence [τ1 ⇒ τ2] [τ1 => τ2]
equivalence [τ1 ⇔ τ2] [τ1 <=> τ2]

expansion or reduction
expansion [τ ‖ λ] or [τ ‖ α1 α2 . . . αn] with n ≥ 0 [τ || λ] or [τ || α1 α2 . . . αn] with n ≥ 0
infimum reduction [τ ⇑ λ] or [τ ⇑ α1 α2 . . . αn] with n ≥ 0 [τ <| λ] or [τ <| α1 α2 . . . αn] with n ≥ 0
supremum reduction [τ ⇓ λ] or [τ ⇓ α1 α2 . . . αn] with n ≥ 0 [τ |> λ] or [τ |> α1 α2 . . . αn] with n ≥ 0
standard reduction @|τ @|τ

atom list formula λ
atom list [α1 α2 . . . αn] with n ≥ 0 [α1 α2 . . . αn] with n ≥ 0
atom list function @τ @τ
negative atom list function −@τ -@τ
positive atom list function +@τ +@τ

Boolean formulas

in LaTeX notation in Bucanon notation
boolean formula ϕ

atom α non-empty string of letters (A,. . . ,Z,a,. . . ,z), non-empty string of letters (A,. . . ,Z,a,. . . ,z),
digits (0,1,. . . ,9), and the understroke () digits (0,1,...,9), and the understroke ()

boolean junction
bit value

zero bit ? ?

unit bit ! !

negation ¬ϕ ’ϕ
-ϕ

conjunction [∧] or [∧ϕ] or [ϕ1 ∧ · · · ∧ ϕn] with n ≥ 2 [,] or [,ϕ] or [ϕ1,. . . ,ϕn] with n ≥ 2
[*] or [*ϕ] or [ϕ1*. . . *ϕn] with n ≥ 2

disjunction [∨] or [∨ϕ] or [ϕ1 ∨ · · · ∨ ϕn] with n ≥ 2 [;] or [;ϕ] or [ϕ1;. . . ;ϕn] with n ≥ 2
[+] or [+ϕ] or [ϕ1+. . . +ϕn] with n ≥ 2

subjunction [ϕ1 → ϕ2] [ϕ1 -> ϕ2]

equijunction [ϕ1 ↔ ϕ2] [ϕ1 <-> ϕ2]

Figure 1: The syntax of formulas

5

3 Semantics

We distinguish two or three ways of assigning meanings to formulas:
• Denotational semantics

Each theory formula denotes a unique so–called world, which is again uniquely represented
by its table. The according action in Bucanon is called by pressing the table button. There
is also a double table action, that creates variations of the table. (See below in this chapter)

• Operational semantics
Each input theory formula can be transformed into certain (bi)equivalent, so–called nor-
mal forms. The according normalizers or canonizers in Bucanon are the PDNF, PCNF,
XPDNF, and XPCNF buttons.

• Evaluation
Strictly speaking, this is a normalizer, too. In Bucanon the evaluation of a formula is
returned after pressing the eval action button.

3.1 Denotational semantics

Formulas are either theory formulas or atom list formulas. The standard interpretation of
formulas is the following:
• Each atom list formula denotes a finite atom set. Because there is a strict linear order <

defined on the set of atoms, each finite atom set has a unique representation as an ordered
atom list. So we can say that the standard meaning of an atom list formula is an ordered
atom list.
In order to determine the ordered atom list of an atom list formula λ with the Bucanon
program, input λ and call the eval action.

• Each theory formula (including each boolean formula) τ denotes a world or theory. In purely
mathematical terms a world is a function of the type (A −→ B) −→ B, where A is its atom
set or ordered atom list and B = {?, !} the set of bit values. Such a world is uniquely
represented by its (bit value or truth) table and vice versa. So we can say that the standard
meaning of a theory formula is a table.1

The table of an input theory formula τ is generated in Bucanon by calling the table action.

One intuitive, because “meaningful” way to define the method that generates the world or
table of a given theory formulas is given in two steps:
• Define the world/table of an atom formula α. This is given by

α
? ?
! !

• Define all the operator symbols (¬, ?,∧, @,⇑,⇒, . . .) as operations on worlds/tables. This
is done in the chapter below, called the algebra of worlds, which is also the title of the
resulting structure.

The world world(τ) of an arbitrary theory formula τ is then recursively generated according
to these definitions. For example:

world(¬[a ∧ ¬a]) = ¬[world(a) ∧ ¬world(a)]

= ¬

 a
? ?
! !

∧ ¬
a
? ?
! !

 = ¬

 a
? ?
! !

∧
a
? !
! ?

= ¬

a
? ?
! ?

=
a
? !
! !

3.2 Operational semantics

Two theory formulas τ1 and τ2 are said to be

1A full account of the denotational semantics and the generation of tables and double
tables is given in World algebras, available on www.bucephalus.org.

6

• equiatomic or atomically identical iff they have the same atom list
(i.e. iff the evaluations of @τ1 and @τ2 return the same results)

• equivalent or boolean identical iff they are equivalent in the usual sense (see the chapter
the algebra of worlds for a definition)
(i.e. iff the evaluation of eval([τ1 ⇔ τ2]) returns !)

• biequivalent or theoretically identical iff they are equiatomic and equivalent
(i.e. iff their tables are identical)

Each of these three relations is a proper equivalence relation (i.e. reflexive, symmetric and
transitive). So each one of them induces a partition of the set of all theory formulas into a set
of disjunct equivalence classes.

A subset NF of all theory formulas is a set of atomic/boolean/theory normal forms iff
for each theory formula τ there is at least one atomically/boolean/theoretically identical form
in NF . And NF is canonic iff this form is unique for each τ . A function that returns a
(the) normal form for each τ is a (canonic) atomic/boolean/theoretical normalizer. A
canonic normalizer is also called a canonizer.2

The Bucanon program essentially consists of four canonizers:
• Two boolean normalizers pdnf and pcnf that return the prime disjunctive/conjunctive

normal form for each given theory formula.
If the output parameter ordered is set to yes, they become boolean canonizers, because for
every theory formula τ there is exactly one equivalent ordered prime disjunctive/conjunctive
normal form.

• Two theoretical normalizers xpdnf and xpcnf that return the extended prime disjunc-
tive/conjunctive normal form for each given theory formula.
If the output parameter ordered is set to yes, they become theoretical canonizers, because
for every theory formula τ there is exactly one biequivalent ordered extended prime disjunc-
tive/conjunctive normal form.

While these boolean normalizers always return a boolean formula Φ for each input theory for-
mula ϕ, the extended normal forms have the form [Φ ‖ [α1 . . . αn]]. During the transformation
of ϕ into Φ, atoms can get lost because they are redundant for an equivalent representation.
For example, in ϕ = [¬a ∧ [b ∨ ¬b]], the atom b is redundant, since ϕ ⇔ ¬a. But while
¬a is equivalent to ϕ, it is not equiatomic and not biequivalent. The list [α1 . . . αn] in the
extended normal form is exactly the list of all these redundant atoms of ϕ. The expander
‖ is an operator that is defined to extend the atom set of a formula without changing the
boolean semantics. It can actually be seen as an abbreviation for a boolean form, for example
by defining

[Φ ‖ α1 . . . αn] := [Φ ‖ [α1 . . . αn]] :=

{
[Φ ∧ [! ∨ α1 ∨ · · · ∨ αn]] or alternatively

[Φ ∨ [? ∧ α1 ∧ · · · ∧ αn]]

For example, for ϕ = [¬a ∧ [b ∨ ¬b]] the form [¬a ‖ b] is a biequivalent form of ϕ.

Sometimes, these normal forms of the Bucanon program can look odd, especially when they are
trivial. For example, the proper form [∨[∧¬a]] is biequivalent to ¬a, and usually one would
prefer to write the latter. We call this kind of biequivalent transformation a simplification.
Basically, the nullary junctions [∨] and [∧] are replaced by ? and !, respectively, and unary
junctions like [∨ϕ] and [∧ϕ] are just ϕ in their simplified form. This simplification of the
output normal forms is automatically switched on and off by adjusting the simplified output
parameter accordingly.

Precise definitions of all the normal forms used in the Bucanon program is given in the chapter
normal forms below.

2Many authors use the term canonic DNF (and the dual canonic CNF) to refer to DNF’s
where each literal conjunction contains exactly all the atoms. For example, if ϕ = [a → b],
its canonic DNF would be ∆ = [[¬a ∧ ¬b] ∨ [¬a ∧ b] ∨ [a ∧ b]]. These forms are meant to
be canonic boolean normal forms, but in fact they are not. For every pair of formulas ϕ1

and ϕ2 and their canonic DNF’s ∆1 and ∆2, the canonicity would imply that ϕ1 and ϕ2 are
equivalent iff ∆1 and ∆2 are equal. But for example, ϕ1 := [a → a] and ϕ2 := [b → b] are
equivalent and yet their canonic DNF’s ∆1 = [[∧¬a] ∨ [∧a]] and ∆2 = [[∧¬b] ∨ [∧b]] are
not equal.
Nevertheless these normal forms are important, at least from a didactic point of view, because
there is an obvious bijection between worlds, tables and these formulas. Therefore we would
call them natural rather than canonic normal forms.

7

3.3 Evaluation

The evaluation function, the function of the eval action button, is defined for all input
formulas. If the input is an atom list formula, the result is the according ordered atom list.
For all theory formulas, it is a boolean normalizer, i.e. it always returns an equivalent theory
formula. In particular, the output formula is generated according to the following rules:
• If the input is a boolean formula ϕ, the result is a boolean formula, too, but one that is

either itself a bit value, or does not contain any bit value at all. This elimination of bit
values in boolean formulas is according to the common operational definition of the boolean
junctors ¬,∧,∨,→,↔. In particular

¬? 7→ !

¬! 7→ ?

[a ∧ ! ∧ b] 7→ [a ∧ b]

[a ∧ ? ∧ b] 7→ ?

[a ∨ ! ∨ b] 7→ !

[a ∨ ? ∨ b] 7→ [a ∨ b]

[a → !] 7→ !

[a → ?] 7→ ¬a

[? → a] 7→ !

[! → a] 7→ a

[a ↔ ?] 7→ ¬a

[a ↔ !] 7→ a

For more complex boolean formulas, this process is recursively applied. For example

¬[! ∨ a] 7→ ¬! 7→ ?
¬[! → [? ∧ a]] 7→ ¬[! → ?] 7→ ¬? 7→ !

¬[a ↔ ∨[! ∨ a]] 7→ ¬[a ↔ !] 7→ ¬a

• If the input is a boolean relation, the output is always a bit value. The subvalence or
consequence relation ⇒ and the equivalence ⇔ are defined as usual in propositional logic
(see the chapter on worlds for a full definition), so

[τ1 ⇒ τ2] 7→
{

! if τ2 follows from τ1

? if τ2 does not follow from τ1

[τ1 ⇔ τ2] 7→
{

! if τ1 and τ2 are equivalent

? if τ1 and τ2 are not equivalent

• If the input is an expansion or reduction, i.e. if it has one of the forms

[τ ‖ λ] [τ ⇑ λ] [τ ⇓ λ] @|τ
the returned result is an equivalent form. (For a proper explanation of these expressions,
see the algebra of worlds.)

• If the input is an atom list formula, the result will be an ordered atom list. In particular

[α1 . . . αn] 7→ the same list, but ordered;

for example, [c b c a b b] 7→ [a b c]

@τ 7→ the list of atoms contained in τ ;

for example, @[c ∧ [b ∨ ¬ba]] 7→ [a b c]

−@τ 7→ the list of negative or redundant atoms of τ ;

for example, −@[c ∧ [b ∨ ¬ba]] 7→ [a b]

+@τ 7→ the list of positive or irredundant atoms of τ ;

for example, + @[c ∧ [b ∨ ¬ba]] 7→ [c]

3.4 Double tables

Next to the table action, there is also the double table representation, which is a very useful
tool for the intuitive introduction of some of the operations (‖,⇑,⇓,−@, +@). In order to let

8

Bucanon construct the double table of a given theory, you need to specify its left atom list.
For example, the table and double table of the theory formula [a → [c ∧ b]] for “if a, then c
and b” are

a b c
? ? ? !
! ? ? ?
? ! ? !
! ! ? ?
? ? ! !
! ? ! ?
? ! ! !
! ! ! !

? ! c
? ? ! !
! ? ? ?
? ! ! !
! ! ? !
a b

The double table has the left atom list [a b].

9

4 Normal Forms

In the sequel, we always mean a theory (or boolean) formula, when we talk about a formula
ϕ.

4.1 Literals

A literal is either an atom α (positive literal) or a negated atom ¬α (negative literal).

For every literal λ we define

|λ| :=
{

α if λ = α is a positive literal

α if λ = ¬α is a negative literal
the atom of λ

bit(λ) :=

{
! if λ = α is a positive literal

? if λ = ¬α is a negative literal
the bit value of λ

4.2 Syntactical order relations

A strict linear order relation < is defined on each of the following sets:
• Bit values:

For each pair of bit values β1 and β2 we define

β1 < β2 :iff β1 = ? and β2 = !

• Identifier characters:
We define

0 < 1 < · · · < 9 < A < · · · < Z < < a < · · · < z

• Atoms:
An atom α1 is smaller than an atom α2, written α1 < α2, iff either α1 is shorter than α2

or they both have the same length and α1 is lexically smaller than α2.
More precisely, for α1 = c1c2 . . . cn and α2 = d1d2 . . . dm we put

α1 < α2 :iff

 n < m or
(n = m and c1 < d1) or

(n = m > 1 and c1 = d1 and c2 . . . cn < d2 . . . dm)

• Literals:

For each pair λ1, λ2 of literals, we define:

λ1 < λ2 :iff

(
|λ1| < |λ2| or

(|λ1| = |λ2| and bit(λ1) < bit(λ2))

)
• Literal lists:

The order on literal lists is the usual lexical order based on the literal order.
More precisely, for every pair [λ1 . . . λn] and [λ′1 . . . λ′m] of literal lists, we define

[λ1 . . . λn] < [λ′1 . . . λ′m] :iff

(n = 0 and m > 0) or

(n > 0 and m > 0 and λ1 < λ′1) or(
n > 0 and m > 0 and λ1 = λ′1 and

[λ2 . . . λn] < [λ′2 . . . λ′m]

)

We say that
• an atom list [α1 α2 . . . αn] is ordered iff α1 < α2 < · · · < αn.
• a literal list [λ1 λ2 . . . λn] is ordered iff λ1 < λ2 < · · · < λn.
• a literal list [λ1 λ2 . . . λn] is normal iff |λ1| < |λ2| < · · · < |λn|.

4.3 DNF’s and CNF’s

Definition

10

• A normal literal conjunction or NLC is a formula of the form

[λ1 ∧ · · · ∧ λn]

where n ≥ 0 and [λ1 . . . λn] is a normal literal lists, i.e. |λ1| < · · · < |λn|.
• A normal literal disjunction or NLD is a formula of the form

[λ1 ∨ · · · ∨ λn]

where n ≥ 0 and [λ1 . . . λn] is a normal literal lists, i.e. |λ1| < · · · < |λn|.
• A disjunctive normal form or DNF is a disjunction of NLC’s, i.e. it has the form

[[λ1,1 ∧ · · · ∧ λ1,n1] ∨ · · · ∨ [λm,1 ∧ · · · ∧ λm,nm]]

where m ≥ 0 and for each i = 1, . . . , m holds: ni ≥ 0 and [λi,1 . . . λi,ni] is a normal literal
list (i.e. |λi,1| < · · · < |λi,ni |).

• A conjunctive normal form or CNF is a conjunction of NLD’s, i.e. it has the form

[[λ1,1 ∨ · · · ∨ λ1,n1] ∧ · · · ∧ [λm,1 ∨ · · · ∨ λm,nm]]

where m ≥ 0 and for each i = 1, . . . , m holds: ni ≥ 0 and [λi,1 . . . λi,ni] is a normal literal
list (i.e. |λi,1| < · · · < |λi,ni |).

Theorem (DNF’s and CNF’s are boolean normal forms)
• Every formula ϕ has an equivalent DNF ∆.

This ∆ is unique only if ϕ is a contradiction. In that case, ∆ = [∨]. Otherwise, there are
infinitely many equivalent DNF’s.

• Every formula ϕ has an equivalent CNF Γ.
This Γ is unique only if ϕ is a tautology. In that case, Γ = [∧]. Otherwise, there are
infinitely many equivalent CNF’s.

4.4 Ordered DNF’s and CNF’s

Definition
• A DNF

[[λ1,1 ∧ · · · ∧ λ1,n1] ∨ · · · ∨ [λm,1 ∧ · · · ∧ λm,nm]]

is said to be ordered iff

[λ1,1 . . . λ1,n1] < · · · < [λm,1 . . . λm,nm]

• A CNF
[[λ1,1 ∨ · · · ∨ λ1,n1] ∧ · · · ∧ [λm,1 ∨ · · · ∨ λm,nm]]

is said to be ordered iff

[λ1,1 . . . λ1,n1] < · · · < [λm,1 . . . λm,nm]

Theorem
• For every DNF ∆ = [γ1 ∨ · · · ∨ γn] there is a unique ordered DNF ∆′ = [γ′1 ∨ . . . γ′m] with

the same components (i.e. {γ′1, . . . , γ′m} = {γ1, . . . , γn}), called the ordered form of ∆.
Obviously, ∆ and ∆′ are (bi)equivalent.

• For every CNF Γ = [δ1 ∧ · · · ∧ δn] there is a unique ordered CNF Γ′ = [δ′1 ∧ . . . δ′m] with
the same components (i.e. {δ′1, . . . , δ′m} = {δ1, . . . , δn}), called the ordered form of Γ.
Obviously, Γ and Γ′ are (bi)equivalent.

With the Bucanon program each output DNF and CNF is transformed into its ordered form,
when the output parameter ordered is set to yes.

4.5 Simplified DNF’s and CNF’s

Definition
• A formula is a simplified DNF if it has one of the following forms:
• ? the zero bit
• ! the unit bit
• λ a literal
• [λ1 ∧ · · · ∧ λn] a NLC with n ≥ 2

11

• [γ1 ∨ · · · ∨ γm] with m ≥ 2, where each γi is either a literal λ or a NLC [λ1 ∧ · · · ∧ λn]
with n ≥ 2.

• A formula is a simplified CNF if it has one of the following forms:
• ? the zero bit
• ! the unit bit
• λ a literal
• [λ1 ∨ · · · ∨ λn] a NLD with n ≥ 2
• [δ1 ∨ · · · ∨ δm] with m ≥ 2, where each δi is either a literal λ or a NLD [λ1 ∨ · · · ∨ λn]

with n ≥ 2.

Definition
• If [λ1 ∧ · · · ∧ λn] is a NLC, then

simp([λ1 ∧ · · · ∧ λn]]) :=

! if n = 0

λ1 if n = 1

[λ1 ∧ · · · ∧ λn] if n > 1

• If [λ1 ∨ · · · ∨ λn] is a NLD, then

simp([λ1 ∨ · · · ∨ λn]]) :=

? if n = 0

λ1 if n = 1

[λ1 ∨ · · · ∨ λn] if n > 1

• If [γ1 ∨ · · · ∨ γn] is a DNF, then

simp([γ1∨· · ·∨γn]]) :=

? if n = 0

simp(γ1) if n = 1

! if n > 1 and ! ∈ {simp(γ1), . . . , simp(γn)}
[simp(γ1) ∨ · · · ∨ simp(γn)] if n > 1 and ! 6∈ {simp(γ1), . . . , simp(γn)}

• If [δ1 ∧ · · · ∧ δn] is a CNF, then

simp([δ1∧· · ·∧δn]]) :=

! if n = 0

simp(δ1) if n = 1

? if n > 1 and ? ∈ {simp(δ1), . . . , simp(δn)}
[simp(δ1) ∧ · · · ∧ simp(δn)] if n > 1 and ? 6∈ {simp(δ1), . . . , simp(δn)}

Theorem and definition
• For every DNF ∆, simp(∆) is a (bi)equivalent simplified DNF of ∆, called the simplified

∆.
• For every CNF Γ, simp(Γ) is a (bi)equivalent simplified CNF of Γ, called the simplified

Γ.

With the Bucanon program each output DNF and CNF is transformed into its simplified
form, when the output parameter simplified is set to yes.

4.6 PDNF’s and PCNF’s

Definition
• A NLC γ is a disjunctive factor or implicand or simply a factor of a DNF ∆ iff γ ⇒ ∆.
• A NLD δ is a conjunctive factor or consequence or cofactor of a CNF Γ iff Γ ⇒ δ.
• A factor γ = [λ1 ∧ · · · ∧ λn] of a DNF ∆ is a prime factor, if it is irreducible in the sense

that [λ1 ∧ · · · ∧ λi−1 ∧ λi+1 ∧ · · · ∧ λn] 6⇒ ∆, for each i = 1, . . . , n.
• A cofactor δ = [λ1 ∨ · · · ∨ λn] of a CNF Γ is a prime cofactor, if it is irreducible in the

sense that Γ 6⇒ [λ1 ∨ · · · ∨ λi−1 ∨ λi+1 ∨ · · · ∨ λn], for each i = 1, . . . , n.
• A DNF ∆ = [γ1∨· · ·∨γn] is a prime disjunctive normal form or PDNF iff {γ1, . . . , γn}

is the set of its n prime factors.
• A CNF Γ = [δ1∧· · ·∧δn] is a prime conjunctive normal form or PCNF iff {δ1, . . . , δn}

is the set of its n prime cofactors.

4.7 Boolean canonizations

Theorem (Ordered PDNF’s and PCNF’s are canonic boolean normal forms)

12

• Every formula ϕ has one equivalent PDNF ∆. This PDNF is unique up to the order of its
components. In other words, every formula ϕ has exactly one equivalent ordered PDNF ∆,
called the (canonic or ordered) PDNF of ϕ.
Furthermore, each such ∆ can be transformed into its (bi)equivalent simplified form simp(∆).

• Every formula ϕ has one equivalent PCNF Γ. This PCNF is unique up to the order of its
components. In ohter words, every formula ϕ has exactly one equivalent ordered PDNF Γ,
called the (canonic or ordered) PCNF of ϕ.
Furthermore, each such Γ can be transformed into its (bi)equivalent simplified form simp(Γ).

With the Bucanon program these PDNF’s and PCNF’s are generated after the input of ϕ by
pressing the according action button. The resulting normal form is ordered and/or simplified
according to the settings of the ordered and simplified output parameter settings.

4.8 XPDNF’s and XPCNF’s

Definition
• An extended prime disjunctive normal form or XPDNF is a formula

[∆ ‖ [α1 . . . αn]]

where ∆ is a PDNF and [α1 . . . αn] is an ordered list of atoms (i.e. α1 < · · · < αn) with
n ≥ 0, such that none of these atoms occurs in ∆.

• An extended prime conjunctive normal form or XCNF is a formula

[Γ ‖ [α1 . . . αn]]

where Γ is a PCNF and [α1 . . . αn] is an ordered list of atoms (i.e. α1 < · · · < αn) with
n ≥ 0, such that none of these atoms occurs in Γ.

4.9 Ordered XPDNF’s and XPCNF’s

Definition
• A XPDNF [∆ ‖ [α1 . . . αn]] is said to be ordered iff ∆ is ordered.
• A XCNF [Γ ‖ [α1 . . . αn]] is said to be ordered iff Γ is ordered.

4.10 Simplified XPDNF’s and XPCNF’s

Definition
• A formula is a simplified XPDNF if it has one of the following forms
• ∆ a simplified PDNF
• [∆ ‖ [α1 . . . αn]], where ∆ is a simplified PDNF and [α1 . . . αn] is an ordered list of

atoms, none of them occuring in ∆, with n ≥ 2
• A formula is a simplified XCDNF if it has one of the following forms
• Γ a simplified PCNF
• [Γ ‖ [α1 . . . αn]], where Γ is a simplified PCNF and [α1 . . . αn] is an ordered list of

atoms, none of them occuring in Γ, with n ≥ 2

Definition
• If [∆ ‖ [α1 . . . αn]] is a XDNF, then

simp([∆ ‖ [α1 . . . αn]]) :=

{
simp(∆) if n = 0

[simp(∆) ‖ [α1 . . . αn]] if n > 0

• If [Γ ‖ [α1 . . . αn]] is a XCNF, then

simp([Γ ‖ [α1 . . . αn]]) :=

{
simp(Γ) if n = 0

[simp(Γ) ‖ [α1 . . . αn]] if n > 0

4.11 Theory canonizations

Theorem (Ordered XPDNF’s and XPCNF’s are canonic theory normal forms)

13

• Every formula ϕ has one biequivalent XPDNF [∆ ‖ [α1 . . . αn]], which is unique in case
it is ordered. This ordered form is called the (canonic or ordered) XPDNF of ϕ.
Furthermore, each such [∆ ‖ [α1 . . . αn]] can be transformed into its biequivalent simplified
form simp([∆ ‖ [α1 . . . αn]]).

• Every formula ϕ has one biequivalent ordered XPCNF [Γ ‖ [α1 . . . αn]], which is unique
in case it is ordered. This ordered form is called the (canonic or ordered) XPCNF of
ϕ.
Furthermore, each such [Γ ‖ [α1 . . . αn]] can be transformed into its biequivalent simplified
form simp([Γ ‖ [α1 . . . αn]]).

With the Bucanon program these XPDNF’s and XPCNF’s are generated after the input of
ϕ by pressing the according action button. The resulting normal form is ordered and/or
simplified according to the settings of the ordered and simplified output parameter settings.

14

