0.1 Basic concepts

0.1.1 Definition —__ basic concepts.

The conceptional, semantic universe of Haskell can be separated
into four distinct kind of entities:

() VALUES, comprising all things in the most basic sense: num-
bers, characters, strings, lists, tuples, and functions.

(- TypeEs. Haskell is STRONGLY TYPED in the sense that every
value has a well-defined type, and it is STATICALLY TYPED in
the sense that this doesn’t change.

(»» TYPE CcLASSES which is the Haskell terminology for what math-
ematicians would call a (single—carrier) theory or model class.
It is not a class in the object-oriented terminology, but a sig-
nature and axiom set for a class of structures.

(»» MODULES. A module is a combination of values, types and
type classes, well-defined in itself and encapsulated in a sep-
arated namespace by a module name.

0.1.2 Remark

If we take this semantic approach, there are also certain things in

Haskell that fit in only after some adjustments.

() AcTIONS, i.e. IO (input-output) interactions can’t be under-
stood in a PURELY FUNCTIONAL language like Haskell, because they
don’t behave determinstically. User input is not a function, be-
cause it differs each time. But the Haskell designers have devel-
oped a mechanism to abstract this away and to integrate actions
into the value universe. This is the famous MONAD concept and
there is a Monad type class with several instances.

(») There is a universal kind of social equality among all the values
and functions are first—class in the sense that they can be argu-
ments and results of other functions, just as any other value can.
But we can only develop a full semantical perspective, if we also
consider certain Haskell syntax constructions as functions. For
example the ternary “if..then..else..” function is usually not
considered a function in Haskell and is not treated “first—class”.

www.bucephalus.org ]

But keeping these restrictions in mind, our approach is sound
and simple.

0.1.3 Remark

Functional programming languages are really different to declara-
tive ones and it is often said that they are more similar to mathe-
matics. That is true in many respects and we will approach Haskell
in this perspective. But there are also certain things in Haskell,
which are really different from the traditional mathematical point
of view.

(»» In mathematics, a type is a set and saying that the value c is of
type X (written “c : X” in mathematics and “c::X” in Haskell),
is saying that ¢ is a member of the set X. But in Haskell, sets
don’t exist at all, at least not as values, only as types. And some
of the usual type constructors like the Cartesian product X x Y
(in Haskell, that is “(X, Y)”) or function constructor X — Y
(i.e. “X -> Y” in Haskell) do exist, but others like the union
X UY or intersection X NY don’t. The type system of Haskell
only allows certain kind of constructions, some of them are less
often used in mathematics.

() Note, that values, types, type classes and modules are really
different things in Haskell. Also in the sense that they cannot be
converted into each other. In mathematics, it is trivial to take a
function f : X — Y (which is a value) and extract its domain
dom (f) = X (which is a type). But there is no way to do these
things in Haskell!

(») Haskell tries to abstract the value from its computation and the
time and memory necessary to evaluate, is abstracted away, as it
is in mathematics. But there have been a lot of compromises as
well. For example, there is an Integer type for integers without
any limit, but also an Int type for integers in a limited range
with fast built-in arithmetic.

() And there is of course, the decision for a lazy order of eval-
uations, rather than the strict way. The final results are the
same. But sometimes, lazy evaluation has results, where the
strict strategy has none and this is creatively exploited by the
adoption of infinite lists.

(») Another consequence, closely related to the lazy strategy is the
fact that each type has one more member than the mathematical
set would have: undefined (or L) is fine in Haskell.



