\newpage

0.1 The natural numbers

0.1.1 Definition .

 $\mathbb N$ denotes the NATURAL NUMBERS.

0.1.2

The idea of a "(natural) number" is part of our culture and daily life, but it is not so simple to find a good formal definition. Let us take a first approach by the principle of simple counting:

We can count a given amount (say apples, matches or people) by taking a UNIT for each item. The collection of this units is a NATURAL NUMBER.

We "implement" or "formalize" this idea in different ways:

- (.) We could lift one of our fingers for each item and our hands make the number. But this way is obviously limited.
- (.) We can make a stroke "|" for each item on a board "____", and _____", and ____", and ___", and __"", and _"", and _
- (•) If each unit is a "•" and a number is a bag " $\{...\}$ ", then $\{\bullet, \bullet, \bullet, \bullet, \bullet\}$ is the number (of five items).
- (.) In Haskell, we can use a list of units "()" to represent a number, e.g. [(), (), (), (), ()] is a number.

0.1.3 Definition

The following definitions must be well defined on the natural numbers:

- (.) $\mathbf{zero}:\mathbb{N}$ the ZERO or EMPTY number
- (.) $isZero : \mathbb{N} \longrightarrow Bool$ a function to tests if a number is zero
- (e) $succ:\mathbb{N}\longrightarrow\mathbb{N}$ the increase or successor function, that has a successor for every natural number
- (a) **pred** : $\mathbb{N} \longrightarrow \mathbb{N}$ the DECREASE or PREDECESSOR function, which
- returns a well-defined predecessor for each number n, but only if n is not empty.

0.1.4 _____comparison_____

There is another intuitive idea, the principle of comparison:

For any two natural numbers n and m, either n is LOWER THAN m, or n and m are EQUAL, or n is BIGGER THAN m.

In nice mathematical symbolism, these three cases are also expressed by

n < m n = m n > m

But instead of implementing the relations $\langle , =, \rangle$ (and variations like $\leq , \geq , \not <, \not \leq$, etc) separately, the following compare function does all that in one step. A call of "**compare**nm" returns the answer, which one of the three cases actually holds.

0.1.5 Definition

0.1.6 Definition _

www.bucephalus.org

We define the $(LINEAR)$ $(ORDER)$ COMPARISON FUNCTION on the nat-
ural numbers
compare :: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow$ Ordering
in terms of isZero and pred as follows:
compare n m =
if (isZero n)
then if (isZero m)
then EQ
else LT
else if (isZero m)
then GT
else compare (pred n) (pred m)

0.1.7 Definition

where

A COMPARE FUNCTION on a given type a is a function compare :: a -> a -> Ordering

data Ordering = LT | EQ | GT

Every such compare function induces the following derived functions

(<), (<=), (==), (/=), (>=), (>) :: a -> a -> Bool

*** CONTINUE HERE ***

To be a WELL-DEFINED (LINEAR) (ORDER) COMPARE FUNCTION, the function has to satisfy the following properties (*) *** transitivity ***

*** transitivity ***
 *** CONTINUE HERE ***

0.1.8 Definition _

```
add :: Naturals -> Naturals -> Naturals
add n m =
    if (isZero n)
    then m
    else succ (add (pred n) m)
mult :: Naturals -> Naturals -> Naturals
mult n m =
    if (isZero n)
    then zero
    else add m (mult (pred n) m)
power :: Naturals -> Naturals -> Naturals
power n m =
    if (isZero n)
    then (succ zero)
    else mult m (power (pred n) m)
```

1

\newpage

0.1.9 _____natural operations_____

Together with the concept of a (natural) number comes a couple of obvious operations. (*) There is the ADDITION "+" of two numbers:

$$\{ \bullet, \bullet, \bullet \} + \{ \bullet, \bullet \} \quad \text{is} \quad \{ \bullet, \bullet, \bullet, \bullet, \bullet \}$$

(a) More simple than the addition is the augmentation or SUCCESSOR operation "succ" 1

 $\operatorname{succ} \{ \bullet, \bullet \}$ is $\{ \bullet, \bullet, \bullet \}$

(*) Then there is the inverse PREDECESSOR operation "**pred**", that takes away one item at a time.

pred $\{\bullet, \bullet\}$ is $\{\bullet\}$

But this may run into trouble. We can only remove items, if the number bag is not empty. With similar constraints, we have a subraction " $_$ ".

(.) Then there is of course the whole zoo of comparison relations, in particular the EQUALITY "==" (we use two "=" to distinguish equality from assignment) and (linear) ORDER "<=". For example,

0.1.10 (maybe a digression) _____ the COMPARE function_____ *** introduce Ordering and compare ***

0.1.11

*** flaws of the unary representations; 1. emergence of the Roman and 2. the arabic system ***

0.1.12

 *** the binary or bit numeral representation ***

0.1.13 Exercise _

Let us try to implement this idea of natural numbers so far as a Haskell module, called UnaryNumber. An obvious choice of an item is the () and a list of these items is a representation for a natural number. For example, [(), (), (), (), ()] is a five. Our basic number type is thus

type Number = [()]

Try to find correct implementations of the functions

zero :: Number succ, pred :: Number -> Number (+), (*) :: Number -> Number -> Number compare :: Number -> Number -> Ordering (==), (<), (<=), (>), (>=) :: Number -> Number -> Bool

so that they work as described.

0.1.14 Solution of exercise ?? ______ *** CONTINUE HERE ***

module UnaryNumber where

type Number = [()]

zero :: Number zero = []

succ :: Number -> Number succ n = () : n

pred :: Number -> Number
pred [] = error "zero number"
pred n = tail n

add :: Number -> Number -> Number add = ...

...

0.1.15 Digression/Exercise ______finite ordinals______ *** definition of ω ; how $<, \in, \subseteq$ coincide ***

0.2 Integers *** go on with Integers, Rational Numbers, Real number etc ***