\newpage

0.1 The natural numbers

0.1.1 Definition

N denotes the NATURAL NUMBERS.

0.1.2

The idea of a “(natural) number” is part of our culture and daily
life, but it is not so simple to find a good formal definition. Let us
take a first approach by the principle of simple counting:
We can count a given amount (say apples, matches or people)
by taking a UNIT for each item. The collection of this units is a
NATURAL NUMBER.

We “implement” or “formalize” this idea in different ways:

(») We could lift one of our fingers for each item and our hands
make the number. But this way is obviously limited.
(» We can make a stroke “|” for each item on a board “ [

is a number (of five items).

() If each unit is a “e” and a number is a bag “{...}”, then
{e,0,0,0 0} is the number (of five items).

, and

(») In Haskell, we can use a list of units “()” to represent a number,
eg. [O,0,0,0,07 is a number.

0.1.3 Definition

The following definitions must be well defined on the natural
numbers:

(-) zero : N the ZERO or EMPTY number
(») isZero : N — Bool a function to tests if a number is zero

() succ : N — N the INCREASE or SUCCESSOR function, that has
a successor for every natural number

() pred : N — N the DECREASE or PREDECESSOR function, which
returns a well-defined predecessor for each number n, but only
if n is not empty.

0.1.4 comparison

www.bucephalus.org

0.1.6 Definition

We define the (LINEAR) (ORDER) COMPARISON FUNCTION on the nat-
ural numbers
compare :: N -> N -> Ordering
in terms of isZero and pred as follows:
compare n m =
if (isZero n)
then if (isZero m)
then EQ
else LT
else if (isZero m)
then GT
else compare (pred n) (pred m)

There is another intuitive idea, the principle of comparison:

For any two natural numbers n and m, either n is LOWER THAN
m, or n and m are EQUAL, or m is BIGGER THAN m.

In nice mathematical symbolism, these three cases are also ex-
pressed by

n<<m n=m n>m

But instead of implementing the relations <, =, > (and variations
like <, >, £, £, etc) separately, the following compare function
does all that in one step. A call of “comparenm” returns the
answer, which one of the three cases actually holds.

0.1.5 Definition

We define the set
Ordering := { LT , EQ, GT}

In proper Haskell, that is a type declaration
data Ordering = LT | EQ | GT

0.1.7 Definition

A COMPARE FUNCTION on a given type a is a function

compare :: a -> a -> Ordering
where
data Ordering = LT | EQ | GT

Every such compare function induces the following derived func-
tions

(<, (=), (=), /=), =),)
*** CONTINUE HERE ***

:a ->a -> Bool

To be a WELL-DEFINED (LINEAR) (ORDER) COMPARE FUNCTION, the
function has to satisfy the following properties

@ ¥** transitivity ***
© ¥** CONTINUE HERE ***

0.1.8 Definition

add :: Naturals -> Naturals -> Naturals
add n m =

if (isZero n)

then m

else succ (add (pred n) m)

mult :: Naturals -> Naturals -> Naturals
mult n m =

if (isZero n)

then zero

else add m (mult (pred n) m)

power :: Naturals -> Naturals -> Naturals
power n m =

if (isZero n)

then (succ zero)

else mult m (power (pred n) m)

\newpage

0.1.9 - natural operations

Together with the concept of a (natural) number comes a couple
of obvious operations.
(.) There is the ADDITION “+” of two numbers:

{e0,0,0} + {0,080} is {e 0 0 0 0}

[]+[u] s

(») More simple than the addition is the augmentation or SUCCESSOR
operation “succ”

succ{e,0} is {e,e e}

(- Then there is the inverse PREDECESSOR operation “pred”, that
takes away one item at a time.

pred {e, 0} is {e}

But this may run into trouble. We can only remove items, if the
number bag is not empty. With similar constraints, we have a
subraction “-”.

() Then there is of course the whole zoo of comparison relations,
in particular the EQUALITY “==" (we use two “=" to distinguish
equality from assigment) and (linear) ORDER “<=”. For example,

(][] =
|I|<=IE is True

{e,0} == {@} is False

0.1.10 (maybe a digression) the COMPARE function

*** introduce Ordering and compare ***

0.1.11

*** flaws of the unary representations; 1.
emergence of the Roman and 2. the arabic
system ***

0.1.12

*** the binary or bit numeral representation
*kk

www.bucephalus.org 2

0.1.13 Exercise

Let us try to implement this idea of natural numbers so far as a
Haskell module, called UnaryNumber. An obvious choice of an item
is the () and a list of these items is a representation for a natu-
ral number. For example, [(),0,0,0,01 is a five. Our basic
number type is thus

type Number = [()]

Try to find correct implementations of the functions

zero :: Number

succ, pred :: Number -> Number

(+), (%) :: Number -> Number -> Number
compare :: Number -> Number -> Ordering

=), (O, =),), =)

:: Number -> Number -> Bool

so that they work as described.

0.1.14 Solution of exercise ??
¥* CONTINUE HERE *

module UnaryNumber where

type Number = [()]

zero :: Number
zero = []
succ :: Number -> Number

succn = () : n

pred :: Number -> Number
pred [] = error "zero number"
pred n = tail n

add :: Number -> Number -> Number
add = ...

0.1.15 Digression/Exercise finite ordinals

*** definition of w; how <, €, C coincide ***

0.2 Integers .
*** g0 on with Integers, Rational Numbers,

Real number etc ***

TClike programming languages use the “++” operator instead of “succ”.

