newpage

0.1 The natural numbers

0.1.1 Definition

denotes the natural numbers.

0.1.2

The idea of a "(natural) number" is part of our culture and daily life, but it is not so simple to find a good formal definition. Let us take a first approach by the principle of simple counting:

We can count a given amount (say apples, matches or people) by taking a UNIT for each item. The collection of this units is a NATURAL NUMBER.

We "implement" or "formalize" this idea in different ways:
(o) We could lift one of our fingers for each item and our hands make the number. But this way is obviously limited.
(o) We can make a stroke "|" for each item on a board \square , and $\|\|\|$ is a number (of five items).
(o) If each unit is a " \bullet " and a number is a bag " $\{\ldots\}$ ", then $\{\bullet, \bullet, \bullet, \bullet, \bullet\}$ is the number (of five items).
(॰) In Haskell, we can use a list of units "()" to represent a number, e.g. $[(),(),(),(),()]$ is a number.

0.1.3 Definition

The following definitions must be well defined on the natural numbers:
(॰) zero : \mathbb{N} the ZERO or EMPTY number
(॰) isZero $: \mathbb{N} \longrightarrow$ Bool a function to tests if a number is zero
(o) succ $: \mathbb{N} \longrightarrow \mathbb{N}$ the INCREASE or SUCCESSOR function, that has a successor for every natural number
(॰) pred : $\mathbb{N} \longrightarrow \mathbb{N}$ the DECREASE or PREDECESSOR function, which returns a well-defined predecessor for each number n, but only if n is not empty.

0.1.4

 comparison \qquadThere is another intuitive idea, the principle of comparison:
For any two natural numbers n and m, either n is LOWER THAN m, or n and m are EQUAL, or n is BIGGER THAN m.

0.1.6 Definition

We define the (LINEAR) (ORDER) COMPARISON FUNCTION on the natural numbers
compare :: $\mathbb{N} \rightarrow \mathbb{N} \rightarrow$ Ordering
in terms of isZero and pred as follows:
compare $\mathrm{n} \mathrm{m}=$
if (isZero n)
then if (isZero m)
then EQ
else LT
else if (isZero m)
then GT
else compare (pred n) (pred m)
0.1.7 Definition
A COMPARE FUNCTION on a given type a is a function
\quad compare $::$ a \rightarrow a Ordering
where
data Ordering = LT | EQ | GT

Every such compare function induces the following derived functions
$(<),(<=),(==),(/=),(>=),(>)::$ a $->$ a $->$ Bool
*** CONTINUE HERE ***
To be a WELL-DEFINED (LINEAR) (ORDER) COMPARE FUNCTION, the function has to satisfy the following properties
*** transitivity ***
.) ${ }^{* * *}$ CONTINUE HERE ***
0.1.8 Definition

```
add :: Naturals -> Naturals -> Naturals
add n m =
        if (isZero n)
        then m
        else succ (add (pred n) m)
mult :: Naturals -> Naturals -> Naturals
mult n m =
        if (isZero n)
        then zero
        else add m (mult (pred n) m)
power :: Naturals -> Naturals -> Naturals
power n m =
        if (isZero n)
        then (succ zero)
        else mult m (power (pred n) m)
```

In nice mathematical symbolism, these three cases are also expressed by

$$
n<m \quad n=m \quad n>m
$$

But instead of implementing the relations $<,=,>$ (and variations like $\leq, \geq, \nless, \notin$, etc) separately, the following compare function does all that in one step. A call of "comparenm" returns the answer, which one of the three cases actually holds.
0.1.5 Definition

We define the set
Ordering $:=\{\mathbf{L T}, \mathbf{E Q}, \mathbf{G T}\}$
In proper Haskell, that is a type declaration data Ordering $=$ LT | EQ | GT

newpage

0.1.9

 natural operationsTogether with the concept of a (natural) number comes a couple of obvious operations.
(॰) There is the addition " + " of two numbers:

(o) More simple than the addition is the augmentation or SUCCESSOR operation "succ" ${ }^{1}$

```
succ}{\bullet,\bullet}\quad\mathrm{ is }{\bullet,\bullet,\bullet
```

(॰) Then there is the inverse PREDECESSOR operation "pred", that takes away one item at a time.

pred

But this may run into trouble. We can only remove items, if the number bag is not empty. With similar constraints, we have a subraction "-"
(o) Then there is of course the whole zoo of comparison relations, in particular the EQUALITY "==" (we use two "=" to distinguish equality from assigment) and (linear) ORDER "<=". For example,

$\\|\\|\\|$	$==\\|$
$\\|\\|$	is \quad True
$\\|\bullet\\|$	is \quad True
$\{\bullet, \bullet$	$=\{\bullet\}$
---:	:---

0.1.10 (maybe a digression)____ the COMPARE function_____ *** introduce Ordering and compare ***

0.1.11

*** flaws of the unary representations; 1. emergence of the Roman and 2. the arabic system ***

0.1.12

*** the binary or bit numeral representation ***

0.1.13 Exercise

Let us try to implement this idea of natural numbers so far as a Haskell module, called UnaryNumber. An obvious choice of an item is the () and a list of these items is a representation for a natural number. For example, $[(),(),(),(),()]$ is a five. Our basic number type is thus

```
type Number = [()]
```

Try to find correct implementations of the functions

```
zero :: Number
succ, pred :: Number -> Number
(+), (*) :: Number -> Number -> Number
compare :: Number }->\mathrm{ Number -> Ordering
(==), (<), (<=), (>), (>=) :: Number >> Number -> Bool
```

so that they work as described.

0.1.14 Solution of exercise??
 *** CONTINUE HERE ***

\qquad
module UnaryNumber where
type Number $=[()]$
zero :: Number
zero = []
succ : : Number -> Number
succ $\mathrm{n}=$ () : n
pred :: Number -> Number
pred [] = error "zero number"
pred $\mathrm{n}=$ tail n
add :: Number -> Number -> Number
add $=$. . .
0.1.15 Digression/Exercise \qquad finite ordinals \qquad *** definition of ω; how $<, \in, \subseteq$ coincide ${ }^{* * *}$

0.2 Integers
 go on with Integers, Rational Numbers, Real number etc ${ }^{* * *}$

[^0]
[^0]: ${ }^{1}$ C-like programming languages use the "++" operator instead of "succ".

