
www.bucephalus.org 1

\newpage

0.1 The natural numbers

0.1.1 Definition

N denotes the natural numbers.

0.1.2

The idea of a “(natural) number” is part of our culture and daily
life, but it is not so simple to find a good formal definition. Let us
take a first approach by the principle of simple counting:

We can count a given amount (say apples, matches or people)
by taking a unit for each item. The collection of this units is a
natural number.

We “implement” or “formalize” this idea in different ways:

(�) We could lift one of our fingers for each item and our hands
make the number. But this way is obviously limited.

(�) We can make a stroke “|” for each item on a board “ x ”, and

||||| is a number (of five items).

(�) If each unit is a “•” and a number is a bag “{. . .}”, then
{•, •, •, •, •} is the number (of five items).

(�) In Haskell, we can use a list of units “()” to represent a number,
e.g. [(),(),(),(),()] is a number.

0.1.3 Definition

The following definitions must be well defined on the natural
numbers:

(�) zero : N the zero or empty number

(�) isZero : N −→ Bool a function to tests if a number is zero

(�) succ : N −→ N the increase or successor function, that has
a successor for every natural number

(�) pred : N −→ N the decrease or predecessor function, which
returns a well–defined predecessor for each number n, but only
if n is not empty.

0.1.4 comparison

There is another intuitive idea, the principle of comparison:

For any two natural numbers n and m, either n is lower than
m, or n and m are equal, or n is bigger than m.

In nice mathematical symbolism, these three cases are also ex-
pressed by

n < m n = m n > m

But instead of implementing the relations <, =, > (and variations
like ≤, ≥, 6<, 6≤, etc) separately, the following compare function
does all that in one step. A call of “comparenm” returns the
answer, which one of the three cases actually holds.

0.1.5 Definition

We define the set

Ordering :=
n

LT , EQ , GT
o

In proper Haskell, that is a type declaration

data Ordering = LT | EQ | GT

0.1.6 Definition

We define the (linear) (order) comparison function on the nat-
ural numbers

compare :: N -> N -> Ordering

in terms of isZero and pred as follows:
compare n m =

if (isZero n)
then if (isZero m)

then EQ
else LT

else if (isZero m)
then GT
else compare (pred n) (pred m)

0.1.7 Definition

A compare function on a given type a is a function
compare :: a -> a -> Ordering

where
data Ordering = LT | EQ | GT

Every such compare function induces the following derived func-
tions

(<), (<=), (==), (/=), (>=), (>) :: a -> a -> Bool

*** CONTINUE HERE ***

To be a well–defined (linear) (order) compare function, the
function has to satisfy the following properties

(�) *** transitivity ***

(�) *** CONTINUE HERE ***

0.1.8 Definition

add :: Naturals -> Naturals -> Naturals
add n m =
if (isZero n)

then m
else succ (add (pred n) m)

mult :: Naturals -> Naturals -> Naturals

mult n m =
if (isZero n)
then zero

else add m (mult (pred n) m)

power :: Naturals -> Naturals -> Naturals
power n m =
if (isZero n)

then (succ zero)
else mult m (power (pred n) m)

www.bucephalus.org 2

\newpage

0.1.9 natural operations

Together with the concept of a (natural) number comes a couple
of obvious operations.
(�) There is the addition “+” of two numbers:

{•, •, •} + {•, •} is {•, •, •, •, •}

||| + || is |||||

(�) More simple than the addition is the augmentation or successor
operation “succ” 1

succ {•, •} is {•, •, •}

(�) Then there is the inverse predecessor operation “pred”, that
takes away one item at a time.

pred {•, •} is {•}

But this may run into trouble. We can only remove items, if the
number bag is not empty. With similar constraints, we have a
subraction “-”.

(�) Then there is of course the whole zoo of comparison relations,
in particular the equality “==” (we use two “=” to distinguish
equality from assigment) and (linear) order “<=”. For example,

||| == ||| is True

|| <= ||| is True

{•, •} == {•} is False

0.1.10 (maybe a digression) the compare function

*** introduce Ordering and compare ***

0.1.11

*** flaws of the unary representations; 1.
emergence of the Roman and 2. the arabic
system ***

0.1.12

*** the binary or bit numeral representation

0.1.13 Exercise

Let us try to implement this idea of natural numbers so far as a
Haskell module, called UnaryNumber. An obvious choice of an item
is the () and a list of these items is a representation for a natu-
ral number. For example, [(),(),(),(),()] is a five. Our basic
number type is thus

type Number = [()]

Try to find correct implementations of the functions

zero :: Number
succ, pred :: Number -> Number

(+), (*) :: Number -> Number -> Number
compare :: Number -> Number -> Ordering
(==), (<), (<=), (>), (>=) :: Number -> Number -> Bool

so that they work as described.

0.1.14 Solution of exercise ??

*** CONTINUE HERE ***

module UnaryNumber where

type Number = [()]

zero :: Number

zero = []

succ :: Number -> Number
succ n = () : n

pred :: Number -> Number
pred [] = error "zero number"

pred n = tail n

add :: Number -> Number -> Number

add = ...

...

0.1.15 Digression/Exercise finite ordinals

*** definition of ω; how <,∈,⊆ coincide ***

0.2 Integers
*** go on with Integers, Rational Numbers,
Real number etc ***

1C–like programming languages use the “++” operator instead of “succ”.

