
www.bucephalus.org 1

1 The number systems in Haskell 98

1.0.1 Foreword

Of all more or less popular programming languages, Haskell has
the most complicated number system by far. And it is complicated
from every perspective, there is no simple angle to start from. It is
not very elegant in itself, but powerful and flexible. In this respect,
purity and beauty has been sacrificed for the sake of usefulness. It
is difficult to understand and difficult to explain, because it is the
complex result of many different design paradigms.
But however complicated, it is at least compact and we can sum-
marize everything on one or two pages: figure 1 is the complete
listing of all number–related Haskell 98 declarations. As far as the
core mathematical aspect of the number system is concerned, fig-
ure 2 is a comprehesive summary and should suffice as a reference,
once the picture is explained and understood. And for all string
conversions of numeral representations, there is a separate part,
summarized in figure 3.
So understanding Haskells number system is no more than under-
standing the pictures 2 and 3. And we introduce into this world
by stepwise building up these hierarchies.

1.0.2 Remark

There are two established ways to look at numbers:
(�) In the mathematical tradition, there is a hierarchy, an evolu-

tion

N ⊆ Z ⊆ Q ⊆ R ⊆ C

from natural numbers, integers, rational numbers, real num-

bers, to complex numbers. In this sequence, each number sys-
tem emerges by overcoming certain operational limitations of
the predecessor system. The whole is a beautiful and elegant
achievement, shaped in the 19th century and a standard part of
scientific culture ever since.

(�) More recent is the computer science tradition. In the first place,
this is making computers do what the mathematical tradition
has taught us. But that dit not come without certain sacrifices
in accuracy and number size. In the computer language C for

example, we have types like int for integers, and float and

double for real numbers. But different to the mathematical
number systems, these types are defined by machine words: int

numbers are stored in 2 or 4 bytes, depending on the actual im-
plementation, each float is made of 4 byte and double comprises
8 byte words (hence the title: “double” is “double size float”).
And when the actual numbers become too big or too small for
these limitations, things are rounded. Strictly speaking, that vi-
olates destroys the whole mathematical design. Of course, these
inaccuracies can be precisely determined, there are established
standardizations by now, the result is just another kind of math-
ematical theory. But the point is, that this is a different kind of
thinking, nevertheless.

For a real understanding of Haskells number concept, we need to
be aware of these two traditions, because they are both explicitly
present. There is Z and Q in their full potentials (called Integer
and Rational in Haskell), but int, float and double from C are
reborn in Haskell as well (only with capital initials: Int, Float and
Double).

1.0.3 Introduction

Anyway, let us start all over again. Our goal is the stepwise
(re)construction of figure 2. And we take off in the middle.

www.bucephalus.org 2

\newpage

1.1 The four sorts of numbers

1.1.1 Definition the four sorts of numbers

There are four “sorts” of numbers in Haskell:

Integral RealFloat Ratio Complex

(1) Integral numbers are the Haskell version of the integers

Z in mathematics. As usual, the default representation is by
decimal numerals with an optional negation symbol, as in

123456789 0 -77

But it is also possible to use octal numerals (with a 0o prefix;

e.g. 0o123 denotes the integer 83) and hexadecimal numerals

(with a 0x prefix; e.g. 0x123 stands for 291).

(2) RealFloat numbers are the Haskell name for what is com-
monly called floating–point numbers. As usual, there is the dot

notation with optional e or E exponent, e.g.

12.34 -12.34e56 1234e-56 0.0 10E1234

Floating point numbers approximate the real numbers R, but
can only cope with a certain accuracy.

(3) Ratio numbers are the Haskell version of the rational num-
bers Q. Recall, that the standard mathematical notation of a Q

element is
n

d
with n, d ∈ Z and d 6= 0

Due to the layout restrictions of a programming language, this
has become

n % d with n and d being Integral numbers

in Haskell.

(4) Complex numbers are the Haskell version of the standard

complex number system C in mathematics. The default repre-
sentation of such a number is a pair

〈x, y〉 or x + yı with x, y ∈ R

(ı being the imaginary unit with ı2 = -1) In Haskell notation,
this is written

x :+ y with x and y being RealFloat numbers

*** picture 4 shows the syntax of Integer and
Float literals, as in the Haskell Report; but
that is probably too much information ***

1.1.2 Remark

(1) The four names Integral, RealFloat, Ratio and Complex are
Hakell keywords, but they are no proper types as such. For exam-
ple, we cannot say “123456::Integral” or “123.456::RealFloat”,
that is no legal Haskell code. Of course, Haskell has types and
type classes, but no sorts. Nevertheless, let us continue with our
four “sorts” for now.

(2) The contructors % for Ratio and :+ for Complex numbers may
have optional spaces around them. 1

(3) In general, the number notion may refer to both, a kind of
platonic value or a syntactic sequence of symbols. But if one
specifically refers to the latter, i.e. the syntactical representa-

tion, one often uses the term numeral instead.2

For example, the decimal numeral 100, the octal numeral 0o144
and the hexadicimal numeral 0x64 all denote the same number.

(4) Are these four number sorts distinct? Well, “yes” and “no”, the
full answer is complicated and has to wait after the introduction
of the numeric type classes.3 But the short answer is a “yes”, we
can use an Integral numeral like 1234 for any of the other three
sorts as well.

1There doesn’t seem to be a real standard in this respect. For example, “12%34” (without spaces) and “12 :+ 34” (with spaces) is the

default layout in GHC. But Hugs outputs “12 % 34” instead.
2In the Haskell Report, a numeral is called a numeric literal.
3ML has a similar type system, and there, int and real numbers are really distinct. The numeral 0 is of type int and one has to write

something like 0.0 to refer to zero in real. To migrate from one type to the other, one has to use explicit type converter functions.

www.bucephalus.org 3

\newpage

1.1.3 Example input of numerals

Let us input some numbers in a GHCi session.4We call ghci from
the shell and its prompt invites for input. By default, this prompt
is Prelude> .
(1) Integral numbers

in default decimal notation are basic values in the sense that
they are not evaluated any further

Prelude> 1234

1234

Note, that it is possible in Haskell to deal with Integral numbers
of arbitrary size

Prelude> 123456789012345678901234567890123445678901234567890

123456789012345678901234567890123445678901234567890

Hexadicimal numerals (with a 0x, “0” is zero) and octal numerals
are converted into the default decimal representation

Prelude> 0x1234
4660

Prelude> 0o1234
668

Recall, that these conversions are computed by

0x1234 = 4 · 160 + 3 · 161 + 2 · 162 + 1 · 163 = 4660

0o1234 = 4 · 80 + 3 · 81 + 2 · 82 + 1 · 83 = 668

(2) RealFloat numbers.
One common representation is the decimal dot notation. But
note, that the accuracy is limited and all too long numbers are
shortened.

Prelude> 12.34
12.34

Prelude> 0.0
0.0

Prelude> 12.3456789012345678901234567890
12.345678901234567
Prelude> 7.77

7.777777777777778
Prelude> 3.33

3.3333333333333335

Also, there is the notation with the “e” or “E”. Recall, that
“nEm” or “nem” stands for n · 10m (with 10−m = 1

10m)

Prelude> 12.34e0
12.34

Prelude> 12.34e1
123.4
Prelude> 12.34e-1

1.234

And as usual, the default representation is with one digit pre-
ceding the dot:

Prelude> -12.34e56

-1.234e57
Prelude> 1234e-56
1.234e-53

But again, the accuracy is limited:

Prelude> 10E-1234

0.0

and so is the size of RealFloat numbers:

Prelude> 10E1234
Infinity

(3) Ratio numbers
are implemented in the standard Ratio module. So we need to
make its entities available first. Depending on the interpreter,
there are several ways to load Ratio. In the GHC interpreter we
use the :module or :m command.

Prelude> :module Ratio

Prelude Ratio>

The changed prompt indicates a successful loading. Example in-
put is always changed to the unique reduced form (with positive
donomiator and no common devisor in nominator and denomia-
tor).

Prelude Ratio> -7 % 5
(-7)%5
Prelude Ratio> 7 % (-5) {- mind the parentheses! -}

-7%5
Prelude Ratio> -35%25

(-7)%5

Made of two Integral numbers, Ratio numbers don’t suffer from
any limits in size

Prelude Ratio> 7 % 1234567890123456789012345678901234567890
7%1234567890123456789012345678901234567890

Zero denominators are refused, as in other programming lan-
guages

Prelude Ratio> 123%0

*** Exception: Ratio.%: zero denominator

(4) Complex numbers
are implemented in the standard Complex module. Again, we have
its entities available after calling the :module or :m command.

Prelude> :module Complex

Prelude Complex>

Any pair x, y of RealFloat numbers makes a complex number x
:+ y, where x is the real and y is the imaginary part.5

Prelude Complex> 0.123 :+ 123.0
0.123 :+ 123.0

Prelude Complex> (-1234.56e-3) :+ (-222.22) {- parentheses! -}

(-1.23456) :+ (-222.22)

In this context, every Integral x or y is accepted as a RealFloat

Prelude Complex> 1 :+ 1
1.0 :+ 1.0

Being pairs of RealFloat numbers, Complex numbers suffer from
the same limitations in size and accuracy.

Prelude Complex> 1e1000 :+ 1e1000
Infinity :+ Infinity

Prelude Complex> 1e-1000 :+ 1e-1000
0.0 :+ 0.0

4GHC is the Glasgow Haskell Compiler suite and GHCi is its interactive/interpreter program.
5For a repetition of the complex number system, see ???? below.

www.bucephalus.org 4

\newpage

1.2 The eight standard number types

1.2.1

Let us take the next step towards the hierachy of figure 2. In
definition 1.1.1, we started with our four “sorts” of numbers:

Integral RealFloat Ratio Complex

Let us now get down to the proper number types in Haskell. It
turns out, that the two primitive sorts Integral and RealFloat

each split into two different types. And since each Ratio num-
ber is a composition of two Integral numbers, we have two types
for Ratio as well. Similarly for Complex numbers, which are pairs of
RealFloat numbers. So alltogether, our four sorts split into eight
proper Haskell types and these are the standard number types. In
the end, we have a new picture

Integral a

Ratio a

RealFloat a

Complex a

Int Integer

Ratio Int Rational =

Ratio Integer

Float Double

Complex Float Complex Double

But let us introduce the types for each sort at a time.

1.2.2 Definition the standard Integral number types

There are two Integral data types:

(a) data Int = minBound ... -1 | 0 | 1 ... maxBound

Fixed sized integers Int, ranging from minBound to maxBound,
depending on the implementation. Int is very similar to the
int type from C.

(b) data Integer = ... -1 | 0 | 1 ...

Integers of arbitrary size.

Integral itself is a type class

class Integral a where ... {- defined later on -}

and thus has two instances
instance Integral Int where ...
instance Integral Integer where ...

1.2.3 Remark

(1) From a purely functional point of view, this duality of types is
absurd. Integer comprises all the members of Int and is safer,
because it doesn’t interrupt or misbehaves due to unexpected
overflows. But of course, Int is introduced into the language be-
cause it enables the use of built–in processor arithmetic, which is
way faster.6 All “syntactical” operations in Haskell that involve
numbers also use Int instead of Integer. For example,

length :: [a] -> Int or (!!) :: [a] -> Int -> a

So if speed is not totally irrelevant and the values are certain to
stay in a reasonable range, then Int should be the first choice.

(2) The actual bounds of Int are depending on the implementation.
But the Haskell Report demands at least

minBound ≤ -229 = -536870912

maxBound ≥ 229-1 = 536870911

For example, on my own system (Debian Linux on an Intel Pen-
tium Dual CPU) and with the GHC interpreter (version 6.8.2) I
obtain7

> minBound :: Int

-2147483648
> maxBound :: Int

2147483647

1.2.4 Remark

If you need to write a program that involves Integral numbers,
you may know in advance which type suits you more: either Int
for fast functions and compatibility with the list function argu-
ments or Integer for real large numbers. And in that case, you
can fix the type everywhere by adding a type declaration to every
definition; which is good programming style anyway.
For example, suppose we need a simple triple function, where say
triple 5 is 15. If we know in advance, that we only operate on
small Integral numbers, we should use this version

triple :: Int -> Int
triple n = 3 * n

However, if we need the real integers Z without any limits, we may
rather use

triple :: Integer -> Integer
triple n = 3 * n

But note, that once the type is fixed, all values and results are
bound to that type and type mixes lead to error messages, even if
all types are Integral. For example, both the following inputs are
fine:

> let { x = 5 :: Int ; y = 6 :: Int } in x + y
11 :: Int

> let { x = 5 :: Integer ; y = 6 :: Integer } in x + y
11 :: Integer

but this won’t work and produces an error message

> let { x = 5 :: Integer ; y = 6 :: Int } in x + y
..... error

1.2.5 Definition the standard RealFloat number types

There are two RealFloat data types

(a) data Float = ...

Single precision floating point numbers, with a range depend-
ing on the implementation, very similar to the float type in
C.

(b) data Double = ...
Double precision floating point numbers, with a range depend-
ing on the implementation, very similar to the double type in
C.

RealFloat itself is a type class

class RealFloat a where ... {- defined later on -}

and thus has two instances
instance RealFloat Float where ...

instance RealFloat Double where ...

6However, see also exercise 1.2.12, showing real Haskell systems may show some unexpected behavior in this respect.
7minBound::(Bounded a) => a is a class member of the Bounded class and just asking the interpreter for minBound itself, without the type

constraint minBound::Int, does interrupt with an “unresolved overloading” message.

www.bucephalus.org 5

1.2.6 Example

The following session gives an impression of the difference between
Float and Double.

> 1.23456789012345678901234567890 :: Float

1.234568 :: Float
> 1.23456789012345678901234567890 :: Double

1.23456789012346 :: Double

1.2.7 Definition the standard Ratio number types

Ratio is made of Integral number pairs, its definition is a pa-
rameterized data type

data (Integral a) => Ratio a = a%a

And with Integral comprising two standard types, Ratio has
two standard types as well:

(a) Ratio Int

number pairs x%y with x and y in the range of Int.

(b) Ratio Integer

rational numbers x%y of with x and y of arbitrary size. This
type is provided with an own name by the type declaration

type Rational = Ratio Integer

(Note, that the Ratio module has to be imported/loaded in order
to make full use of Ratio numbers.)

1.2.8 Example

Both, the numerator n and denumerator d in n%d have to be of the
same type. In Hugs (and similar for the GHC interpreter) we have

Hugs> :load Ratio {- or :module Ratio to import the module -}

Ratio> (123 :: Int) % (456 :: Int)
41 % 152 :: Ratio Int

Ratio> (123 :: Integer) % (456 :: Integer)
41 % 152 :: Ratio Integer

Ratio> (123 :: Integer) % (456 :: Int)
ERROR - Type error in application ...

Of course, instead of typing each component with say

Ratio> (123 :: Integer) % (456 :: Integer)
41 % 152 :: Ratio Integer

we may as well type it like this

Ratio> 123 % 456 :: Ratio Integer
41 % 152 :: Ratio Integer

which is of course just type synonym for

Ratio> 123 % 456 :: Rational
41 % 152 :: Rational

1.2.9 Definition the standard Complex number types

Complex is made of RealFloat number pairs, its definition is a
parameterized data type

data (RealFloat a) => Complex a = a :+ a

And with RealFloat comprising two standard types, Complex has
two standard types as well:

(a) Complex Float

(b) Complex Double

(Note, that the Complex module has to be imported/loaded.)

1.2.10 Example

To demonstrate the difference between the two standard Complex

types, consider the following session (with Hugs or GHC):

> :module Complex {- don’t forget to :module or :load -}

> 1.2345678901234567890:+0.9876543210987654321::Complex Float
1.234568 :+ 0.9876543 :: Complex Float

> 1.2345678901234567890:+0.9876543210987654321::Complex Double
1.23456789012346 :+ 0.987654321098765 :: Complex Double

1.2.11 Remark

Note the conservative choice of the names for the standard types:

(�) it preserves the legacy of C and its successor language:

type in C same type in Haskell

int Int

float Float

double Double

(�) At least two types have the full potential of their counterparts
in mathematics

number system in mathematics same type in Haskell

the integers Z Integer

the rational numbers Q Rational

Also note the difference between the four sorts again:

(�) The composed sorts (Ratio a) and (Complex a) are data types,
although with a parameter type a. These data types are well–
defined by now.

(�) The primitive sorts (Integral a) and (RealFloat a) are actually
more complicated type classes and their proper definition is still
to come.

So by now we really need to turn from the lower type part of figure
2 to upper type class part.

www.bucephalus.org 6

\newpage

1.2.12 Exercise

Suppose, we have two versions of a simple addition of positive
Integral numbers defined in identical fashion, but for the two
Integral types:

addInt :: Int -> Int -> Int
addInt n m = if n < 0 then m else addInt (n-1) (m+1)

addInteger :: Integer -> Integer -> Integer

addInteger n m = if n < 0 then m else addInteger (n-1) (m+1)

In the Hugs and GHC interpreter, we can ask for additional infor-
mation about the speed and memory for each call with the “:set
+s” command. Hugs answers with “reductions and cells” and GHC
returns information about “seconds and bytes”. We can also en-
force a type expression with each value output with the “:set +t”.
An example dialog with Hugs is then given by

> addInt 12345 12345

24691 :: Int
(209915 reductions, 281951 cells)
> addInteger 12345 12345

24691 :: Integer
(209915 reductions, 358082 cells)

Thus a (small) space advantage for the Int version, as expected.
But the GHC interpreter shows the following behavior:

> addInteger 123456 123456
246913 :: Integer {- actually, this output line is two lines -}

(0.36 secs, 22699272 bytes)

> addInt 123456 123456
246913 :: Int {- again, the actual output comes in two lines -}

(0.38 secs, 22696400 bytes)

Strangely and against all earlier reasoning, the Integer version is
faster! 8

8I don’t have an explanation for this behavior. If this is an example of a general pattern, it would contradict the whole justification for

the distinction between the two Integral types so far.

www.bucephalus.org 7

\newpage

1.3 Type classes and type class in-

stances

1.3.1 Introduction

Modern mathematics emerged with the understanding, that values
such as numbers cannot be described appropriately as such, but
only as elements of a structure or algebra9. It also turned out,
that even a structure can hardly be defined as such. Instead, it is
often described as a model or instance of a theory. An algebraic
theory only specifies the signature of the algebra and a couple of
rules, called axioms, that have to hold.
For example, the theory of rings defines a ring as a set R together
with two constants 0 and 1 and functions +,−, · : R × R −→ R,
such that a couple of axioms have to hold (such as the associativ-
ity of + and ·, etc.). Many different, but important algebras are
rings, i.e. they are models of this theory, in particular the integers
together with their usual arithmetic operations.
Haskell has adopted this design, but here, theories are called type
classes and their models are called instances. For example, there
is a type class called Num and all eight standard numeric classes like
Int, Rational or Complex Float are instances of Num.

1.3.2 Definition

A type class comprises

(a) A class name, which is a Haskell identifier with an initial
capital letter (e.g. Eq, Ord, Show)

(b) A signature, comprising

() a distinguished, but arbitrary type variable, say a

() some type declarations for values (constants, functions),
based on already well–defined types and a

(c) Some axioms or rules, i.e. statements about the values that
have to be satisfied.

The actual syntax for a type class definition of name C on type
variable a is

class C a where
{- declarations -}

{- axioms -}

This may be read as “type a is of class C, if the following decla-
rations are defined and axioms are satisfied”.

Suppose, a type class named C is defined as just described. An
instance of C is an actual type T that takes the place of the vari-
able a. In general, this instantiation is done with an instance

declaration and an explicit definition for all value declarations
in the definition of C. The general form to do that is

instance C T where

{- value definitions -}

For some type classes however, there is a shortcut. When T is
defined as a data or newtype, Haskell can derive all the value
definitions for T by putting a deriving statement immediately
after the definition of T:

data T = ...

deriving C

But this only works for some standard Haskell type classes
(namely Eq, Ord, Enum, Bounded, Read, and Show). In all other
situations, all the values have to be defined explicitly in the in-
stance declaration.

1.3.3 the Eq type class

The Haskell Prelude10 contains the following class definition

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

This is saying, that a type a can only be an Eq type, if there are
two functions defined on a, namely

(==) :: a -> a -> Bool and (/=) :: a -> a -> Bool

so that all x, y of type a satisfy the two axioms

x /= y =

(

True if x == y is False

False if x == y is True

x == y =

(

True if x /= y is False

False if x /= y is True

9*** maybe obsolete *** Many text books in mathematical logic and abstract algebra define a structure as a couple of carrier

sets, together with a couple of functions and relations, defined on these sets. An algebraic structure or algebra is then a structure that

has exactly one carrier set and no relations, but only functions (including constants, which are subsumed as nullary functions). In Haskell,

there are no relations anyway. There, a relation say R : X ! Y takes the form R : X × Y −→ Bool, or more often the currified version

R : X −→ Y −→ Bool.
10see The Haskell Report, 6.3.1

www.bucephalus.org 8

\newpage

1.3.4 Example an example Eq instance

Suppose, we define a type Binum (for binary numerals11) a the data
type

data Binum = BIN [Bool]

Note, that Haskell has no default operation to test the equality of
two values of the same data type. An input like

> BIN [True,False] == BIN [True,False]

doesn’t answer with True or False, but with an error message. We
really have to define the equality.
The easy way to do this is the deriving statement immediately
after the data type declaration:

data Binum = BIN [Bool] deriving Eq

If we do that, then the two functions (==) and (/=) are available
on Binum values as well, and we e.g. obtain as expected

> BIN [True,False] == BIN [True,False]
True

At this point and for this example data type, the explicit decla-
ration of a “trivial” function like the equality (==) may seem an
unnecessary burden on the programmer. But a default equality
definition would rather restrict our freedom and needs in many
other cases. For example, consider two Rational numbers. We will
certainly expect Haskell to do the following

> 6%8 == 3%4

True

because 6
8 = 3

4 . But a default equality would find the two values
to be different. The same goes for two Float numbers, say 12.34e2
and 1.234E3, which ought to be equal.
Anyway, we can also turn Binum into an Eq instance by means of an
explicit instance declaration. For example, by

instance Eq NatBinum where
BIN [] == BIN [] = True

BIN [] == BIN _ = False
BIN _ == BIN [] = False

BIN (False:xL) == BIN (True:_) = False
BIN (True:xL) == BIN (False:yL) = False

BIN (False:xL) == BIN (False:yL) = BIN xL == BIN yL
BIN (True:xL) == BIN (True:yL) = BIN xL == BIN yL

Note, that we only need to define (==), because the second function
(/=) of Eq is fully specified by the axioms, i.e. the class definition
of Eq itself.

1.3.5 Example standard Eq instances

*** CONTINUE HERE ***

1.3.6 Remark

(�) *** type classes are algebraic theories, in-
stances are models or algebras ***

(�) *** multiple type classes ***

(�) *** instances can only be defined by data or

newtype ***

(�) *** alternative to the instance declaration

1.3.7 the Num type class

*** CONTINUE HERE ***

*** CONTINUE HERE ***

11A binary numeral has the form βn . . . β2β1β0, where each β is either 0 or 1, and where βn . . . β2β1β0 itself denotes the number

βn · 2n + βn-1 · 2n-1 + . . . + β2 · 22 + β1 · 21 + β0 · 20. For example the binary numeral 1101 is the (decimal) number 13. In our Binum

implementation of binary numerals, 0 and 1 are represented by False and True, respectively.

www.bucephalus.org 9

\newpage

1.3.8 Introduction

Maybe the best way to understand type classes is a repetition of
some basic concept of modern algebra. What has become a type
class in Haskell is very much what is traditionally called an al-

gebraic theory. The instances of type classes are very much the
models in mathematical jargon.

1.3.9 Definition

An algebraic structure or algebra A is given by

A =
˙

A, c1, . . . , cn, f1, . . . , fm

¸

where

(�) A is the carrier set

(�) the constants c1, . . . , cn are distinguished elements of A

(�) each of the functions f1, . . . , fm is an ordinary function on
A, i.e. fi : A × . . . × A −→ A

1.3.10 Example

(1) An algebra is given by
˙

Z, 0, 1, +, ·
¸

, the integers Z are the car-
rier set, there are two constants 0 and 1 and two binary functions
+ : Z × Z −→ Z and · : Z × Z −→ Z.

(2)
˙

Z, 0, +, negate
¸

is also an algebra, where Z, 0 and + are as in
(1), and negate : Z −→ Z is the unary function that turns each
n ∈ Z into -n.

(3)
˙

Z,≤
¸

is not an algebra, because in mathematics ≤ is not a

function, but a relation12

1.3.11 Definition

An algebraic theory T comprises

(�) an (algebraic) signature, made of symbols
A, c1, . . . , cn, f1, . . . , fm, where

() A is a carrier set symbol

() the c1, . . . , cn are symbols for constants

() the f1, . . . , fm are symbols for functions

and where each function symbol has an own type expression
of the form

fi : A × . . . × A −→ A

(�) A set of axioms, which are formulas on the given signature,
making certain statements that are supposed to hold.

1.3.12 Example

Standard examples of algebraic theories are the following.

(�) The theory of monoids.

The signature: A monoid has the form
˙

M,e, ◦
¸

, where M

stands for a carrier set, e is a constant of M, called the neutral

element, and ◦ : M × M −→ M is a binary function, usually
written in infix notation.

The axioms:

The associativity axiom: ∀x, y, z ∈ M . (x ◦ y) ◦ z = x ◦ (y ◦ z)

The neutral element axiom: ∀x ∈ M . x ◦ e = e ◦ x = x.

(�) The theory of groups.

A group has the form *** CONTINUE HERE ***

12A structure in general is made of carriers and constants, functions and relations on these carrier classes. An algebraic structure in

particular is a structure with exactly one carrier class and no relations other than equality.

www.bucephalus.org 10

\newpage

*** At this point, the real introduction of all
numeric functions and type classes really takes
off. But the available text so far is not in a
decent shape. The following is then the con-
clusion: ***

1.3.13 the standard numeric type classes and types

The whole hierachy of type classes and types make a complex pic-
ture.

Eq a

Ord a Num a

Real a Fractional aEnum a

Bounded a

RealFrac a Floating a

Integral a

Ratio a

RealFloat a

Complex a

Int Integer

Ratio Int Rational =

Ratio Integer

Float Double

Complex Float Complex Double

The two type classes Show and Read are excluded for now (see ????

below). They don’t belong to the mathematical aspect of the num-
ber system, but deal with the string conversion of numeral repre-
sentation.

*** CONTINUE HERE ***

www.bucephalus.org 11

Figure 1: The number system of Haskell 98, as given in the Prelude, Ratio, Complex and Numeric modules

(1) Type classes from the Prelude

(a) Equality and Ordered classes

class Eq a where

(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

(b) Enumeration and Bounded classes

class Enum a where

succ, pred :: a -> a

toEnum :: Int -> a

fromEnum :: a -> Int

enumFrom :: a -> [a] -- [n..]

enumFromThen :: a -> a -> [a] -- [n,n’..]

enumFromTo :: a -> a -> [a] -- [n..m]

enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

class Bounded a where

minBound :: a

maxBound :: a

(c) Numeric classes

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where

toRational :: a -> Rational

class (Real a, Enum a) => Integral a where

quot, rem :: a -> a -> a

div, mod :: a -> a -> a

quotRem, divMod :: a -> a -> (a,a)

toInteger :: a -> Integer

class (Num a) => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

class (Fractional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, cos, tan :: a -> a

asin, acos, atan :: a -> a

sinh, cosh, tanh :: a -> a

asinh, acosh, atanh :: a -> a

class (Real a, Fractional a) => RealFrac a where

properFraction :: (Integral b) => a -> (b,a)

truncate, round :: (Integral b) => a -> b

ceiling, floor :: (Integral b) => a -> b

class (RealFrac a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

decodeFloat :: a -> (Integer,Int)

encodeFloat :: Integer -> Int -> a

exponent :: a -> Int

significand :: a -> a

scaleFloat :: Int -> a -> a

isNaN :: a -> Bool

isInfinite :: a -> Bool

isDenormalized :: a -> Bool

isNegativeZero :: a -> Bool

IEEE :: a -> Bool

atan2 :: a -> a -> a

(2) Types and instance declarations

(a) from Prelude

(i) Bound integers

data Int = minBound ... -1 | 0 | 1 ... maxBound

instance Eq Int where ...

instance Ord Int where ...

instance Num Int where ...

instance Real Int where ...

instance Integral Int where ...

instance Enum Int where ...

instance Bounded Int where ...

instance Show Int where ...

instance Read Int where ...

(ii) integers of arbitrary size

data Integer = ... -1 | 0 | 1 ...

instance Eq Integer where ...

instance Ord Integer where ...

instance Num Integer where ...

instance Real Integer where ...

instance Integral Integer where ...

instance Enum Integer where ...

instance Show Integer where ...

instance Read Integer where ...

(iii) single precision floating numbers

data Float = ...

instance Eq Float where ...

instance Ord Float where ...

instance Num Float where ...

instance Real Float where ...

instance Fractional Float where ...

instance Floating Float where ...

instance RealFrac Float where ...

instance RealFloat Float where ...

instance Enum Float where ...

instance Show Float where ...

instance Read Float where ...

(iii) double precision floating numbers

data Double = ...

instance Eq Double where ...

instance Ord Double where ...

instance Num Double where ...

instance Real Double where ...

instance Fractional Double where ...

instance Floating Double where ...

instance RealFrac Double where ...

instance RealFloat Double where ...

instance Enum Double where ...

instance Show Double where ...

instance Read Double where ...

(b) from Ratio

(♩) The Ratio a type

data (Integral a) => Ratio a = ...

instance (Integral a) => Eq (Ratio a) where ...

instance (Integral a) => Ord (Ratio a) where ...

instance (Integral a) => Num (Ratio a) where ...

instance (Integral a) => Real (Ratio a) where ...

instance (Integral a) => Fractional (Ratio a) where ...

instance (Integral a) => RealFrac (Ratio a) where ...

instance (Integral a) => Enum (Ratio a) where ...

instance (Read a,Integral a) => Read (Ratio a) where ...

instance (Integral a) => Show (Ratio a) where ...

(ii) The Rational type

type Rational = Ratio Integer

(c) from Complex

(i) The Complex a type

data (RealFloat a) => Complex a = !a :+ !a

instance (RealFloat a) => Eq (Complex a) where ...

instance (RealFloat a) => Read (Complex a) where ...

instance (RealFloat a) => Show (Complex a) where ...

instance (RealFloat a) => Num (Complex a) where ...

instance (RealFloat a) => Fractional (Complex a) where ...

instance (RealFloat a) => Floating (Complex a) where ...

(3) Numeric functions

(a) from Prelude

subtract :: (Num a) => a -> a -> a

even :: (Integral a) => a -> Bool

odd :: (Integral a) => a -> Bool

gcd :: (Integral a) => a -> a -> a

lcm :: (Integral a) => a -> a -> a

(^) :: (Num a, Integral b) => a -> b -> a

(^^) :: (Fractional a, Integral b) => a -> b -> a

fromIntegral :: (Integral a, Num b) => a -> b

realToFrac :: (Real a, Fractional b) => a -> b

minimum :: (Ord a) => [a] -> a

maximum :: (Ord a) => [a] -> a

sum :: (Num a) => [a] -> a

product :: (Num a) => [a] -> a

numericEnumFrom :: (Fractional a) => a -> [a]

numericEnumFromThen :: (Fractional a) => a -> a -> [a]

numericEnumFromTo :: (Fractional a, Ord a) => a -> a -> [a]

numericEnumFromThenTo :: (Fractional a, Ord a) => a -> a -> a -> [a]

(b) from Ratio

(%) :: (Integral a) => a -> a -> Ratio a

numerator :: (Integral a) => Ratio a -> a

denominator :: (Integral a) => Ratio a -> a

approxRational :: (RealFrac a) => a -> a -> Rational

(c) from Complex

realPart :: (RealFloat a) => Complex a -> a

imagPart :: (RealFloat a) => Complex a -> a

conjugate :: (RealFloat a) => Complex a -> Complex a

mkPolar :: (RealFloat a) => a -> a -> Complex a

cis :: (RealFloat a) => a -> Complex a

polar :: (RealFloat a) => Complex a -> (a,a)

magnitude :: (RealFloat a) => Complex a -> a

phase :: (RealFloat a) => Complex a -> a

(d) from Numeric

fromRat :: (RealFloat a) => Rational -> a

showSigned :: (Real a) => (a -> ShowS) -> Int -> a -> ShowS

showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS

showInt :: Integral a => a -> ShowS

showOct :: Integral a => a -> ShowS

showHex :: Integral a => a -> ShowS

readSigned :: (Real a) => ReadS a -> ReadS a

readInt :: (Integral a) => a->(Char->Bool)->(Char->Int)->ReadS a

readDec :: (Integral a) => ReadS a

readOct :: (Integral a) => ReadS a

readHex :: (Integral a) => ReadS a

showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS

showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS

showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS

showFloat :: (RealFloat a) => a -> ShowS

floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)

readFloat :: (RealFrac a) => ReadS a

lexDigits :: ReadS String

(4) operator preferences of all the mentioned operators

infixr 8 ^, ^^, **

infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘, %

infixl 6 +, -, :+

infix 4 ==, /=, <, <=, >=, >

www.bucephalus.org 12

Figure 2: The number system of Haskell 98

class Eq a where

(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where

compare :: a -> a -> Ordering
(<), (>), (<=), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a

fromInteger :: Integer -> a

subtract :: (Num a) => a -> a -> a

class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a

fromEnum :: a -> Int
enumFrom :: a -> [a]

enumFromThen :: a -> a -> [a]
enumFromTo :: a -> a -> [a]

enumFromThenTo :: a -> a -> a -> [a]

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a

fromRational :: Rational -> a

class Bounded a
where

minBound :: a
maxBound :: a

class (Real a, Fractional a) => RealFrac a where

properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

realToFrac :: (Real a, Fractional b) => a -> b

class (Fractional a) => Floating a where

pi :: a
exp, sqrt, log :: a -> a

(**), logBase :: a -> a -> a
sin, tan, cos,
asin, atan, acos,

sinh, tanh, cosh,
asinh, atanh, acosh :: a -> a

class (Real a, Enum a) => Integral a where

quot, rem, div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

even :: (Integral a) => a -> Bool

odd :: (Integral a) => a -> Bool
gcd :: (Integral a) => a -> a -> a

lcm :: (Integral a) => a -> a -> a
(^) :: (Num a, Integral b) => a -> b -> a
fromIntegral :: (Integral a, Num b) => a -> b

class (RealFrac a, Floating a) => RealFloat a where
floatRadix :: a -> Integer

floatDigits :: a -> Int
floatRange :: a -> (Int,Int)

decodeFloat :: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent :: a -> Int

significand :: a -> a
scaleFloat :: Int -> a -> a

isNaN, isInfinite, isDenormalized,
isNegativeZero, IEEE :: a -> Bool

atan2 :: a -> a -> a

– module Ratio

data (Integral a) => Ratio a = a%a
(%) :: (Integral a) => a -> a -> Ratio a
numerator :: (Integral a) => Ratio a -> a

denominator :: (Integral a) => Ratio a -> a
approxRational :: (RealFrac a) =>

a -> a -> Rational

– module Complex

data (RealFloat a) => Complex a = !a :+ !a

realPart :: (RealFloat a) => Complex a -> a

imagPart :: (RealFloat a) => Complex a -> a
conjugate :: (RealFloat a) => Complex a -> Complex a

mkPolar :: (RealFloat a) => a -> a -> Complex a
cis :: (RealFloat a) => a -> Complex a

polar :: (RealFloat a) => Complex a -> (a,a)
magnitude :: (RealFloat a) => Complex a -> a
phase :: (RealFloat a) => Complex a -> a

data Int data Integer

– module Ratio

Ratio Int
– module Ratio

type Rational
= Ratio Integer

data Float data Double

– module Complex

Complex Float
– module Complex

Complex Double

– additional functions from the Prelude

(^^) :: (Fractional a, Integral b) => a -> b -> a
numericEnumFrom :: (Fractional a) => a -> [a]

numericEnumFromThen :: (Fractional a) => a -> a -> [a]
numericEnumFromTo :: (Fractional a, Ord a) => a -> a -> [a]

numericEnumFromThenTo :: (Fractional a, Ord a) => a -> a -> a -> [a]
– additional functions from the Numeric module

fromRat :: (RealFloat a) => Rational -> a

floatToDigits :: (RealFloat a) => Integer -> a -> ([Int],Int)

Legend

⇒ denotes a type class dependency

→ is an instatiation

www.bucephalus.org 13

Figure 3: The number and string conversions of Haskell 98
*** this picture is not properly drawn, yet, but all items should be mentioned ***

type ShowS = String -> String

class Show a where
showsPrec :: Int -> a -> ShowS

show :: a -> String
showList :: [a] -> ShowS

shows :: (Show a) => a -> ShowS
showChar :: Char -> ShowS

showString :: String -> ShowS
showParen :: Bool -> ShowS -> ShowS

type ReadS a = String -> [(a,String)]

class Read a where
readsPrec :: Int -> ReadS a

readList :: ReadS [a]

reads :: (Read a) => ReadS a
read :: (Read a) => String -> a
readParen :: Bool -> ReadS a -> ReadS a

lex :: ReadS String

instance Show Int where ...
instance Read Int where ...

instance Show Integer where ...
instance Read Integer where ...

instance Show Float where ...
instance Read Float where ...

instance Show Double where ...
instance Read Double where ...
instance Show () where ...

instance Read () where ...
instance Show Char where ...

instance Read Char where ...
instance (Read a) => Read [a] where ...
instance (Show a, Show b) => Show (a,b) where ...

instance (Read a, Read b) => Read (a,b) where ...

– module Numeric

showSigned :: (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS
showInt :: Integral a => a -> ShowS

showOct :: Integral a => a -> ShowS
showHex :: Integral a => a -> ShowS

readSigned :: (Real a) => ReadS a -> ReadS a
readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a

readDec :: (Integral a) => ReadS a
readOct :: (Integral a) => ReadS a
readHex :: (Integral a) => ReadS a

showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS

showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFloat :: (RealFloat a) => a -> ShowS
readFloat :: (RealFrac a) => ReadS a

lexDigits :: ReadS String

www.bucephalus.org 14

Figure 4: The syntax for integers and floating point numbers

An integer literal has the form integer , which is defined by the following grammar:

digit → ascDigit | uniDigit

ascDigit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

uniDigit → any Unicode decimal digit

octit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hexit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

decimal → digit { digit }

octal → octit { octid }

hexadecimal → hexit { hexit }

integer → decimal

| 0o octal | 0O octal

| 0x hexadecimal | 0X hexadecimal

An float literal has the form float , which is defined by the following grammar:

digit → ascDigit | uniDigit

ascDigit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

uniDigit → any Unicode decimal digit

decimal → digit { digit }

float → decimal . decimal [exponent]

| decimal exponent

exponent → (e | E)[+ | -] decimal

