
From propositional to hyper–propositional logic

www.bucephalus.org

July 3, 2007

B0
A !|=0

A

F0
A

B1
A !|=1

A

F1
A

B2
A !|=2

A

F2
A

B3
A !|=3

A

F3
A

...
...

@
@

@
@

@@I
mod1

A

@
@

@
@

@@I
mod2

A

@
@

@
@

@@I
mod3

A

@
@

@
@

@@I
mod4

A

Abstract
“Hyper–propositional logic” is our title for

a generalization of traditional propositional
logic that introduces formulas of arbitrary
degree k, such that traditional propositional
formulas turn into hyper–propositional for-
mulas of first degree.

Primitive formulas of degree k + 1 are
“♦σ” and “¤σ”, where σ is a formula of
degree k. More complex formulas are con-
structed by means of conjunctions, disjunc-
tions, and negations, as usual. “♦σ” and
“¤σ” may be read “σ is satisfiable” and “σ
is valid”, respectively, and this is similar to
modal logic, however the semantics of hyper–
propositional formulas is very different.

Each formula of degree k has possible in-
terpretations of degree k, and as usual, such
an interpretation is a model, if it turns the
formula into a true statement. So next and
parallel to the hierarchical syntax, the cor-
responding semantics has arbitrary degrees
as well. We call these interpretations bit ta-
bles, and for each degree we obtain a com-
plete boolean algebra of bit tables. A very
strong and elegant property of the whole de-
sign is the fact, that the entire model class of
a formula actually turns into a single bit ta-
ble on the next level, i.e. the whole formula
algebra of degree k is embedded into the bit
table algebra of degree k + 1.

1

HyperDigitIntro 2

Contents

1 Bit values, characteristic functions and bit tables 4
1.1 Bit values . 4
1.2 Power sets and characteristic functions . 4
1.3 Bit tables and their algebras . 5

2 Logical systems and traditional propositional logic in particular 10
2.1 Optional prelude on logical systems . 10
2.2 Traditional propositional logic . 11

3 From traditional propositional to hyper–propositional logic 16
3.1 Applying modal operators to formulas . 16
3.2 Higher degree propositional logic . 17
3.3 The foundation problem and its solution . 19
3.4 The final version of hyper–propositional logic 22

List of Figures

1 Mathematical preliminaries 3
2 Bit values and their algebra 8
3 The isomorphism between P (X) and Chf (X) 8
4 Bit tables and their algebras 9
5 Traditional propositional logic 15
6 Hyper–propositional logic 23
7 Embedding traditional propositional into hyper–

propositional logic . 24

Introduction and overview

Main objective of this text is the introduction of the syntax and semantics of hyper–digital
or hyper–propositional logic by showing how it emerges from traditional propositional logic
by adding modal operators to the language and finding a consistent and simple foundation
for the whole system.
First, we define for each carrier set A and degree k, a set of bit tables Bk

A and a couple of

operations on them. The result is the bit table algebra Bk
A. All that is summarized in two

figures:

Figure 2 “Bit values and their algebra” and

Figure 4 “Bit tables and their algebra”.

Bit tables are the worlds, interpretations or semantics of the systems we are about to
develop here. The syntax on the other hand are the (hyper–propositional) formula sets Fk

A,

each one of them also constitutes a (default) formula algebra Fk
A. The important result will

be that Fk
A ↪→ Bk+1

A , i.e. that each formula algebra has a (very natural) embedding into the
bit table algebra of next higher degree. And again, we will summarize all that in

Figure 6 “Hyper–propositional logic”

In fact, these three figures 2, 4 and 6 comprise the whole syntax and semantics of hyper–

digital logic. But instead of presenting the system in an axiomatic fashion, we rather take

a more narrative approach in this paper and try to explain, how hyper–propositional logic

emerges from traditional propositional logic. Accordingly, we don’t bother to provide the

proofs of the “facts” we are about to state.

HyperDigitIntro 3

Figure 1: Mathematical preliminaries
Sets, functions and relations

♣ ∅ , ∩ , ∪ ,
T
,
S
, \ ,] are the usual operations on sets, where X \ Y is the difference of X and Y (all elements of X, but not in

Y), and the disjunct union X] Y is the same as the union X ∪ Y , but it is only defined for X ∩ Y = ∅.
♣ P (X) := {Y | Y ⊆ X} denotes the power set of a given set X,

♣ N := {0, 1, 2, 3, . . .} the set of natural numbers, R is the set of real numbers.

♣ card (X) is the cardinality of a given set X.

♣ f =

"
X −→ Y

x 7→ f(x)

#
is our standard notation for a function f : X −→ Y that maps each x ∈ X to a unique and well–defined f(x) ∈ Y .

♣ R : X ! Y is our standard notation for the type expression of a relation R between X and Y . For example, ≤: R ! R for the usual
linear order ≤ on the real numbers.

Quasi–boolean algebras

A quasi–boolean algebra is a structure
˙
B,v,≡,⊥,>,u,t,¬¸ where

♣ B is a set

♣ v is a quasi–order (i.e. a transitive and reflexive) relation on B

♣ ≡ is the equivalence relation of v, i.e. x ≡ y iff x v y and y v x

♣ ⊥ is a (quasi–)least element, i.e. ⊥ v x for all x ∈ B
♣ > is a (quasi–)top element, i.e. x v > for all x ∈ B
♣ u is a (quasi–)meet function, i.e. x u y is a greatest lower bound of x, y ∈ B,

♣ t is a (quasi–)join function, i.e. x t y is a least upper bound of x, y ∈ B,

♣ ¬ is a (quasi–)complement function, i.e. ¬x u x ≡ ⊥ and ¬x t x ≡ >, for all x ∈ B
♣ u and t are mutually (quasi–)distributive, i.e. x u (y t z) ≡ (x u y) t (x u z) and x t (y u z) ≡ (x t y) u (x t z), for all x, y, z ∈ B
Such a quasi–boolean algebra is

♣ complete, if there are two more functions

♠ a supremum function
‘

which returns a least upper bound
‘
S for every S ⊆ B,

♠ an infimum function
Q

which returns a greatest lower bound
Q
S for every S ⊆ B

♣ canonic or a boolean algebra, if v is antisymmetric, i.e. if ≡ is the identity on B.

HyperDigitIntro 4

1 Bit values, characteristic functions and bit tables

1.0.1 Remark

In this section we introduce a whole range of closely related
boolean algebras, all of them are complete. We start with the
most typical specimens of boolean algebras at all: B, the one
built on just two elements 0 and 1, and P (X) the structure
which emerges when the subsets of an arbitrary set X are or-
dered by the inclusion ⊆. We suppose, we don’t need to repeat
the concept of a “(complete) boolean algebra” here — it is a
common notion for structures that pretty much behave like B
and P (X).
Another common notion is the “characteristic function”: it is
the same as a “subset”, it just has another form. In other
words, there is a bijection between subsets of a given set X
and all the characteristic functions on X. Chf (X) denotes the
complete boolean algebra on these charcteristic functions iso-
morph to P (X).
Finally, we built a whole recursive hierarchy on these sets of
characteristic functions, similar to an iterated application of
the power set operator “P(P(. . . (P(X)) . . .))”. That way, we
also have characteristic functions of first, second, etc “degree”.
Our general term for such a construction is “k–degree bit ta-
ble”. Each of those bit table sets constitues a boolean algebra
again, we obtain a whole hierarchy of complete boolean alge-
bras B1

X ,B
2
X ,B

3
X , . . ., starting with B1

X = Chf (X).
The whole matter in this chapter is not very difficult to un-
derstand and we state the mentioned theorems without proofs.
The main idea is that we built some tools and get used to the
notation.

1.1 Bit values

1.1.1 Definition bit values and their algebra

The bit value set is the two–element set

B :=
n

0 , 1
o

where 0 is the zero bit and 1 the unit bit.
The bit value algebra is

B :=
˙
B,≤, 0, 1,∧,∨,V,W, -¸

where the operations are defined as usual, such that B is a
complete boolean algebra (see figure 2).

1.2 Power sets and characteristic
functions

1.2.1 Definition

For every set X we define the power set algebra on X,

P (X) :=
˙
P (X) ,⊆, ∅, 1,∩,∪,T,S, {¸

where 1 := X is the full set, {Y := 1\Y is the complement

of Y ∈ P (X) and
T

is defined on the whole domain P (X) by
putting

T ∅ := 1.

1.2.2 Fact

For every set X holds:

(1) card (P (X)) = 2card(X)

(2) P (X) is a complete boolean algebra

1.2.3 Definition characteristic functions

A characteristic function (on X) is a function χ with codomain
B, i.e.

χ : X −→ B

For such a χ we define

Unit (χ) := {x ∈ X | χ(x) = 1} the unit set of χ

Zero (χ) := {x ∈ X | χ(x) = 0} the zero set of χ

If X = {x1, . . . , xn} is finite, we often represent ξ by

χ =

2
66664

x1 7→ χ(x1)

x2 7→ χ(x2)

.

.

.
.
.
.

xn 7→ χ(xn)

3
77775

1.2.4 Example

If X := {a, b, c, d, e}, a characteristic function on X is given
by

χ :=

2
6664

a 7→ 0
b 7→ 1
c 7→ 1
d 7→ 0
e 7→ 1

3
7775

Then

Unit (χ) = {b, c, e} and Zero (χ) = {a, d}

1.2.5 Definition characteristic function of a subset

Given a set X. For every Y ⊆ X we define

cfY := cfX
Y :=

2
66664

X −→ B

x 7→
(

1 if x ∈ Y
0 if x 6∈ Y

3
77775

HyperDigitIntro 5

the characteristic function of Y (in X)

1.2.6 Example

As in example 1.2.4, let X := {a, b, c, d, e}. For Y := {b, c, e}
we obtain

cfX
Y =

2
6664

a 7→ 0
b 7→ 1
c 7→ 1
d 7→ 0
e 7→ 1

3
7775

Note, that

Unit
“
cfX

Y

”
= {b, c, e} = Y

1.2.7 Fact

For every set X holds:
(1) cf©1 : P (X) −→ (X −→ B) is a bijection

(2) Unit : (X −→ B) −→ P (X) is the inverse bijection of
cf©1

(3) card (X −→ B) = 2card(X)

(4) X = Unit (χ)] Zero (χ), for each χ : X −→ B.
In other words, the domain of each characteristic function is
a disjunct union of its unit and zero set.

1.2.8 Definition

The characteristic function algebra of a given set X

Chf (X) :=
˙
(X −→ B),v,⊥,>,u,t,Q,‘,¬¸

is defined by

χ1 v χ2 iff χ1(x) ≤ χ2(x) for all x ∈ X

⊥ :=

2
4 X −→ B

x 7→ 0

3
5 > :=

2
4 X −→ B

x 7→ 1

3
5

χ1 u χ2 :=

2
64

X −→ B

x 7→ χ1(x) ∧ χ2(x)

3
75

χ1 t χ2 :=

2
64

X −→ B

x 7→ χ1(x) ∨ χ2(x)

3
75

Q
Ξ :=

2
64

X −→ B

x 7→ V{χ(x) | x ∈ ξ}

3
75

‘
Ξ :=

2
64

X −→ B

x 7→ W{χ(x) | x ∈ ξ}

3
75

¬χ :=

2
64

X −→ B

x 7→ -χ(x)

3
75

for all χ, χ1, χ2 : X −→ B and Ξ ⊆ (X −→ B).

1.2.9 Example

Three characteristic functions on X := {a, b, c, d, e} are given
by

χ1 =

2
6664

a 7→ 0
b 7→ 0
c 7→ 0
d 7→ 0
e 7→ 0

3
7775 χ2 =

2
6664

a 7→ 0
b 7→ 1
c 7→ 1
d 7→ 0
e 7→ 1

3
7775 χ3 =

2
6664

a 7→ 0
b 7→ 0
c 7→ 0
d 7→ 1
e 7→ 0

3
7775

Then
(a) χ1 v χ2, because χ1(x) ≤ χ2(x) for each x ∈ X
(b) χ3 6v χ2, because χ3(d) = 1 6≤ 0 = χ2(d)

(c) ¬χ2 =

2
6664

a 7→ -0
b 7→ -1
c 7→ -1
d 7→ -0
e 7→ -1

3
7775 =

2
6664

a 7→ 1
b 7→ 0
c 7→ 0
d 7→ 1
e 7→ 0

3
7775

(d)
‘ {χ1, χ2, χ3} =

2
6664

a 7→W {0, 0, 0}
b 7→W {0, 1, 0}
c 7→W {0, 1, 0}
d 7→W {0, 0, 1}
e 7→W {0, 1, 0}

3
7775 =

2
6664

a 7→ 0
b 7→ 1
c 7→ 1
d 7→ 1
e 7→ 1

3
7775

1.2.10 Fact

For every set X holds:
(1) Unit : Chf (X) ∼= P (X)

i.e. Unit is not only a bijection from X −→ B into P (X),
but an isomorphism from Chf (X) into P (X)

(2) Chf (X) is a complete boolean algebra.

1.2.11 Remark

Figure 3 shows the typical order diagram (also called “Hasse
diagram”) of the complete boolean algebra P (X), where X =
{a, b, c} is a simple example of a tree element set. The dia-
gram of the isomorph Chf (X) thus looks the same, and the
two mutually inverse isomorphisms Unit and cf©1 point from
one diagram to the according places in the other one.

1.3 Bit tables and their algebras

1.3.1 Definition

For every set A and each k ∈ N we define

Bk
A :=

(
A if k = 0

Bk−1
A −→ B if k > 0

the bit table set on (carrier) A and (degree) k

1.3.2 Remark

For each given A, the (members of the) first bit table sets Bk
A

also have alternative “geometric” names:

HyperDigitIntro 6

B0
A = A is also called the bit point set on A

B1
A = A −→ B are the bit lines on A

B2
A = (A −→ B) −→ B the bit squares on A

B3
A = ((A −→ B) −→ B) −→ B the bit cubes on A

.

.

.
.
.
.

1.3.3 Bit table diagrams

In case both A and k are really small, we can note a bit table
Ω ∈ Bk

A according to 1.2.3 by

2
66664

ω1 7→ Ω(ω1)

ω2 7→ Ω(ω2)

.

.

.
.
.
.

ωn 7→ Ω(ωn)

3
77775

But instead, we often picture it by its bit table diagram, which
is a littel more compact, when k ≥ 2.
For example, let us take A = {a, b, c}.
(i) For k = 0, Ω simply is a member of A and “Ω” very much

is its one bit table diagram.

(ii) If k = 1 we draw the diagram for Ω : A −→ B in two steps

(1) First we list all the arguments a, b, c of Ω

a b c

(2) Then we add for each argument ω its bit value Ω(ω)

Ω =
a b c

Ω(a) Ω(b) Ω(c)

(iii) For k = 2, Ω : B1
A −→ B is again constructed in two steps:

(1) There are 23 = 8 different arguments ω1, . . . , ωn ∈ B1
A

of Ω. We list all these arguments in a compact list

a b c

0 0 0

1 0 0

.

.

.

.

.

.

.

.

.

1 1 1

(2) Then we attach the bit values Ω(ω), for each ω:

a b c

0 0 0 Ω(ω1)

1 0 0 Ω(ω2)

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 Ω(ω8)

The result is a common diagram from traditional proposi-
tional logic, where is it usually called a truth table.

(iv) For k = 3, we perform the same two steps to produce a
bit table diagram for Ω ∈ B3

A:

(1) First list all the 28 = 256 arguments ω1, . . . , ω256 ∈ B2
A:

a b c

0 0 0 0 1 . . . 1

1 0 0 1 1 . . . 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 0 0 1 . . . 1

(2) Then attach the corresponding bit values:

a b c

0 0 0 0 1 . . . 1

1 0 0 1 1 . . . 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 0 0 1 . . . 1

Ω(ω1) Ω(ω2) . . . Ω(ω256)

This can in principle be done for every k > 3 as well. But of
course, the size of the diagram grows exponentially. For really
small A and k however, the pictures are sometimes useful.

1.3.4

Bit tables with degree higher than 0 are characteristic func-
tions, as defined in 1.2.3. If Ω ∈ Bk

A with k > 0, then

Ω : Bk−1
A −→ B with

Bk−1
A = Unit (Ω)] Zero (Ω)

In our standard notation for functions, such a bit table is given
by

Ω =

2
64
Bk−1

A −→ B

ω 7→ Ω(ω)

3
75

For every Bk
A = Bk−1

A −→ B we can also define the character-

istic function algebra of Bk−1
A as introduced in 1.2.8.

Later on it will be useful to clearly distinguish these algebras
for different A and k, and therefore, we attach this informa-
tion to the operation symbols and write “vk

A”, “⊥k
A”, “uk

A”
instead of simply “v”, “⊥”, “u” etc.

1.3.5 Definition

For every set A and k ≥ 1 we define

Bk
A :=

˙
Bk

A,vk
A,⊥k

A,>k
A,uk

A,tk
A,
Qk

A,
‘k

A,¬k
A

¸

:= Chf
“
Bk−1

A

”

the bit table algebra on (carrier) A and (degree) k.

1.3.6 Operations in general functional representation

So if A and k ≥ 1 are given, then for all Ω,Ω′ ∈ Bk
A and

Γ ⊆ Bk
A,

Ω vk
A Ω′ iff Ω(ω) ≤ Ω′ for all ω ∈ Bk−1

A

HyperDigitIntro 7

⊥k
A =

2
64
Bk−1

A −→ B

ω 7→ 0

3
75 >k

A =

2
64
Bk−1

A −→ B

ω 7→ 1

3
75

¬k
AΩ =

2
64
Bk−1

A −→ B

ω 7→ -Ω(ω)

3
75

Ω uk
A Ω′ =

2
64

Bk−1
A −→ B

ω 7→ Ω(ω) ∧ Ω′(ω)

3
75

Ω tk
A Ω′ =

2
64

Bk−1
A −→ B

ω 7→ Ω(ω) ∨ Ω′(ω)

3
75

Qk
AΓ =

2
6664

Bk−1
A −→ B

ω 7→ V
Ω∈Γ

Ω(ω)

3
7775

‘k
AΓ =

2
6664

Bk−1
A −→ B

ω 7→ W
Ω∈Γ

Ω(ω)

3
7775

1.3.7 Operations in diagram representation

If the bit tables are given by their diagrams, the application
of the operations becomes very intuitive.
For example, take A = {a, b, c}, k = 1

⊥k
A =

a b c

1 1 1
and >k

A =
a b c

1 1 1

If two members of Bk
A, i.e. two bit lines on A are given by

Ω :=
a b c

1 0 0
and Ω′ :=

a b c

1 0 1

then

Ω uk
A Ω′ =

a b c

1 ∧ 1 0 ∧ 0 0 ∧ 1
=

a b c

1 0 0

¬k
AΩ =

a b c

-1 -0 -0
=

a b c

0 1 1

and

Ω vk
A Ω′ because

0
BB@

Ω(a) = 1 ≤ 1 = Ω′(a) and

Ω(b) = 0 ≤ 0 = Ω′(b) and

Ω(c) = 0 ≤ 1 = Ω′(c)

1
CCA

Similar rules hold for other carrier set and degrees. For exam-
ple, for bit squares (degree=2) on A = {a, b} we have

⊥k
A =

a b

0 0 0

0 0 0

0 0 0

0 0 0

and >k
A =

a b

0 0 1

0 0 1

0 0 1

0 0 1

and

a b

0 0 1

0 0 0

0 0 1

0 0 0

tk
A

a b

0 0 0

0 0 0

0 0 1

0 0 0

=

a b

0 0 1 ∨ 0

0 0 0 ∨ 0

0 0 1 ∨ 1

0 0 0 ∨ 0

=

a b

0 0 1

0 0 0

0 0 1

0 0 0

and so on.

1.3.8 Example

For the same A = {a, b} and k = 2 the entire boolean algebra

Bk
A is represented by the following order diagram:

a b
0 0 0
1 0 0
0 1 0
1 1 0

a b
0 0 1
1 0 0
0 1 0
1 1 0

a b
0 0 0
1 0 1
0 1 0
1 1 0

a b
0 0 0
1 0 0
0 1 1
1 1 0

a b
0 0 0
1 0 0
0 1 0
1 1 1

a b
0 0 1
1 0 1
0 1 0
1 1 0

a b
0 0 1
1 0 0
0 1 1
1 1 0

a b
0 0 1
1 0 0
0 1 0
1 1 1

a b
0 0 0
1 0 1
0 1 1
1 1 0

a b
0 0 0
1 0 1
0 1 0
1 1 1

a b
0 0 0
1 0 0
0 1 1
1 1 1

a b
0 0 1
1 0 1
0 1 1
1 1 0

a b
0 0 1
1 0 1
0 1 0
1 1 1

a b
0 0 1
1 0 0
0 1 1
1 1 1

a b
0 0 0
1 0 1
0 1 1
1 1 1

a b
0 0 1
1 0 1
0 1 1
1 1 1

c
c

c
c

cc

A
A
A
AA

¢
¢

¢
¢¢

#
#

#
#

##

A
A
A
AA

Q
Q

Q
Q

Q
QQ

¤
¤
¤
¤¤

¶
¶

¶
¶¶

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
QQ

¶
¶

¶
¶¶

´
´

´
´

´
´́

C
C
C
CC

#
#

#
#

##

¢
¢

¢
¢¢

¢
¢
¢
¢¢

#
#

#
#

##

C
C
C
CC

Q
Q

Q
Q

Q
QQ

´
´

´
´

´
´́

¶
¶

¶
¶¶

Q
Q

Q
Q

Q
QQ

¶
¶

¶
¶¶

c
c

c
c

cc

¤
¤
¤
¤¤

A
A

A
AA

#
#

#
#

##

¢
¢
¢
¢¢

A
A

A
AA

c
c

c
c

cc

1.3.9 Fact

Bk
A is a complete boolean algebra, for every set A and k ≥ 1.

1.3.10 Remark

We call a boolean algebra degenerated, if it only has a single
element. Usually, one expects a boolean algebra to have at
least a bottom and a top element, both being different. Oth-
erwise it doesn’t really make sense to talk about a “boolean
algebra” at all. Some authors therefore exclude degenerated
boolean algebras from the definition right away.
The statement of 1.3.9 is true in general, but Bk

A is degener-

ated, if and only if A = ∅ and k = 1. In that case Bk
A has only

one element, the empty function of type ∅ −→ B.

HyperDigitIntro 8

Figure 2: Bit values and their algebra
Bit values

B := {0, 1} is the bit value class, where 0 is the zero bit and 1 the unit bit.

Bit value algebra

B :=
˙
B,≤, 0, 1,∧,∨,V,W, -¸ is the bit value algebra, where

β1 ≤ β2 iff β1 = 0 or β2 = 1

β1 ∧ β2 :=
V {β1, β2}

VB :=

(
0 if 0 ∈ B
1 else

β1 ∨ β2 :=
W {β1, β2}

WB :=

(
1 if 1 ∈ B
0 else

-β :=

(
0 if β = 1

1 else

for all β, β1, β2 ∈ B and B ⊆ B.
We also write, for all β1, . . . , βn ∈ B with n ≥ 0,

n∧
i=1

βi for
V {β1, . . . , βn} and

n∨
i=1

βi for
W {β1, . . . , βn}

Theorem

B is a complete boolean algebra.

Figure 3: The isomorphism between P (X) and Chf (X)

P ({a, b, c}) Chf ({a, b, c})

cf©1

Unit

-

¾

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

¡
¡

¡
¡

@
@

@
@

¡
¡

¡
¡

@
@

@
@

¡
¡

¡
¡

@
@

@
@

@
@

@
@

¡
¡

¡
¡

2
4
a 7→ 1
b 7→ 1
c 7→ 1

3
5

2
4
a 7→ 1
b 7→ 1
c 7→ 0

3
5

2
4
a 7→ 1
b 7→ 0
c 7→ 1

3
5

2
4
a 7→ 0
b 7→ 1
c 7→ 1

3
5

2
4
a 7→ 1
b 7→ 0
c 7→ 0

3
5

2
4
a 7→ 0
b 7→ 1
c 7→ 0

3
5

2
4
a 7→ 0
b 7→ 0
c 7→ 1

3
5

2
4
a 7→ 0
b 7→ 0
c 7→ 0

3
5

¡
¡

¡

@
@

@

¡
¡

¡

@
@

@

¡
¡

¡

@
@

@

@
@

@

¡
¡

¡

HyperDigitIntro 9

Figure 4: Bit tables and their algebras
Bit tables

For every set A and each natural number k we define

Bk
A :=

(
A if k = 0

Bk−1
A −→ B if k > 0

the bit table set of carrier A and degree k.

In our default notation for functionsa, each bit table Ω ∈ Bk
A with k ≥ 1 is then given by

Ω =

2
64
Bk−1

A −→ B

ω 7→ Ω(ω)

3
75

Similar to geometry, bit tables of small degree k = 0, 1, 2, 3 are also called bit points, bit lines, bit squares and bit cubes, respectively. In
traditional propositional logic, bit squares are also known as truth tables.

Bit table diagrams

If both A and k are finite, we can represent each Ω ∈ Bk
A by its bit table diagram. For example

(1) If A = {a, b} and k = 1 then (2) If A = {a, b} and k = 2 then (3) If A = {a} and k = 3 then

a b c

β1 β2 β3
:=

2
6666664

A −→ B
2
64
a 7→ β1

b 7→ β2

c 7→ β3

3
75

3
7777775

a b

0 0 β1
1 0 β2
0 1 β3
1 1 β4

:=

2
66666666666666666664

B1
A −→ B

2
66666666666664

a b

0 0
7→β1

a b

1 0
7→β2

a b

0 1
7→β3

a b

1 1
7→β4

3
77777777777775

3
77777777777777777775

a

0 0 1 0 1

1 0 0 1 1

β1 β2 β3 β4

:=

2
66666666666666666666666666664

B2
A −→ B

2
66666666666666666666664

a

0 0

1 0

7→β1

a

0 1

1 0

7→β2

a

0 0

1 1

7→β3

a

0 1

1 1

7→β4

3
77777777777777777777775

3
77777777777777777777777777775

Bit table algebras

Bk
A :=

˙
Bk

A,vk
A,⊥k

A,>k
A,uk

A,tk
A,
Qk

A,
‘k

A,¬k
A

¸
is the bit table algebra, for each set A and k ≥ 1, where

Ω vk
A Ω′ iff Ω(ω) ≤ Ω′(ω) for all ω ∈ Bk−1

A

Ω uk
A Ω′ :=

2
64

Bk−1
A −→ B

ω 7→ Ω(ω) ∧ Ω′(ω)

3
75 Ω tk

A Ω′ :=

2
64

Bk−1
A −→ B

ω 7→ Ω(ω) ∨ Ω′(ω)

3
75 ¬k

AΩ :=

2
64
Bk−1

A −→ B

ω 7→ -Ω(ω)

3
75

⊥k
A :=

2
64
Bk−1

A −→ B

ω 7→ 0

3
75 >k

A :=

2
64
Bk−1

A −→ B

ω 7→ 1

3
75 Qk

AΓ :=

2
64

Bk−1
A −→ B

ω 7→ V{Ω(ω) | Ω ∈ Γ}

3
75 ‘k

AΓ :=

2
64

Bk−1
A −→ B

ω 7→ W{Ω(ω) | Ω ∈ Γ}

3
75

for all Ω,Ω′ ∈ Bk
A and Γ ⊆ Bk

A.

Using bit table diagrams and taking A = {a, b} and k = 2 for example, the operations are

a b

0 0 β1
1 0 β2
0 1 β3
1 1 β4

v2
A

a b

0 0 γ1
1 0 γ2
0 1 γ3
1 1 γ4

iff

0
BBBBB@

β1 ≤ δ1 and

β2 ≤ δ2 and

β3 ≤ δ3 and

β4 ≤ δ4

1
CCCCCA

⊥2
A =

a b

0 0 0

1 0 0

0 1 0

1 1 0

>2
A =

a b

0 0 1

1 0 1

0 1 1

1 1 1

¬2
A

a b

0 0 β1
1 0 β2
0 1 β3
1 1 β4

=

a b

0 0 -β1
1 0 -β2
0 1 -β3
1 1 -β4

a b

0 0 β1
1 0 β2
0 1 β3
1 1 β4

u2
A

a b

0 0 γ1
1 0 γ2
0 1 γ3
1 1 γ4

=

a b

0 0 β1 ∧ γ1
1 0 β2 ∧ γ2
0 1 β3 ∧ γ3
1 1 β4 ∧ γ4

a b

0 0 β1
1 0 β2
0 1 β3
1 1 β4

t2
A

a b

0 0 γ1
1 0 γ2
0 1 γ3
1 1 γ4

=

a b

0 0 β1 ∨ γ1
1 0 β2 ∨ γ2
0 1 β3 ∨ γ3
1 1 β4 ∨ γ4

These methods hold similarly for other A and k.

Theorem

Bk
A is a complete boolean algebra, for every set A and k ≥ 1.

a In our notation we write f =

2
64
X −→ Y

x 7→ f(x)

3
75 for a function f : X −→ Y that maps each x ∈ X to a well–defined f(x) ∈ Y .

HyperDigitIntro 10

2 Logical systems and traditional propositional logic in particular

2.0.11 Introduction

We are about show how hyper–propositional logic can be de-
veloped as a generalization of traditional propositional logic.
We first start with a general description of a “logical system”
and then introduce “(traditional) propositional logic” as a spe-
cial example.
In itself, our review is incomplete (e.g. we entirely neglect
the proof system and the derivation concept of logical sys-
tems), the emphasis on certain aspects (like the different rep-
resentations of an interpretation structure in 2.1.2) might seem
awkward, and the whole trip (from “interpretation structures”
to “formula algebras”) is somewhat counter–intuitive. But it
points out the properties that motivate some of the ideas later
on.

2.1 Optional prelude on logical sys-
tems

2.1.1 Interpretation structures

An interpretation structure is made of three ingredients:1

(i) A formal language, usually represented as a set FORM of
formulas.

(ii) A potential reality, usually represented as a class INT of
possible interpretations.

(iii) A logical semantics, which defines a correspondence be-
tween formulas ϕ and interpretations Ω: ϕ can be a true
formula for Ω. In that case, Ω is also said to satisfy ϕ or be
a model for ϕ. Otherwise, ϕ is false for Ω.

2.1.2 Three equivalent representations

In precise mathematical terms, such an interpretation struc-
ture can be given in different but equivalent representations:

|=: INT ! FORM the model relation

Mod : FORM −→ P (INT) the model class function

mod : FORM −→ INT −→ B the model function

“Ω |= ϕ” is saying that Ω is a model for ϕ. Otherwise, we write
“Ω 6|= ϕ”, as usual. “Mod (ϕ) ⊆ INT” denotes the class of all
the models of ϕ. And mod (ϕ) : INT −→ B, the model func-
tion2 of ϕ, is the characteristic function of this model class.
In other words, mod(ϕ)(Ω) is 1, if Ω is a model for ϕ, and 0,
otherwise.

Most common is the formal definition of a semantics by means
of “|=”. But note, that each of the three representations is
equivalent and each one implies the other two.

2.1.3 Transformation rules

Let FORM and INT be two classes.
(1) Given a model relation ρ : INT ! FORM

(a) The model class function of ρ

Modρ : FORM −→ P (INT)

is defined by

Modρ(ϕ) := {Ω ∈ INT | Ω ρϕ}
for all ϕ ∈ FORM .

(b) The model function of ρ

modρ : FORM −→ INT −→ B

is defined by

modρ(ϕ)(Ω) :=

(
1 if Ω ρϕ

0 else

for all ϕ ∈ FORM and Ω ∈ INT
(2) Given a model class function M : FORM −→ P (INT)

(a) The model relation of M
|=M: INT ! FORM

is defined by

Ω |=M ϕ iff Ω ∈ M
for all Ω ∈ INT and ϕ ∈ FORM

(b) The model function of µ

modM : FORM −→ INT −→ B
is defined by

modM(ϕ)(Ω) :=

(
1 if Ω ∈ M
0 else

for all ϕ ∈ FORM and Ω ∈ INT .

(3) Given a model function µ : FORM −→ INT −→ B
(a) The model relation of µ

|=µ: INT ! FORM

is defined by

Ω |=µ ϕ iff µ(ϕ)(Ω) = 1

(b) The model class function of µ

Modµ : FORM −→ P (INT)

is defined by

Modµ(ϕ) := {Ω ∈ INT | µ(ϕ)(Ω) = 1}
for all ϕ ∈ FORM .

1Actually, this definition of an “interpretation structure” meets every binary relation and is thus not suitable for a description of some-

thing like a logical system. Later on in ??lindenbaum structure must be a boolean lattic?? , we put more constraints on interpretation systems to be

useful.
2So we call “mod” itself the “model function”, but also its application “mod(ϕ)”. Later on in the context of hyper-propositional logic,

it makes sense to call “mod(ϕ)” the “super–model of ϕ”, because a model of ϕ ∈ Fk
A is some ω ∈ Bk

A, but mod(ϕ) ∈ Bk+1
A , i.e. a model

has the same degree k as the formula, but the model function has degree k + 1, hence the “super–model”.

HyperDigitIntro 11

2.1.4 Sub– and equivalence

Each interpretation structure with formulas FORM , interpre-
tations INT and a semantics, represented by |=, Mod, mod,
induces an order on its formulas, usually called “entailment”,
“consequence” or “implication”. We prefer the title “subva-
lence”3) and define two relations

⇒: FORM ! FORM the subvalence relation

⇔: FORM ! FORM the equivalence relation

by putting

ϕ⇒ ψ iff ∀Ω ∈ INT . (Ω |= ϕ implies Ω |= ψ)

iff Mod (ϕ) ⊆ Mod (ψ)

iff mod (ϕ) v mod (ψ)

ϕ⇔ ψ iff ∀Ω ∈ INT . (Ω |= ϕ iff Ω |= ψ)

iff Mod (ϕ) = Mod (ψ)

iff mod (ϕ) = mod (ψ)

for all ϕ,ψ ∈ FORM .

Note, that all this is well–defined. Here, “⊆” is the order on
P (INT) and “v” is the order on the characteristic functions
INT −→ B, introduced in 1.2.8. Both are isomorph struc-
tures.

2.1.5 A quasi–boolean algebra of formulas

Obviously,
˙
FORM,⇒,⇔¸ is a quasi–ordered set. 4

But for a proper logical system we want this quasi–ordered set
to be a quasi–boolean algebra of formulas, i.e. equipped with
the following operations:
♣ a zero or false formula constant f , which is a least element

in
˙
FORM,⇒¸

♣ a unit or true element t, which is a greatest element

♣ a (quasi–)meet function f : FORM ×FORM −→ FORM ,

which returns a greatest lower bound ϕ f ψ for all ϕ,ψ ∈
FORM .

♣ a join function g, which returns a least upper bound ϕgψ,
and

♣ a complement function - : FORM −→ FORM , such that
ϕ ∨ -ϕ⇔ t and ϕ ∧ -ϕ⇔ f , for all ϕ ∈ FORM .

Note, that all these ingredients are usually not unique, but
only unique up to equivalence. This is the difference between
a quasi–order and a (partial) ordered structure.

2.1.6 Example

Suppose we have already given the propositional formula set,
together with the usual sub– and equivalence, we have differ-
ent ways to define a meet function f for arbitrary arguments
ϕ and ψ. For example,

ϕf ϕ := [ϕ ∧ ψ]

would be the most obvious choice (the default version). But in
fact, we have infinitely many options for the right side of this
definition:

[ψ ∧ ϕ] [ϕ ∧ ψ ∧ ϕ] [ψ ↔ ϕ↔ t] . . .

All these approaches produce equivalent results, each one a
(not the) greatest lower bound of ϕ and ψ. However, these
alternatives all produce formulas that increase in size. Alter-
natively, there are also more sophisticated versions where the
result of all operations like ϕfψ always is in a certain normal
or even canonical form.5

2.1.7 Logical system and Lindenbaum algebras

We do not really care here, but we could say that a given inter-
pretation structure with its quasi–ordered set

˙
FORM,⇒,⇔¸

is (or makes) a logical system, if it is possible to define such a
quasi–boolean algebra at all.

There is an alternative criterion for that: we construct the
quotient–structure6 of the given quasi–ordered set. If and only
if this poset has all the properties of a boolean lattice, then
the original structure is a logical system in our sense. This
boolean quotient structure of a given quasi–ordered set of for-
mulas is usually called the Lindenbaum or Lindenbaum–Tarski
algebra.

2.2 Traditional propositional logic

2.2.1 Definition

Pfm (A) the propositional formula set on a given A is recur-

sively defined to comprise the following expressions:

([a]) (atomic formula)

¬ϕ (negation)

[ϕ1 ∧ . . . ∧ ϕn] (conjunction)

[ϕ1 ∨ . . . ∨ ϕn] (disjunction)

for all a ∈ A and ϕ, ϕ1, . . . , ϕn ∈ Pfm(A) with n ∈ N.

2.2.2 Remark

3I like the systematics in the following terminology and notation: subvalence “⇒”, equivalence “⇔”, subjunction “→”, and equijunction

“↔”.
4˙FORM,⇒,⇔¸ is a quasi–ordered set iff ⇒ is a quasi–order (i.e. transitive and reflexive) relation on FORM and ⇔ is its equivalence

relation (i.e. ϕ⇔ ψ iff ϕ⇒ ψ and ψ ⇒ ϕ).
5See e.g. Theory and implementation of efficient canonical systems for sentential calculus, based on Prime Normal Forms on

www.bucephalus.org.
6⇔ is an equivalence relation on FORM . Its equivalence classes are the ϕ̃ := {ψ ∈ FORM | ψ ⇔ ϕ}, for ϕ ∈ FORM . The overall

quotient set FORM/⇔ is the collection of all these equivalent classes, and the subvalence relation is redefined on it by putting ϕ̃ ⇒̃ ψ̃

iff ϕ ⇒ ψ. Finally,
˙
FORM/⇔, ⇒̃¸ is the wanted quotient structure. A quotient structure of a quasi–ordered set is always a poset or

(partially) ordered set.

HyperDigitIntro 12

(1) Most authors don’t distinguish between atoms and atom
formulas, i.e. they write “a” instead of our “([a])”. For ex-
ample, they rather write

“[a ∨ ¬b]” instead of our “[([a]) ∨ ¬([b])]”

We call that the convenient form, and in most examples, we
also use that version to make things more readable. However
and strictly speaking, we insist on the proper “([a])” version
for atom formulas. This keeps things clear, especially when
it comes to “higher order” issues, where the atom “a” it-
self can be a more complex form and things might become
ambiguous.

(2) The square brackets “[. . .]” are also used as part of the
syntax and extra distinction of formulas from terms like
“0 ∧ (1 ∨ 0)”, which are not formulas, but applications. We
don’t apply the usual preference rules to eliminate brackets,
either.

(4) We defined the conjunction and disjunction for any finite
number n ∈ N of arguments and we write

(a) [∧] and [∨] for nullary (i.e. n = 0), and

(b) [∧ ϕ1] and [∨ ϕ1] for unary conjunctions and dis-

junctions, respectively.

(5) We extend the stock of expressions by introducing new
junctions as abbreviations for more complex formulas:

(a) t := [∧] the true symbol

(b) f := [∨] the false symbol

(c) [ϕ1 → . . .→ ϕn] := [[¬ϕ1∨ϕ2]∧. . .∧[¬ϕn−1∨ϕn]]

the subjunction

(d) [ϕ1 ↔ . . .↔ ϕn] := [[¬ϕ1 ∧ . . .∧¬ϕn]∨ [ϕ1 ∧ . . .∧
ϕn]] the equijunction

2.2.3 Example

Example formulas of Pfm (A) for A = {a, b, c, . . .} are the
following
(i) [a ∧ ¬b], which is the convenient form for [([a]) ∧ ¬([b])]

(ii) [t ∧ ¬[¬b ∨ a] ∧ b] wich is the convenient form for
[t ∧ ¬[¬([b]) ∨ ([a])] ∧ ([b])]

(iii) [a ↔ f ↔ ¬¬a] which is an abbreviation for the conve-
nient form [[¬a ∧ ¬f ∧ ¬¬¬a] ∨ [a ∧ f ∧ ¬¬a]]

2.2.4 Remark

A propositional formula turn into a propositions, i.e. an ei-
ther false or true statement, by assigning bit values to the given
bit variables or atoms. In other words, an interpretation for
propositional formulas is a characteristic function ω : A −→ B
on the given atom class A.
Recall 1.3.2, that (A −→ B) = B1

A. In terms of the bit table

terminology and notation, the bit line set B1
A is the interpre-

tation class for Pfm (A). We prefer to write B1
A instead of

A −→ B from now on, because this prepares the generalization
to hyperpropositional logic later on.
Also recall 2.1.2, that we have three equivalent versions to
actually define the interpretation structure for propositional
logic. We define them alltogether next in 2.2.5 and just repeat
in 2.2.8, that all three are equivalent.

2.2.5 Definition

Given an atom set A.

The propositional model relation on A

|=A: B1
A ! Pfm (A)

is defined as follows:

ω |=A ([a]) iff ω(a) = 1

ω |=A ¬ϕ iff ω 6|=A ϕ

ω |=A [ϕ1 ∧ . . . ∧ ϕn] iff ω |=A ϕi for all i

ω |=A [ϕ1 ∨ . . . ∨ ϕn] iff ω |=A ϕi for some i

for all ω ∈ B1
A, a ∈ A and ϕ,ϕ1, . . . , ϕn ∈ Pfm (A).

The propositional model class function on A,

ModA : Pfm (A) −→ P
`
B1

A

´

is defined as follows:

ModA(([a])) := {ω : A −→ B | ω(a) = 1}

ModA(¬ϕ) := B1
A \ModA(ϕ)

ModA([ϕ1 ∧ . . . ∧ ϕn]) :=

8
<
:
B1

A if n = 0
n∩

i=1
ModA(ϕi) else

ModA([ϕ1 ∨ . . . ∨ ϕn]) :=
n∪

i=1
ModA(ϕi)

The propositional model function on A

modA : Pfm (A) −→ B1
A −→ B

in other words

modA : Pfm (A) −→ B2
A

is defined by:

modA(([a]))(ω) := ω(a)

modA(¬ϕ)(ω) := -modA(ϕ)(ω)

modA([ϕ1 ∧ . . . ∧ ϕn])(ω) :=
n∧

i=1
modA(ϕi)(ω)

modA([ϕ1 ∨ . . . ∨ ϕn])(ω) :=
n∨

i=1
modA(ϕi)(ω)

for all ω ∈ B1
A, a ∈ A and ϕ,ϕ1, . . . , ϕn ∈ Pfm (A).

2.2.6 Remark

We use the conventions:
(1) ω |=A ϕ reads “ω satisfies ϕ” or “ϕ holds for ω” or “ϕ

is true for ω”

(2) ω 6|=A ϕ means that ω does not satisfy ϕ

(3) ModA(ϕ) is called the model class (on A) of ϕ.

(4) modA(ϕ)(ω) is “the bit value of ϕ at ω”,

(5) modA(ϕ) is the model function of ϕ on A.

2.2.7 Remark

Note, that

HyperDigitIntro 13

ω |=A [∧] and ω 6|=A [∨]

in other words

ω |=A t and ω 6|=A f

which is what one would expect: “true” is true for all inter-
pretations.

2.2.8 Fact

For every set A, each ϕ ∈ Pfm (A) and ω ∈ B1
A holds

ω |=A ϕ iff ω ∈ ModA(ϕ) iff modA(ϕ)(ω) = 1

2.2.9 Example

(i) Let A = {a, b} and ϕ ∈ Pfm (A) be conviently given by
[a ∧ ¬b]. B1

A has four members, namely

ω1 =
a b

0 0
ω2 =

a b

1 0
ω3 =

a b

0 1
ω4 =

a b

1 1

Accordingly, we have

modA(ϕ)(ω1) = modA(([a]))(ω1) ∧modA(¬([b]))(ω1)

= ω1(a) ∧ -ω1(b)

= 0 ∧ -0

= 0

modA(ϕ)(ω2) = ω2(a) ∧ -ω2(b) = 1 ∧ -0 = 1

modA(ϕ)(ω3) = 0

modA(ϕ)(ω4) = 0

so that alltogether

ModA(ϕ) =

a b

1 0

ff
∈ P

`
B1

A

´

and

modA(ϕ) =

2
666666664

B1
A −→ B

ω 7→

8
>>><
>>>:

0 if ω = ω1

1 if ω = ω1

0 if ω = ω3

0 if ω = ω4

3
777777775

=

a b

0 0 0

1 0 1

0 1 0

1 1 0

∈ B2
A

(ii) For the same A = {a, b} and the example formulas f and
t we obtain

modA(f) =

a b

0 0 0

1 0 0

0 1 0

1 1 0

and modA(t) =

a b

0 0 1

1 0 1

0 1 1

1 1 1

2.2.10
In the sequel, we often picture the actual logical system by
displaying the correspondence between the syntax on the right
and the semantics on the left side. The semantic hierarchy is
given by the hierarchy of the bit table classes Bk

A.
So far we only have two bit table classes in this hierarchy on
the left and one formula set on the right:

B1
A !|=A

Pfm (A)

B2
A

@
@

@
@

@@I
modA

2.2.11 Fact

For each set A and all ϕ, ϕ1, . . . , ϕn ∈ Pfm (A)

modA(f) = ⊥2
A

modA(t) = >2
A

modA(ϕ) = ¬2
AmodA(ϕ)

modA([ϕ1 ∧ . . . ∧ ϕn]) =
Q2

A {modA(ϕ1), . . . ,modA(ϕn)}

modA([ϕ1 ∨ . . . ∨ ϕn]) =
‘2

A {modA(ϕ1), . . . ,modA(ϕn)}

2.2.12 Definition

Let A be a set. We define two relations

⇒: Pfm (A) ! Pfm (A) the subvalence relation

⇔: Pfm (A) ! Pfm (A) the equivalence relation

by putting

ϕ⇒ ψ iff ∀ω ∈ B1
A .modA(ϕ)(ω) ≤ modA(ψ)

ϕ⇔ ψ iff ∀ω ∈ B1
A .modA(ϕ)(ω) = modA(ψ)

for all ϕ,ψ ∈ Pfm (A).

2.2.13 Fact

For every set A and all ϕ1, ϕ2 ∈ Pfm (A) holds:

ϕ1 ⇒ ϕ2 iff ModA(ϕ) ⊆ ModA(ϕ2)

iff modA(ϕ1) v2
A modA(ϕ2)

ϕ1 ⇔ ϕ2 iff ModA(ϕ) = ModA(ϕ2)

iff modA(ϕ1) = modA(ϕ2)

2.2.14 Definition

For every set A, the default propositional formula algebra on
A is

Pfm (A) :=
˙
Pfm (A) ,⇒,⇔, f , t,∧,∨, -¸

where

HyperDigitIntro 14

ϕ ∧ ψ := [ϕ ∧ ψ] (conjunction)

ϕ ∨ ψ := [ϕ ∨ ψ] (disjunction)

-ϕ := ¬ϕ (negation)

2.2.15 Fact

For every set A holds:

modA : Pfm (A) ↪→ B2
A

i.e. modA is an embedding from Pfm (A) into B2
A.

2.2.16 Remark

The “embedding” in 2.2.15 means as usual, that for all ϕ,ψ ∈
Pfm (A),

ϕ⇒ ψ implies mod2
A(ϕ) v2

A mod2
A(ψ)

and

mod2
A(ϕ ∧ ψ) = mod2

A(ϕ) u2
A mod2

A(ψ)

etc. For example, if A = {a, b, c} and

ϕ := [¬([b]) ∨ ([a])] and ψ := ¬([c])

then

mod2
A (ϕ ∧ ψ) = mod2

A ([[¬([b]) ∨ ([a])] ∧ ¬([c])])

=

a b c

0 0 0 1

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0

=

a b c

0 0 0 1

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 1

u2
A

a b c

0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0

= mod2
A(ϕ) u2

A mod2
A(ψ)

HyperDigitIntro 15

Figure 5: Traditional propositional logic
Formulas

For every given class A, we define Pfm (A) the propositional formula class of A as the class comprising the following expressions:

([a]) for each a ∈ A (atomic formula)

¬σ for each σ ∈ Pfm (A) (negation)

[σ1 ∧ . . . ∧ σn] for all ϕ1, . . . ϕn ∈ Pfm (A) with n ∈ N (conjunction)

[σ1 ∨ . . . ∨ σn] for all ϕ1, . . . ϕn ∈ Pfm (A) with n ∈ N (disjunction)

We write [∧] and [∨] for nullary (n = 0) and [∧ ϕ1] and [∨ ϕ1] for unary conjunctions and disjunctions, respectively.

Model function and model class

For every A we define the model function

modA : Pfm (A) −→ (A −→ B) −→ B

For every ϕ ∈ Pfm (A) and ω : A −→ B we give a definition of modA(ϕ)(ω) by structural induction on the form of ϕ as follows:

modA (([a])) (ω) := ω(a)

modA (¬ϕ) (ω) := -modA(ϕ)(ω)

modA ([ϕ1 ∧ . . . ∧ ϕn]) (ω) :=
V {modA(ϕ1)(ω), . . . ,modA(ϕn)(ω)}

modA ([ϕ1 ∨ . . . ∨ ϕn]) (ω) :=
W {modA(ϕ1)(ω), . . . ,modA(ϕn)(ω)}

Furthermore

(α) modA(ϕ)(ω) is the so–called truth value of ϕ and (the interpretation) ω

(β) If modA(ϕ)(ω) = 1 we say that “ω is a model for ϕ” or “ω satisfies ϕ”, and this is expressed by writing ω |= ϕ

(γ) ModA(ϕ) := {ω : A −→ B | ω |= ϕ} is the model class of ϕ ∈ Pfm (A)

(δ) The function modA(ϕ) : (A −→ B) −→ B is the truth table of ϕ, and in case of a finite A, this is usually displayed by the typical
truth table diagram.

Subvalence and equivalence

For all ϕ,ψ ∈ Pfm (A) we define

ϕ⇒ ψ iff ∀ω : A −→ B .modA(ϕ)(ω) ≤ modA(ϕ)(ψ)

iff ModA(ϕ) ⊆ ModA(ψ)

iff modA(ϕ) vk
A modA(ψ)

ϕ⇔ ψ iff ∀ω : A −→ B .modA(ϕ)(ω) = modA(ϕ)(ψ)

iff ModA(ϕ) = ModA(ψ)
iff modA(ϕ) = modA(ψ)

If ϕ⇒ ψ then we say that “ϕ is subvalent to ψ” or “ϕ implies ψ” or “ϕ entails ψ” or “ψ is a consequence of ϕ”. And ϕ⇔ ψ is read as
“ϕ and ψ are equivalent”.

The quasi–boolean algebra of propositional formulas

Pfm (A) :=
˙
Pfm (A) ,⇒,⇔, f , t,∧,∨, -¸ is the default propositional formula algebra, where for all ϕ,ψ ∈ Pfm (A)

f := [∨] t := [∧] ϕ ∧ ψ := [ϕ ∧ ψ] ϕ ∨ ψ := [ϕ ∨ ψ] -ϕ := ¬ϕ
Theorem

Pfm (A) is a quasi–boolean algebra, for every class A.

HyperDigitIntro 16

3 From traditional propositional to hyper–propositional logic

3.1 Applying modal operators to
formulas

3.1.1 Definition

Mex (FORM) the modalized or modal expression set of a

given set FORM is defined to comprise the following expres-
sions:

♦ϕ (diamond) ¤ϕ (box)

for all ϕ ∈ FORM .

♦ϕ also reads “ϕ is satisfiable” or “sometimes ϕ”

¤ϕ also reads “ϕ is valid” or “always ϕ”

3.1.2 Example

Let us consider Mex(Pfm(A)), the modal expressions on
propositional formulas with A = {a, b, c, . . .}. Examples are

(i) ¤[a ∨ ¬a]

(ii) ¤[a ∨ ¬b]

(iii) ♦[a ∨ ¬b]

(iii) ♦[a↔ f ↔ ¬[b ∧ a]]

3.1.3 Interpretations for modalized expressions

Given an interpretation structure, made of two sets FORM
and INT , together with a model relation |=: INT !
FORM .

What kind of interpretations would suit these new modal ex-
pressions on FORM? More precisely, what class INT ′ is an
appropriate candidate for a model relation

|=′: INT ′ ! Mex (FORM)

Putting INT ′ := INT doesn’t make sense, because if ω ∈
INT and ϕ ∈ FORM , then ω makes ϕ either true (case
ω |= ϕ) or false. However, we are looking for interpretations,
that make ϕ not just “true”, but “sometimes true” and “al-
ways true”.

Therefore, we use another approach and put INT ′ :=
P (INT). That makes sense now: for each M ∈ P (INT)
we define

M |=′ ¤ϕ iff ω |= ϕ for all ω ∈ M

M |=′ ♦ϕ iff ω |= ϕ for some ω ∈ M

And since P (INT) is equivalent to INT −→ B, we have an
equivalent model relation defined on characteristic functions:
for every Ω : INT −→ B we define

Ω |=′ ¤ϕ iff ω |= ϕ for all ω ∈ Unit (Ω)

Ω |=′ ♦ϕ iff ω |= ϕ for some ω ∈ Unit (Ω)

3.1.4 Interpretations for modalized propositional formulas

We apply the idea of 3.1.3 to our concrete case of propositional
formulas and we use the version on characteristic functions by
default.

The modal relation for propositional formulas was

|=A: B1
A ! Pfm (A)

Accordingly, the modal relation for modalized propositional
formulas is of type

|=′A: (B1
A −→ B) ! Mex(Pfm (A))

where again B1
A −→ B is B2

A.

3.1.5 Definition

The model relation for modalized propositional formulas on a
given set A, is defined by

|=′A: B2
A ! Mex(Pfm(A))

with

Ω |=′A ♦ϕ iff ω |= ϕ for some ω ∈ Unit (Ω)

Ω |=′A ¤ϕ iff ω |= ϕ for all ω ∈ Unit (Ω)

for every Ω ∈ B2
A and each σ ∈ Pfm (A).

3.1.6

When we add these new notions to the diagram of 2.2.10, we
obtain the following picture

B1
A !|=A

Pfm (A)

B2
A !|=′A

Mex(Pfm(A))

@
@

@
@

@@I
modA

The new formula class Mex(Pfm (A)) is distinct to the origi-
nal set Pfm (A) an its semantics is “one degree higher”.

HyperDigitIntro 17

3.1.7 Example

Let A := {a, b}. Let Ω ∈ B2
A and ϕ ∈ Pfm (A) be given by

Ω :=

a b

0 0 1

1 0 0

0 1 0

1 1 1

and ϕ := [¬a ∨ ¬b]

Then

Unit (Ω) =

a b

0 0
,

a b

1 1

ff

and

a b

0 0
|=A ϕ because -0 ∨ -0 = 1 ∨ 1 = 1

a b

1 1
6|=A ϕ because -1 ∨ -1 = 0 ∨ 0 = 0

Therefore
♣ Ω |=′A ♦ϕ

i.e. ϕ is satisfiable in Ω; “sometimes ϕ” holds in Ω

♣ Ω 6|=′A ¤ϕ
i.e. ϕ is not valid in Ω; “always ϕ” does not hold in Ω

3.1.8 Fact

Given a set A. For every ϕ ∈ Pfm (A) and Ω ∈ B2
A holds:

Ω |=′A ¤ϕ iff ∀ω ∈ B1
A . Ω(ω) ≤ modA(ϕ)(ω)

iff Ω v2
A modA(ϕ)

Ω |=′A ♦ϕ iff ∃ω ∈ B1
A . Ω(ω) ∧modA(ϕ)(ω) = 1

iff Ω u2
A modA(ϕ) 6= ⊥2

A

3.1.9 Fact

Given a set A. For all ϕ,ψ ∈ Pfm (A) holds:

modA(ψ) |=′A ¤ϕ iff ψ ⇒ ϕ

modA(ψ) |=′A ♦ϕ iff [ψ ∧ ϕ] 6⇔ f

3.2 Higher degree propositional
logic

3.2.1
Modalized propositional formulas ♦ϕ and ¤ϕ are statements
and it makes sense to combine them to more complex state-
ments again by means of “and”, “or”, “not” etc. With defini-
tion 2.2.1, we already have the means to do that formally: we
generalize Mex(Pfm (A)) to Pfm(Mex(Pfm (A))).

This way we obtain new formulas such as

[[¤a→ ♦a] ∨ ¬¬♦b]

which would be the convenient form (see 2.2.2(1)) of

[[([¤([a])]) → ([♦([a])])] ∨ ¬¬♦([b])]

The new semantics is defined according to the traditional
recipe as well. We increase

|=′A: B2
A ! Mex(Pfm (A))

to

|=′′A: B2
A ! Pfm(Mex(Pfm (A)))

by declaring

Ω |=′′A ([σ]) iff Ω |=′A σ

Ω |=′′A ¬ϕ iff Ω 6|=′′A ϕ

Ω |=′′A [ϕ1 ∧ . . . ∧ ϕn] iff Ω |=′′A ϕ1 and . . . and Ω |=′′A ϕn

Ω |=′′A [ϕ1 ∨ . . . ∨ ϕn] iff Ω |=′′A ϕ1 or . . . or Ω |=′′A ϕn

as usual. That way, our situation from picture 3.1.6 now be-
comes

B1
A !|=A

Pfm (A)

B2
A !|=′′A

Pfm(Mex(Pfm(A)))

@
@

@
@

@@I
modA

3.2.2
The previous picture reveals a pattern that asks for another
generalization. Similar to the increase in the semantic hierar-
chy on the left side from B1

A to B2
A, we have and “upgrade”

method for formulas on the right. For every A and k ≥ 1 we
have a “k–degree formula set” Fk

A by putting

Fk
A :=

(
Pfm (A) if k = 1

Pfm(Mex(Fk−1
A)) if k > 1

In analogy to the first steps, we then have a model relation

|=k
A : Bk

A ! Fk
A

for all k ≥ 2 as well.
We are going to work out all that in a moment, but we do so
with a modified syntax. For degrees k ≥ 2 we add to each of
the operation symbols “♦”, “∧”, etc. the degree k itself write
“♦

k
”, “∧

k
”, instead.

The outfit of the resulting formulas is usually redundant and
not very appealing. But at this stage, we rather have a trans-
parent than elegant syntax. We want to see for each formula of
the new hierarchy, to which level it belongs. Since we allowed
nullary junctions like “[∧]”, we won’t be able to see its degree
k, unless we write “[∧

k
]” instead.7

7Actually, the real motivation for this clear syntax lies beyond this text. It becomes relevant first when we combine the formula sets of

all degrees to a single one and compare that with the set of traditional modal formulas (see www.bucephalus.org for more information).

HyperDigitIntro 18

3.2.3 Definition

For each set A and k ∈ N, the k–degree propositional formula
set on A,

Pfmk(A)

is recursively defined as follows:
♣ If k = 0 then Pfm0(A) := A.

♣ If k = 1 then Pfm1(A) := Pfm (A).

♣ If k ≥ 2 then Pfmk(A) is defined to comprise:

♦
k
σ

¤
k
σ

9
>>=
>>;

for σ ∈ Pfmk−1(A)

¬
k
ϕ

[ϕ1 ∧
k
. . . ∧

k
ϕn]

[ϕ1 ∨
k
. . . ∨

k
ϕn]

9
>>>>>=
>>>>>;

for ϕ, ϕ1, . . . , ϕn ∈ Pfmk(A)

3.2.4 Example

Let A = {a, b, c, . . .}. A member of Pfm4(A) in its convenient
form is given by

♦
4
[¬
3
¤
3
[♦

2
[a ∧ ¬b] ∨

2
¤
2
[c ∧ ¬a]] ∧

3
¤
3
♦
2
[a ∨ [∧]]]

We can decompose it to make sure that it is indeed well–formed
according to definition 3.2.3:

♦
4

[¬
3
¤
3

[♦
2

[a ∧ ¬b]| {z }
∈Pfm(A)

∨
2

¤
2

[c ∧ ¬a]| {z }
∈Pfm(A)

]

| {z }
∈Pfm2(A)

∧
3

¤
3
♦
2

[a ∨ [∧]]| {z }
∈Pfm(A)

| {z }
∈Pfm2(A)

]

| {z }
∈Pfm3(A)

3.2.5 Remark

Starting with any given set A we now have an infinite hierar-
chy of (pairwise disjunct) formula sets: A, Pfm (A), Pfm2(A),
etc. If we consider the syntactical symbols as functions on
these sets, we obtain the following picture:

A

Pfm(A)

Pfm2(A)

Pfm3(A)

Pfm4(A)

...

6

6

6

6

6

([])

♦
2
,¤

2

♦
3
,¤

3

♦
4
,¤

4

♦
5
,¤

5

9

9

9

9

∧ , ∨ ,¬

∧
2

, ∨
2

,¬
2

∧
3

, ∨
3

,¬
3

∧
4

, ∨
4

,¬
4

(Of course, this picture is not entirely correct, because con-
junctions and disjunctions don’t take formulas, but formula
tuples as arguments.)

3.2.6
We define the semantics for this hierarchy of formulas:

B1
A !|=A

Pfm (A)

B2
A !|=2

A

Pfm2(A)

B3
A !|=3

A

Pfm3(A)

...
...

@
@

@
@

@@I
modA

@
@

@
@

@@I
mod3

A

@
@

@
@

@@I
mod4

A

On the first level, |=A is traditional model relation and modA

HyperDigitIntro 19

the model function from ??. For all k ≥ 2, the |=k
A and

modk+1
A are now defined according to our approach so far.

3.2.7 Definition

For every set A and each k ≥ 2 we define a model relation

|=k
A : Bk

A ! Pfmk(A)

as follows:

Ω |=k
A ♦

k
σ iff

8
>>><
>>>:

∃ω ∈ Unit (Ω) . ω |=A σ if k = 2

∃ω ∈ Unit (Ω) . ω |=k−1
A σ if k > 2

Ω |=k
A ¤

k
σ iff

8
>>><
>>>:

∀ω ∈ Unit (Ω) . ω |=A σ if k = 2

∀ω ∈ Unit (Ω) . ω |=k−1
A σ if k > 2

for all Ω ∈ Bk
A and σ ∈

8
<
:

Pfm (A) if k = 2

Pfmk−1(A) if k > 2

Ω |=k
A ¬

k
ϕ iff Ω 6|=k

A ϕ

Ω |=k
A [ϕ1 ∧

k
. . . ∧

k
ϕn] iff Ω |=k

A ϕi for all i

Ω |=k
A [ϕ1 ∨

k
. . . ∨

k
ϕn] iff Ω |=k

A ϕi for some i

for all Ω ∈ Bk
A and ϕ, ϕ1, . . . , ϕn ∈ Pfmk(A)

For every set A and each k ≥ 2 we define a model function

modk+1
A : Pfmk(A) −→ Bk

A −→ B

by putting

modk+1
A (♦

k
σ)(Ω) :=

8
>><
>>:

W
ω∈Unit(Ω)

modA(σ)(ω) if k = 2

W
ω∈Unit(Ω)

modk
A(σ)(ω) if k > 2

modk+1
A (¤

k
σ)(Ω) :=

8
>><
>>:

V
ω∈Unit(Ω)

modA(σ)(ω) if k = 2

V
ω∈Unit(Ω)

modk
A(σ)(ω) if k > 2

for all Ω ∈ Bk
A and σ ∈

8
<
:

Pfm (A) if k = 2

Pfmk−1(A) if k > 2

modk+1
A (¬

k
ϕ)(Ω) := -modk+1

A (ϕ)(Ω)

modk+1
A ([ϕ1 ∧

k
. . . ∧

k
ϕn])(Ω) :=

n∧
i=1

modk+1
A (ϕi)(Ω)

modk+1
A ([ϕ1 ∨

k
. . . ∨

k
ϕn])(Ω) :=

n∨
i=1

modk+1
A (ϕi)(Ω)

for all Ω ∈ Bk
A and ϕ, ϕ1, . . . , ϕn ∈ Pfmk(A).

3.3 The foundation problem and its
solution

3.3.1

We now have a syntactical hierarchy of higher–degree propo-
sitional formulas and a parallel semantical hierarchy of bit
tables, as displayed in the diagramm of 3.2.6. But something
is not perfect, yet. Its first level Pfm (A) itself doesn’t fit in
entirely and is asking for the possibilities of a more elegant
design.

Consider the picture from 3.2.5 again

A

Pfm(A)

Pfm2(A)

Pfm3(A)

Pfm4(A)

...

6

6

6

6

6

([])

♦
2
,¤

2

♦
3
,¤

3

♦
4
,¤

4

♦
5
,¤

5

9

9

9

9

∧ , ∨ ,¬

∧
2

, ∨
2

,¬
2

∧
3

, ∨
3

,¬
3

∧
4

, ∨
4

,¬
4

When we replace the atom formula symbol “([])” by “♦
1
” and

“¤
1
”, we obtain a much more elegant syntax. With new names

“Fk
A” for the formula sets this is:

HyperDigitIntro 20

F0
A

F1
A

F2
A

F3
A

F4
A

...

6

6

6

6

6

♦
1
,¤

1

♦
2
,¤

2

♦
3
,¤

3

♦
4
,¤

4

♦
5
,¤

5

9

9

9

9

∧
1

, ∨
1

,¬
1

∧
2

, ∨
2

,¬
2

∧
3

, ∨
3

,¬
3

∧
4

, ∨
4

,¬
4

For every degree k we have a translator τk,

...

Pfm3(A)

Pfm2(A)

Pfm(A)

A

...

F3
A

F2
A

F1
A

F0
A

-

-

-

-

τ 3

τ 2

τ 1

id

and all these τk are “natural” or “conservative” in the sense
that they translation conjunctions into conjunctions, negations
into negations etc. In other words, all these translations are
determined by the atomic translator, which tells us how the
atomic formulas “([a])” in Pfm (A) are translated into F1A.

Together with this quest for a modification of the syntax goes
a change in semantics. Recall the semantical hierarchy so far:

B1
A !|=A

Pfm (A)

B2
A !|=2

A

Pfm2(A)

B3
A !|=3

A

Pfm3(A)

...
...

@
@

@
@

@@I
modA

@
@

@
@

@@I
mod3

A

@
@

@
@

@@I
mod4

A

which is defined recursively as well. Does this hierarchy have a
nicer foundation, more systematically built on one level lower?

B0
A !|=0

A

F0
A

B1
A !|=1

A

F1
A

B2
A !|=2

A

F2
A

B3
A !|=3

A

F3
A

...
...

@
@

@
@

@@I
mod1

A

@
@

@
@

@@I
mod2

A

@
@

@
@

@@I
mod3

A

@
@

@
@

@@I
mod4

A

It would be nice to have a system where all this fits together.
We call this quest the “foundation problem” and we will see,
that it has a very nice solution. But first of all, let us work out
the definitions for a proper statement of the problem in 3.3.6.

HyperDigitIntro 21

3.3.2 Definition

Given a set A and k ∈ N. The hyper–propositional formula set

on (carrier) A and (degree) k, written

Fk
A

is recursively defined as follows:
♣ If k = 0 then F0A := A.

♣ If k ≥ 1 we define Fk
A to comprise the following expressions:

♦
k
σ

¤
k
σ

9
>>>>=
>>>>;

for σ ∈ Fk−1
A

¬
k
ϕ

[ϕ1 ∧
k
. . . ∧

k
ϕn]

[ϕ1 ∨
k
. . . ∨

k
ϕn]

9
>>>>>>>>>>>=
>>>>>>>>>>>;

for ϕ, ϕ1, . . . , ϕn ∈ Fk
A

3.3.3 Definition

An atomic model relation on a given set A is a relation

ρ : A ! A

Each such atomic model relation ρ induces a
k–degree model relation of ρ

|=k
ρ : Bk

A ! Fk
A

for every k ∈ N, which is recursively defined as follows:
♣ If k = 0 then

α |=0
ρ ϕ iff αρϕ

for every α ∈ B0
A = A and ϕ ∈ F0A = A

♣ If k > 0 then

Ω |=k
ρ ♦

k
σ iff ω |=k−1

ρ σ for some ω ∈ Unit (Ω)

Ω |=k
ρ ¤

k
σ iff ω |=k−1

ρ σ for all ω ∈ Unit (Ω)

Ω |=k
ρ ¬

k
ϕ iff Ω 6|=k

A ϕ

Ω |=k
ρ [ϕ1 ∧

k
. . . ∧

k
ϕn] iff Ω |=k

ρ ϕi for all i

Ω |=k
ρ [ϕ1 ∨

k
. . . ∨

k
ϕn] iff Ω |=k

ρ ϕi for some i

for all Ω ∈ Bk
A, all σ ∈ Fk−1

A and ϕ, ϕ1, . . . , ϕn ∈ Fk−1
A

3.3.4 Definition

An atomic translator of a given set A is a function

τ : A −→ F1A

Each such atomic translator τ induces a k–degree translator
of τ

τk : Pfmk(A) −→ Fk
A

for every k ≥ 1, which is recursively defined as follows:
♣ If k = 1 then

τ1 (([a])) := τ(a)

τ1 (¬ϕ) := ¬
1
τ1 (ϕ)

τ1 ([ϕ1 ∧ . . . ∧ ϕn]) := [τ1 (ϕ1) ∧
1
. . . ∧

1
τ1 (ϕn)]

τ1 ([ϕ1 ∨ . . . ∨ ϕn]) := [τ1 (ϕ1) ∨
1
. . . ∨

1
τ1 (ϕn)]

♣ If k ≥ 2 then

τk

„
♦
k
σ

«
:= ♦

k
τk−1(σ)

τk

„
¤
k
σ

«
:= ¤

k
τk−1(σ)

τk

„
¬
k
ϕ

«
:= ¬

k
τk (ϕ)

τk

„
[ϕ1 ∧

k
. . . ∧

k
ϕn]

«
:= [τk (ϕ1) ∧

k
. . . ∧

k
τk (ϕn)]

τk

„
[ϕ1 ∨

k
. . . ∨

k
ϕn]

«
:= [τk (ϕ1) ∨

k
. . . ∨

k
τk (ϕn)]

3.3.5 Example

An example of an atom translation is given by

τ :=

2
664
A −→ F1A
a 7→ ♦

1
a

3
775

If we take example 3.2.4 again, where ϕ ∈ Pfm4(A) was given
by

ϕ = ♦
4
[¬
3
¤
3
[♦

2
[a ∧ ¬b] ∨

2
¤
2
[c ∧ ¬a]] ∧

3
¤
3
♦
2
[a ∨ [∧]]]

then the translation τ4(ϕ) ∈ F4A is

♦
4
[¬
3
¤
3
[♦

2
[♦

1
a ∧

1
¬
1
♦
1
b] ∨

2
¤
2
[♦

1
c ∧

1
¬
1
♦
1
a]] ∧

3
¤
3
♦
2
[♦

1
a ∨

1
[∧
1

]]]

3.3.6 Definition foundation problem

Given some set A. The foundation problem is the question, if
an atom translator τ and an atomic relation ρ exist, such that

Ω |=k
ρ τk(ϕ) iff Ω |=k

A ϕ

for each k ≥ 1 and all Ω ∈ Bk
A and ϕ ∈ Pfmk(A).

3.3.7 Fact the solution of the foundation problem

The foundation problem has a solution, given by the atomic
translator

t : A −→ F1A with t (a) := ♦
1
a for all a ∈ A

and the identity on A as the atomic model relation, i.e.

id : A ! A with id (a) = a for all a ∈ A

HyperDigitIntro 22

3.4 The final version of hyper–
propositional logic

3.4.1 Definition

For every set A and each k ∈ N we define a system of
hyper–propositional logic of (carrier) A and (degree) k as fol-
lows:
(1) Syntax:

The hyper–propositional formula set Fk
A was defined in 3.3.2.

(2) Interpretation structure:
The model relation (of k and A)

|=k
A : Bk

A ! Fk
A

is defined by

Ω |=k
A ϕ iff Ω |=k

id ϕ for all Ω ∈ Bk
A and ϕ ∈ Fk

A

According to 2.1.3, this also provides us, for every ϕ ∈ Fk
A,

with the definition of the model class

Modk
A(ϕ) := {Ω ∈ Bk

A | Ω |=k
A ϕ}

and a model function or super–model

modk+1
A (ϕ) :=

2
66664

Bk
A −→ B

Ω 7→
(

1 if Ω |=k
A ϕ

0 else

3
77775

(3) Quasi–boolean order:
According to 2.1.4, we also have a subvalence and

equivalence relation on Fk
A, defined by

ϕ ⇒k
A ψ iff ∀Ω ∈ Bk

A .
“
Ω |=k

A ϕ implies Ω |=k
A ψ

”

ϕ ⇔k
A ψ iff ∀Ω ∈ Bk

A .
“
Ω |=k

A ϕ iff Ω |=k
A ψ

”

(4) Quasi–boolean lattice of formulas
According to 2.1.5 and similar to the de-
fault propositional formula PfmA we define the
default hyper–propositional formula algebra of A and k as

Fk
A :=

˙
Fk

A,⇒k
A,⇔k

A, f
k, tk,∧k,∨k,¬k

¸

where

fk := [∨
k

] tk := [∧
k

]

ϕ ∧k ψ := [ϕ ∧
k
ψ] ϕ ∨k ψ := [ϕ ∨

k
ψ]

¬kϕ := ¬
k
ϕ

3.4.2 Fact

For every set A and k ≥ 1,
♣ Fk

A is a quasi–boolean algebra

♣ modk+1
A is an embedding of Fk

A into Bk+1
A

3.4.3 Fact

For each set A holds: t1 : Pfm (A) ↪→ F1A, i.e. t1 is an em-

bedding of PfmA into F1
A.

3.4.4 Remark

In figure 6 we summarize the syntax and semantics of hyper–
propositional logic. Figure 5 was a summarized repetition of
the syntax and semantics of traditional logic. Figure 7 repeats
3.4.3.

HyperDigitIntro 23

Figure 6: Hyper–propositional logic
Formulas

For every set A and k ∈ N we define Fk
A the (hyper–propositional) formulas of carrier A and degree k recursively as follows

(i) If k = 0 then F0A := A.

(ii) If k > 0 then Fk
A comprises the following expressions:

♦
k
σ (diamond)

¤
k
σ (box)

9
>>>=
>>>;

for all σ ∈ Fk−1
A

¬
k
ϕ (negation)

[ϕ1 ∧
k
. . . ∧

k
ϕn] (conjunction)

[ϕ1 ∨
k
. . . ∨

k
ϕn] (disjunction)

9
>>>>>>>=
>>>>>>>;

for all ϕ, ϕ1, . . . , ϕn ∈ Fk
A

We write [∧
k

] and [∨
k

] for nullary, and [∧
k
ϕ1] and [∨

k
ϕ1] for unary conjunctions and disjunctions, respectively.

Super–models and model classes

For every class A and every natural number k ∈ N we define the (super–) model function

modk+1
A : Fk

A −→ Bk
A −→ B

where modk+1
A (ϕ)(Ω) is defined, for each ϕ ∈ Fk

A and Ω ∈ Bk
A, by induction on k as follows:

(i) If k = 0 then ϕ ∈ F0A = A and Ω ∈ B0
A = A and

mod1
A(ϕ)(Ω) :=

(
1 if ϕ = Ω

0 else

(ii) If k > 0, we define by structural induction on the form of ϕ as follows:

modk+1
A

„
♦
k
σ

«
(Ω) :=

W{modk
A(σ)(ω) | ω ∈ Bk−1

A ,Ω(ω) = 1}

modk+1
A

„
¤
k
σ

«
(Ω) :=

V{modk
A(σ)(ω) | ω ∈ Bk−1

A ,Ω(ω) = 1}

modk+1
A

„
¬
k
ϕ

«
(Ω) := -modk+1

A (ϕ)(Ω)

modk+1
A

„
[ϕ1 ∧

k
. . . ∧

k
ϕn]

«
(Ω) :=

Vn
modk+1

A (ϕ1)(Ω), . . . ,modk+1
A (ϕn)(Ω)

o

modk+1
A

„
[ϕ1 ∨

k
. . . ∨

k
ϕn]

«
(Ω) :=

Wn
modk+1

A (ϕ1)(Ω), . . . ,modk+1
A (ϕn)(Ω)

o

Furthermore:

(α) modk+1
A (ϕ)(Ω) ∈ B is the so–called truth value of ϕ and (the interpretation) Ω

(β) If modk+1
A (ϕ)(Ω) = 1 we say that “Ω is a model for ϕ” or “Ω satisfies ϕ”, and this is also expressed by writing Ω |= ϕ .

(γ) Accordingly and for each given ϕ ∈ Fk
A, its model class is a subset of Bk

A, defined by

Modk
A(ϕ) := {Ω ∈ Bk

A | modk+1
A (ϕ)(Ω) = 1}

(δ) Note, that for each k ∈ N, modk+1
A : Fk

A −→ Bk+1
A , because Bk+1

A = (Bk
A −→ B) (hence the superscript “k + 1” in “modk+1

A ”). We

call modk+1
A (ϕ) ∈ Bk+1

A the super–model or truth table of ϕ ∈ Fk
A.

Subvalence and equivalence

Given A and k, we define two relations on Fk
A. For all ϕ,ψ ∈ Fk

A let

ϕ ⇒k
A ψ iff ∀Ω ∈ Bk

A . (Ω |= ϕ implies Ω |= ψ)

iff Modk
A(ϕ) ⊆ Modk

A(ψ)

iff modk+1
A (ϕ) vk+1

A modk+1
A (ψ)

ϕ ⇔k
A ψ iff ∀Ω ∈ Bk

A . (Ω |= ϕ iff Ω |= ψ)

iff Modk
A(ϕ) = Modk

A(ψ)

iff modk+1
A (ϕ) = modk+1

A (ψ)

If ϕ ⇒k
A ψ then we say that “ϕ is subvalent to ψ” or “ϕ implies ψ” or “ϕ entails ψ” or “ψ is a consequence of ϕ”. And ϕ ⇔k

A ψ is read
as “ϕ and ψ are equivalent”.

The quasi–boolean lattice of formulas

Fk
A :=

˙
Fk

A,⇒k
A,⇔k

A, f
k, tk,∧k,∨k,¬k

¸
is the default formula algebra of A and k, where for all ϕ,ψ ∈ Fk

A

fk := [∨
k

] tk := [∧
k

] ϕ ∧k ψ := [ϕ ∧
k
ψ] ϕ ∨k ψ := [ϕ ∨

k
ψ] ¬kϕ := ¬

k
ϕ

Theorem

Fk
A is a quasi–boolean algebra, for every A and k ≥ 1.

Theorem

modk+1
A : Fk

A ↪→ Bk+1
A , i.e. modk+1

A : Fk
A −→ Bk+1

A is an embedding of Fk
A into Bk+1

A , for all A and k ≥ 1.

HyperDigitIntro 24

Figure 7: Embedding traditional propositional into hyper–propositional logic
Definition

For every set A we put

t1 :=

2
666666666664

Pfm (A) −→ F1A
2
666664

([a]) 7→ ♦
1
a

¬σ 7→ ¬
1
t1(σ)

[σ1 ∧ . . . ∧ σn] 7→ [t1(σ1) ∧
1
. . . ∧

1
t1(σn)]

[σ1 ∨ . . . ∨ σn] 7→ [t1(σ1) ∨
1
. . . ∨

1
t1(σn)]

3
777775

3
777777777775

Theorem

t1 : Pfm (A) ↪→ F1
A for every set A, i.e. t1 is an embedding of Pfm (A) into F1

A.

