Theory and implementation of efficient canonical systems for
sentential calculus, based on Prime Normal Forms

www.bucephalus.org

first version May 1999, revised version September 2002
Abstract

A literal conjunction $\gamma = [\land \lambda_1 \ldots \lambda_m]$ is a prime factor of a Disjunctive Normal Form (DNF) $\Delta = [\lor [\land \lambda_1 \ldots \lambda_{m_1}] \ldots [\land \lambda_{n_1} \ldots \lambda_{n_{m_n}}]]$ iff $\gamma \Rightarrow \Delta$ and none of the $\lambda_1, \ldots, \lambda_m$ could be deleted without violating $\gamma \Rightarrow \Delta$. A DNF $\Delta = [\lor \gamma_1 \ldots \gamma_n]$ is a prime DNF (PDNF) iff $\{\gamma_1, \ldots, \gamma_n\}$ is the set of all its prime factors. Every sentential formula has exactly one equivalent PDNF so that this defines a canonical representation which is distinguished from other possible canonizations. PDNF’s can be constructed with the well-known Quine–McCluskey method, but that implementation is of exponential complexity and thus not practical in general. Therefore an efficient algorithm is designed in this paper. A dual system for prime conjunctive normal forms (PCNF’s) is presented as well. It is shown how the whole sentential calculus, all junctions and semantic decisions, is effectively handled by these two systems.
Contents

1. Introduction: Normal Forms 4
2. Basic concepts of sentential logic, DNF’s and CNF’s 6
3. * Implementation: The DNF and the CNF system 9
4. Special DNF’s and CNF’s 11
5. Covering and Subvalence 17
6. * Implementation of a fast subvalence decision with Prime Normal Forms 18
7. Component pairs 19
8. * Implementation: Minimal and Prime Normal Forms of component pairs 21
9. The M–Procedure 23
10. * Implementation of the M–Procedure 24
11. The completeness theorem and the P–Procedure 28
12. * Implementation of the P–Procedure 31
13. * Implementation: The PDNF and the PCNF system 33
1 Introduction: Normal Forms

Formal expressions, and logical expressions in particular, can be very different but still denote the same. For instance
• “5/2” and “2.5”
• “∀x(f(x) ≠ g(x))” and “∃x(f(x) = g(x))”

These examples are quite simple, but this ambiguity is a complex and important problem in general. Algebra, sometimes even the whole of mathematics is often said to be the reasoning about the equivalence of expressions. What is always desired in particular is a transformation of “difficult”, “incomprehensible” forms into “simple”, “compact”, and “understandable” or “standard” forms. In logic we talk about “normal forms”.

Definition
Let \(F \) be the set of all formulas (of a particular language) and \(N \subseteq F \). If there is for every \(\varphi \in F \) a \(\nu \in N \) such that \(\varphi \Leftrightarrow \nu \) (i.e. \(\varphi \) and \(\nu \) are equivalent), then \(N \) is called a set of normal forms.

Every function \(nf : F \rightarrow N \) with \(nf(\varphi) \Leftrightarrow \varphi \) for every \(\varphi \in F \) is called a \((N-)normalizer\) (on \(F \)) and \(nf(\varphi) \) is a \((N-)normal form\) of \(\varphi \).

Most of the time there are several possibilities to define standard or normal forms. The context then determines which of the definitions is preferred. The decimal notation for numbers has a long tradition in daily life, but in computer science it is more practical to use the dual representation.

There is a series of criteria to describe and compare the qualities of normal forms:

- **Intuitivity**: How comprehensive and readable are the formulas?
- **Canonicity**: How much do syntactic and semantic similarities coincide?

Definition
A set \(N \) of normal forms is **canonic**, if for all \(\nu_1, \nu_2 \in N \): \(\nu_1 \Leftrightarrow \nu_2 \) iff \(\nu_1 = \nu_2 \).

Accordingly a normalizer \(nf : F \rightarrow N \) is said to be **canonic**, if \(nf(\varphi_1) = nf(\varphi_2) \) for all \(\varphi_1, \varphi_2 \in F \) with \(\varphi_1 \Leftrightarrow \varphi_2 \).

If a definition of canonic normal forms is possible, the whole semantics of a language can be defined immediately as well: the normal form then is the meaning of an expression or a formula.

- **Complexity of the representation**: How big are the normal forms?
- **Computational complexity**: How high is the effort required for the normalizer and how do the normal forms behave in additional operations?
- **Conservativity** of the normalizer: If \(\varphi \) is a normal form already, is then \(nf(\varphi) = \varphi \)? This would contribute to the readability.
- **Realizability** as technical devices: Are the occurring junctors implementable? What is the behaviour of the device in time? etc.

There is quite a number of possibilities to define normal forms in sentential logic. Most often the so-called “disjunctive” and the “conjunctive normal forms” (DNF’s and CNF’s) are used.

Arguments for their superiority are:

- **Their intuitivity**:
 - CNF’s are like a collection of elementary laws:
 - Axiom systems, deductive systems are essentially CNF’s.
 - DNF’s are like a collection of elementary possibilities, similar to catalogues or inductive systems.
 - As such they can often be modified by just adding or deleting components.
 - Their similarity with arithmetics (Boole).

But DNF’s and CNF’s are not canonic already. Interestingly they are established as standards in sentential logic, but there are hardly any definitions of canonic DNF’s and CNF’s, not to mention any established standard.\(^1\) I suggest, the reason lies partly in the inner algebraic structure of sentential logic itself, which, at first sight, seems to refuse a canonization that would be superior in all quality criterias: The smallest DNF’s (or CNF’s) mostly look a little bit different to the, in some respect, most comprehensible\(^2\) DNF’s etc. Another reason might be, that potential standards are easily defined, but can be constructed only with considerable efforts.

The goal of this paper is first to show, that there is in fact only just one (reasonable) canonization of the

\(^1\)In fact there are the often so-called “canonic” DNF’s, that consist of all their maximal literal conjunctions. For instance, the “canonic DNF” of \([A \rightarrow B] \) would be \([\nu[\lambda A][\lambda B][\lambda A B]]\). The advantage of this form is that sentential logic turns into set theory in this way: conjunction, disjunction and negation of formulas become the intersection, union, and complementation of sets of maximal literal conjunctions. But these forms, except for simple cases, cannot be handled in practice because of the exponential demands of their representation. (Besides, strictly spoken these forms are not even canonic. For instance, \([\nu[\lambda]] \) and \([\nu[\lambda A][\lambda A]]\) are both “canonic”, but they are equivalent and yet not equal.)

\(^2\)see the chapter on subvalence and covering
DNF’s and CNF’s, a “natural canonic” so to say, that we will call “(ordered) prime disjunctive/conjunctive normal forms”. It doesn’t need new theorems and proofs to demonstrate that, one must only consequently ask the question for a canonic. The answer then is a proposal for a standardization of sentential logic. Really new, I think, is the method that constructs all the prime factors of any given formula. Different to the common method of Quine–McCluskey our algorithm is not of exponential, but of polynomial complexity\(^3\), so that non–trivial applications can be mastered as well. In this way the proposed standardization of the propositional calculus is not only theoretically, but also practically well founded.

The intention is to equally satisfy two kinds of readers: the specialist in Boolean algebras, who is investigating the possibility of “factorizing” the elements of these structures similar to the factorization in integer domains. Secondly the computer scientist who needs to build fast systems based on the sentential calculus and is looking for the quickest algorithms that can be implemented into sequential machines without further modification or refinement and altogether enable the full range of logical operations (i.e. junctions and semantic decisions). Because these two interests are quite conflicting, we separated the implementations from the algebraic core: the chapters that have “ * Implementation: ...” in their title can be seen as appendices and should be skipped.

\(^3\)[Comment September 2002: At the time of the first publication I didn’t bother with complexity issues and I only mentioned them in footnotes. But obviously, it was a very naive thing to claim polynomial complexity without proving it. A paper about this neglected aspect is currently in progress.]
2 Basic concepts of sentential logic, DNF’s and CNF’s

Definition
From now on \mathcal{A} shall be a fixed set of atoms. (For example the set of all non-empty strings made of letters and digits.)
We assume that there is a linear order \leq_{A} defined on \mathcal{A}. (For example, the lexical order).
We also write for $\alpha_1, \alpha_2 \in \mathcal{A}$
$$\alpha_1 \leq_{A} \alpha_2 \iff (\alpha_1 \leq_{A} \alpha_2 \text{ and } \alpha_1 \neq \alpha_2)$$
(Most of the time we will omit the subscript \mathcal{A} and simply write \leq and $<$.)

Definition
The set of all formulas (on \mathcal{A}) is recursively defined as follows:

- Every $\alpha \in \mathcal{A}$ is an (atomic) formula.
- 0 and 1 are formulas.
- $\neg \varphi$ the negation of φ is a formula for every formula φ.
- If $n \geq 0$ and $\varphi_1, \ldots, \varphi_n$ are formulas, so are

 $[\wedge \varphi_1 \ldots \varphi_n]$ the conjunction of $\varphi_1, \ldots, \varphi_n$
 $[\vee \varphi_1 \ldots \varphi_n]$ the disjunction of $\varphi_1, \ldots, \varphi_n$
 $[\neg \varphi_1 \ldots \varphi_n]$ the nand-junction of $\varphi_1, \ldots, \varphi_n$
 $[\forall \varphi_1 \ldots \varphi_n]$ the nor-junction of $\varphi_1, \ldots, \varphi_n$.
- For formulas φ_1 and φ_2 the following expressions are formulas:
 $[\varphi_1 \leftrightarrow \varphi_2]$ the subjunction of φ_1 and φ_2
 $[\varphi_1 \iff \varphi_2]$ the equijunction of φ_1 and φ_2

Definition
In formulas of the form $[*\varphi_1 \ldots \varphi_n]$ we call n the arity of length and the $\varphi_1, \ldots, \varphi_n$ the components of the junction.
$At(\varphi)$ denotes the set of all atoms occurring in a formula φ.
$=$ denotes the syntactic identity of two formulas.

Examples
If $\varphi = [(\wedge A \rightarrow B) \rightarrow (A \leftrightarrow C)]$ then $At(\varphi) = \{A, B, C\}$.
$$[\wedge AB] = [\wedge AB] \text{ but } [\wedge AB] \neq [\wedge BA]$$

Definition
Let $* \in \{\land, \lor, \neg, \rightarrow\}$, φ' be a formula and $\varphi = [*\varphi_1 \ldots \varphi_n]$ and $\psi = [*\psi_1 \ldots \psi_m]$ be formulas. We write

- $\varphi' \in \varphi$, φ is an element or component of φ, iff $\varphi' \in \{\varphi_1, \ldots, \varphi_n\}$.
- $\varphi' \notin \varphi$, iff φ' is not an element of φ.
- $\varphi \subseteq \psi$, φ is contained in ψ, iff $\{\varphi_1, \ldots, \varphi_n\} \subseteq \{\psi_1, \ldots, \psi_m\}$.
- $\varphi \nsubseteq \psi$ iff φ is not contained in ψ.
- $\varphi \subset \psi$, φ is properly contained in ψ, iff $\varphi \subseteq \psi$ and $\psi \nsubseteq \varphi$.
- $\varphi \nsubset \psi$ iff φ is not properly contained in ψ.

Definition
The order \Rightarrow and the equivalence relation \iff on the set of formulas are defined as usual. We will only submit the notations and terminology. For any two formulas φ_1 and φ_2

- $\varphi_1 \Rightarrow \varphi_2$ means φ_1 is subvalent to φ_2 or φ_2 follows from φ_1. In that case we say that φ_1 is an implicand of φ_2 and that φ_2 is a consequence of φ_2.
- $\varphi_1 \Rightarrow \varphi_2$ denotes that φ_1 is not subvalent to φ_2.
- $\varphi_1 \Rightarrow \varphi_2$ means that φ_1 and φ_2 are equivalent.
- $\varphi_1 \Rightarrow \varphi_2$ denotes that φ_1 and φ_2 are not equivalent.

Furthermore we write

- $\varphi_1 \Rightarrow \varphi_2$, φ_1 is properly subvalent to φ_2, iff $\varphi_1 \Rightarrow \varphi_2$ and $\varphi_1 \nRightarrow \varphi_2$.

As usual, we call a formula φ

- valid or a tautology, iff $\varphi \iff 1$
- satisfiable iff $\varphi \Rightarrow 0$
- a contradiction iff $\varphi \Rightarrow 0$

Definition
A literal is either an atom (positive literal) or a negated atom (negative literal).

For a literal λ, its complement is defined as

$$\overline{\lambda} := \{ \alpha \text{ if } \lambda = \overline{\alpha} \text{ is a negative literal} \} \{ \overline{\alpha} \text{ if } \lambda = \alpha \text{ is a positive literal} \}$$

Two literals λ_1 and λ_2 are called complementary, iff $\lambda_1 = \overline{\lambda_2}$.

$|\lambda|$ denotes the atom that occurs in a literal λ.

Definition
If $\lambda_1, \ldots, \lambda_n$ are literals, $n \geq 0$, we call

- $[\lambda_1 \ldots \lambda_n]$ a literal conjunction, and
- $[\lambda_1 \ldots \lambda_n]$ a literal disjunction.

A literal conjunction $[\lambda_1 \ldots \lambda_n]$ is called a normal literal conjunction or NLC iff $|\lambda_1| < \ldots < |\lambda_n|$.

A literal disjunction $[\lor \lambda_1 \ldots \lambda_n]$ is called a normal
literals with the same element, we immediately get

And since neither NLC’s nor NLD’s contain any pair
of literals with the same element, we immediately get

There are different possibilities to define a reasonable
linear order on the set of NLC’s and NLD’s. We will
soon even weaken the concept of canonicity for
other hand just slow down everything. For this reason

The reason for our definition is the fact that it
allows us to implement the fastest algorithms. To de-
demand that every literal conjunction must be normal is
certainly no loss for the readability of the form and it
immediately speeds up the processes. To demand that
the NLC’s must be ordered in a sequence would on the
other hand just slow down everything. For this reason
we will soon even weaken the concept of canonicity for
CNF’s and DNF’s a little bit.

There are different possibilities to define a reasonable
linear order on the set of NLC’s and NLD’s. We will
need this order(s) only for the reason of completion (see
the notes on “canonicity” further on), we don’t employ
it in the main part of our work. We shall choose the
usual lexical order (with the convention, that a positive
is lexically smaller than the complementary negative
literal). The reader may modify the choice as pleased.

Definition
With $\ast \in \{\land, \lor\}$ let $[\ast \lambda_1 \cdots \lambda_n]$ and $[\ast \lambda'_1 \cdots \lambda'_m]$ be ei-
other two NLC’s or NLD’s. We define

\[[\ast \lambda_1 \cdots \lambda_n] \leq [\ast \lambda'_1 \cdots \lambda'_m] \]

\[\text{iff } n = 0 \]

\[\text{or } |\lambda_1| < |\lambda'_1| \]

\[\text{or } -\lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

Otherwise, we also write $[\ast \lambda_1 \cdots \lambda_n] \not\leq [\ast \lambda'_1 \cdots \lambda'_m]$.

\[\text{iff } \lambda_1 < \lambda'_1 \]

\[\text{or } (\lambda'_1 < \lambda_1 \text{ and } [\ast \lambda'_2 \cdots \lambda'_m] \leq [\ast \lambda_2 \cdots \lambda_n]). \]

\[\text{iff } \lambda'_1 < \lambda_1 \]

\[\text{or } (\lambda_1 < \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda'_1 = \lambda_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]

\[\text{iff } \lambda_1 = \lambda'_1 \]

\[\text{or } (\lambda_1 = \lambda'_1 \text{ and } [\ast \lambda_2 \cdots \lambda_n] \not\leq [\ast \lambda'_2 \cdots \lambda'_m]). \]
This is well known and doesn’t need a proof here. Instead we present two sets of algorithms (the “DNF system” and the “CNF system”) that include a normalizer each (namely “dnf” and “cnf”).
3 * Implementation: The DNF and the CNF system

The following DNF and CNF system are some kind of prototype for the final PDNF and PCNF system (see last chapter).

Their central functions are the normalizers dnf and cnf.

These are recursively implemented by making exhaustive use of de Morgans law and the junctor transformations into the $\land\neg\lor$ system, so that only the disjunctions and conjunctions of DNF's and CNF's need to be specified furthermore. These could be done exclusively by using the distributive laws and the concatenation of conjunctions and disjunctions. But as we insist on the “normality” of literal conjunctions and disjunctions, the two functions $nle-and-nlc$ for the conjunction of two NLC's and $nld-or-nlc$ for the disjunction of two NLD's must not be implemented as concatenations, but need a more complex treatment. This is done by the auxiliary algorithm $jrec$.

$jrec$ (the recursive implementation of these junctions) merges its first two parameters stepwise into its third argument, which is returned in the end. We make use of the duality principle and therefore can use it both for $nle-and-nlc$ and $nld-or-nlc$.

<table>
<thead>
<tr>
<th>The DNF system: Declarations</th>
<th>The CNF system: Declarations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Normalizer</td>
<td>The Normalizer</td>
</tr>
<tr>
<td>$dnf(\varphi)$</td>
<td>$cnf(\varphi)$</td>
</tr>
<tr>
<td>is a DNF of φ, for every formula φ.</td>
<td>is a CNF of φ, for every formula φ.</td>
</tr>
<tr>
<td>\top</td>
<td>\top</td>
</tr>
<tr>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>$\neg \varphi$</td>
<td>$\neg \varphi$</td>
</tr>
<tr>
<td>$\varphi \land \psi$</td>
<td>$\varphi \lor \psi$</td>
</tr>
<tr>
<td>$\varphi \lor \psi$</td>
<td>$\varphi \land \psi$</td>
</tr>
<tr>
<td>$\varphi \land \psi$</td>
<td>$\varphi \lor \psi$</td>
</tr>
<tr>
<td>$\varphi \lor \psi$</td>
<td>$\varphi \land \psi$</td>
</tr>
<tr>
<td>$\varphi \land \psi$</td>
<td>$\varphi \lor \psi$</td>
</tr>
<tr>
<td>$\varphi \lor \psi$</td>
<td>$\varphi \land \psi$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The DNF system: Implementation</th>
<th>The CNF system: Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Normalizer</td>
<td>The Normalizer</td>
</tr>
<tr>
<td>$dnf(\varphi)$</td>
<td>$cnf(\varphi)$</td>
</tr>
<tr>
<td>if $\varphi = \top$</td>
<td>if $\varphi = \bot$</td>
</tr>
<tr>
<td>if $\varphi = \bot$</td>
<td>if $\varphi = \top$</td>
</tr>
<tr>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
</tr>
<tr>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
</tr>
<tr>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
</tr>
<tr>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
<td>if $\varphi = \neg \alpha$ if α is atom</td>
</tr>
<tr>
<td>$\varphi \land \psi$ if $\varphi \land \psi$</td>
<td>$\varphi \lor \psi$ if $\varphi \lor \psi$</td>
</tr>
<tr>
<td>$\varphi \lor \psi$ if $\varphi \lor \psi$</td>
<td>$\varphi \land \psi$ if $\varphi \land \psi$</td>
</tr>
<tr>
<td>$\varphi \land \psi$ if $\varphi \land \psi$</td>
<td>$\varphi \lor \psi$ if $\varphi \lor \psi$</td>
</tr>
<tr>
<td>$\varphi \lor \psi$ if $\varphi \lor \psi$</td>
<td>$\varphi \land \psi$ if $\varphi \land \psi$</td>
</tr>
<tr>
<td>$\varphi \land \psi$ if $\varphi \land \psi$</td>
<td>$\varphi \lor \psi$ if $\varphi \lor \psi$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$nle-and-nlc(\gamma_1, \gamma_2)$</th>
<th>$nld-or-nlc(\delta_1, \delta_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\equiv \varphi(\gamma_1, \gamma_2)$</td>
<td>$\equiv \varphi(\delta_1, \delta_2)$</td>
</tr>
</tbody>
</table>
\[\text{nil-or-and}(\gamma_1, \gamma_2) \]
\[:= [\gamma_1 \land \gamma_2] \]
\[\text{nil-and-def}(\gamma, [\gamma_1 \land \gamma_2 \land \gamma_n]) \]
\[:= \text{def-cnf}([\text{nil-and-and}(\gamma, \gamma_1), \ldots, \text{nil-and-and}(\gamma, \gamma_n)]) \]
\[\text{nil-or-def}(\gamma, [\gamma_1 \lor \gamma_2 \lor \gamma_n]) \]
\[:= [\gamma_1 \lor \gamma_2 \lor \gamma_n] \]
\[\text{def-and-def}([\gamma_1 \land \gamma_2 \land \Delta]) \]
\[:= \text{def-cnf}([\text{def-and-and}(\Delta_1, \Delta), \ldots, \text{def-and-and}(\Delta, \Delta)]) \]
\[\text{def-or-def}([\gamma_1 \lor \gamma_2 \lor \gamma_n]) \]
\[:= [\gamma_1 \lor \gamma_2 \lor \gamma_n] \]
\[\text{def-conj}((\Delta_1, \ldots, \Delta_n)) \]
\[:= \begin{cases} [\Delta] & \text{if } n = 0 \\ \text{def-and-def}(\Delta, \text{def-conj}((\Delta_2, \ldots, \Delta_n))) & \text{if } n > 1 \end{cases} \]
\[\text{def-disj}((\Delta_1, \ldots, \Delta_n)) \]
\[:= \begin{cases} [\forall] & \text{if } n = 0 \\ \text{def-and-def}(\Delta, \text{def-disj}((\Delta_2, \ldots, \Delta_n))) & \text{if } n > 1 \end{cases} \]

Auxiliary algorithms

\[\mathcal{T} := \begin{cases} \land & \text{if } s = \land \\ \lor & \text{if } s = \lor \\ \text{for } s \in \{\land, \lor\} \end{cases} \]
\[\text{pre}([[\lambda_1 \ldots \lambda_n], [\mu_1 \ldots \mu_k]]) \]
\[:= \begin{cases} [\mathcal{T}[\mu_1 \ldots \mu_k], \lambda_1, \ldots, \lambda_n] & \text{if } n = 0 \\ [\mathcal{T}[\mu_1 \ldots \mu_k], \lambda_1, \ldots, \lambda_n] & \text{if } m = 0 \\ \text{pre}([[\lambda_1 \ldots \lambda_n], [\lambda_1^* \ldots \lambda_n^*], [\mu_1 \ldots \mu_k]] & \text{if } n > 0 \text{ and } m = 0 \text{ and } \lambda_1 < \lambda_1^* \\ \text{pre}([[\lambda_1 \ldots \lambda_n], [\lambda_1^* \ldots \lambda_n^*], [\mu_1 \ldots \mu_k]] & \text{if } n > 0 \text{ and } m > 0 \text{ and } \lambda_1 < \lambda_1^* \\ \text{pre}([[\lambda_1 \ldots \lambda_n], [\lambda_1^* \ldots \lambda_n^*], [\mu_1 \ldots \mu_k]] & \text{if } n > 0 \text{ and } m > 0 \text{ and } \lambda_1 \equiv \lambda_1^* \\ [\mathcal{T}] & \text{if } n > 0 \text{ and } m > 0 \text{ and } \mathcal{T} \equiv \lambda_1^* \end{cases} \]
4 Special DNF’s and CNF’s

Introduction

A major disadvantage of the DNF system\(^7\) is the often unnecessary length of the normal forms which impairs the readability and increases the costs for its representations and further operations.

The following two examples are equivalent DNF’s:
- \([\vee[\wedge ABC][\wedge AB][\wedge C][\wedge C]]\)
- \([\vee[A]]\)

But the second form will certainly be preferred in all practical means.

In our search for a good canonic we will therefore start off with an attempt to find as “small” and “handy” forms as possible. But a remarkable and, on a first view may be even astonishing phenomenon of sentential logic is the fact, that here “small” and “handy” are quite close together, but nevertheless might mean significantly different forms in many cases.

In this chapter we will formally conceptualize the desired criteria and will find three different special kinds of DNF’s:
- MDNF’s or minimal DNF’s, which are in fact the absolutely shortest DNF’s.
- MDNF’s or pairwise minimal DNF’s, where each two components are a 2–ary MDNF \([\wedge \gamma_1 \gamma_2]\).
- PDNF’s or prime DNF’s, where the components are exactly the set of all “prime factors”.

As we said, these forms are quite often identical. But in fact they are different concepts and for the construction and comparison of DNF systems it is important to work out these differences and to analyse the properties of these forms.

Canonicity

First of all we are going to weaken the concept of canonicity, because we want to neglect the order of the components in the normal forms. It only obstructs the flow of our argumentation and unnecessarily increases the costs of the algorithms. Besides, normalizations that are not canonic in general, but still canonic in certain semantically distinguished cases, deserve an extra attention. For example a normalizer \(nf\) that is at least “1–canonic”, provides us with a subvalence and equivalence decision, because

\[\varphi_1 \Rightarrow \varphi_2 \iff nf([\varphi_1 \rightarrow \varphi_2]) = nf(1).\]

These kind of normalizers might not define a whole semantic, but at least they enable the definitions of “tautology / contradiction” and “validity / satisfiability”.

Definition

- Two DNF’s \(\Delta_1 = [\vee \gamma_1...\gamma_m]\) and \(\Delta_2 = [\vee \gamma'_1...\gamma'_m]\) are said to be identical up to the order of their components, or similar in short, written \(\Delta_1 \approx \Delta_2\), iff there is a bijection \(i : \{1,...,n\} \rightarrow \{1,...,m\}\) such that \([\vee \gamma_i(1)...\gamma_i(n)] = [\vee \gamma'_1...\gamma'_m]\).
- Two CNF’s \(\Gamma_1 = [\wedge \delta_1...\delta_n]\) and \(\Gamma_2 = [\wedge \delta'_1...\delta'_m]\) are said to be identical up to the order of their components, or similar in short, written \(\Gamma_1 \approx \Gamma_2\), iff there is a bijection \(i : \{1,...,n\} \rightarrow \{1,...,m\}\) such that \([\wedge \delta_i(1)...\delta_i(n)] = [\wedge \delta'_1...\delta'_m]\).

Definition

Let \(N\) be a set of DNF’s (CNF’s) that is itself a set of normal forms (i.e. for every formula there is an equivalent formula in \(N\)). We say that \(N\) is
- canonic, when for all \(\nu_1, \nu_2 \in N\)
 \(\nu_1 \Leftrightarrow \nu_2\) iff \(\nu_1 = \nu_2\)
- pre-canonic, when for all \(\nu_1, \nu_2 \in N\)
 \(\nu_1 \Leftrightarrow \nu_2\) iff \(\nu_1 \approx \nu_2\)
- 0–canonic, when there is only one contradiction in \(N\)
 \(1–canonic, when there is only one tautology in \(N\).

Accordingly a \(N\)–normalizer \(nf\) is called
- canonic, if \(nf(\varphi_1) = nf(\varphi_2)\) for all formulas \(\varphi_1\) and \(\varphi_2\) with \(\varphi_1 \equiv \varphi_2\)
- pre-canonic, if \(nf(\varphi_1) \approx nf(\varphi_2)\) for all formulas \(\varphi_1\) and \(\varphi_2\) with \(\varphi_1 \equiv \varphi_2\)
- 0–canonic, if \(nf(\varphi) = nf(1)\) for all contradictory formulas \(\varphi\)
- 1–canonic, if \(nf(\varphi) = nf(1)\) for all contradictory formulas \(\varphi\)

The following theorem immediately follows from this definition and it guarantees that a pre–canonic normalizer is actually as good as a canonic one.

Theorem

If \(nf\) is a pre–canonic normalizer and \(ord\) the function, that transforms an arbitrary formula into its ordered normal form, then \(ord \circ nf\) is a canonic normalizer.\(^8\)

Theorem

- Theorem
DNF’s are
• neither canonic nor pre–canonic
• not 1–canonic
• 0–canonic

CNF’s are
• neither canonic nor pre–canonic
• not 0–canonic
• 1–canonic

Proof
• $[\lor[A]]$ and $[\lor[\land A][\land AB]]$ are equivalent DNF’s, but they are not equal, nor similar.
• $[\lor[A]] = [\lor[A]] \Leftrightarrow [\lor[A]] \Leftrightarrow 1$. Thus DNF’s are not 1–canonic.
• According to a theorem in chapter 2 it holds for each NLD Δ that $\Delta \Leftrightarrow 0$ iff $\Delta = [\lor]$. Thus DNF’s are 0–canonic.

Factors

Definition
• Let γ be a NLC and $\Delta = [\lor[\gamma_1 \ldots \gamma_m]]$ a DNF. γ is called a (disjunctive) factor or implicant of Δ, iff $\gamma \Rightarrow \Delta$. In other words, iff $\Delta \Leftrightarrow [\lor[\gamma_1 \ldots \gamma_m]]$.
• Let δ be a NLD and $\Gamma = [\land[\delta_1 \ldots \delta_m]]$ a CNF. δ is called a (conjunctive) factor or consequence of Γ, iff $\Gamma \Rightarrow \delta$. In other words, iff $\Gamma \Leftrightarrow [\land[\delta_1 \ldots \delta_m]]$.

Definition
• A factor γ of a DNF Δ is prime, iff there is no factor γ' of Δ with $\gamma \Rightarrow \gamma'$.

Remark
• $[\lor]$ is the only DNF that has no factors.
• $[\lor[A]]$ is the only CNF that has no factors.
• Every NLC γ is a factor of $[\lor[A]]$.
• Every NLC δ is a factor of $[\land[A]]$.

Each DNF different to $[\lor]$ has infinitely many factors. (The same holds for CNF’s.) This is because the DNF would then at least have one component $\gamma = [\land[\lambda_1 \ldots \lambda_n]]$. Every NLC of the form $\gamma' = [\land[\lambda_1 \ldots \lambda_n \lambda_{n+1} \ldots \lambda_{n+m}]]$ is a factor of Δ too, since $\gamma' \Rightarrow \gamma \Rightarrow \Delta$.

But although the number of factors is (almost) always infinite, the number of prime factors is always finite, as follows directly from the following theorem.

Theorem
• For each prime factor γ of a DNF Δ holds: $At(\gamma) \subseteq At(\Delta)$.
• For each prime factor δ of a CNF Γ holds: $At(\delta) \subseteq At(\Gamma)$.

Proof

Again we only proof the first half of the theorem. Let $\Gamma = [\land[\lambda_{i1} \ldots \lambda_{im_i}][\lor[\lambda_{n1} \ldots \lambda_{nm_n}]]$ be a CNF equivalent to Δ and let $\gamma = [\land[\lambda_{1i} \ldots \lambda_{ln}]]$. It holds that γ is a factor of Δ iff $\gamma \Rightarrow \Delta$ iff $[\lor[\gamma_1 \ldots \gamma_m]] \Rightarrow 0$ iff $[\lor[\gamma_1 [\lor[\land[\lambda_{i1} \ldots \lambda_{im_i}][\lor[\lambda_{n1} \ldots \lambda_{nm_n}]]]]] \Rightarrow 0$ iff $[\lor[\land[\lambda_{1i} \ldots \lambda_{1m_i}][\lor[\lambda_{n1} \ldots \lambda_{nm_n}]]]] \Rightarrow 0$ iff $\lambda_{1i} \ldots \lambda_{1m_i} \Rightarrow 0$ for each $i = 1, \ldots, n$ iff $\{\lambda_{i1}, \ldots, \lambda_{in_i}\} \neq \emptyset$ for each $i = 1, \ldots, n$. Suppose now $At(\gamma) \not\subseteq At(\Delta)$. So there must be a literal in γ — let it be λ_{1i} — such that $\lambda_{1i} \not\in At(\Delta)$. But in that case $\{\lambda_{i1}, \ldots, \lambda_{ln_i}\} \cap \{\lambda_{1i}, \ldots, \lambda_{ln_i}\} \neq \emptyset$ for each $i = 1, \ldots, n$. And so $[\land[\lambda_{1i} \ldots \lambda_{ln_i}]]$ would be a factor of Δ, too. But then γ wouldn’t be a prime, and that would contradict the initial assumption.

Corollary

The number of prime factors of a given DNF or CNF is finite.

Prime Normal Forms

Definition

Suppose φ is a formula
• Let Δ be any arbitrary DNF of φ and $\{\gamma_1, \ldots, \gamma_n\}$ the set of all prime factors of Δ. We call $\Delta' := [\lor[\gamma_1 \ldots \gamma_n]]$ a prime disjunctive normal form or PDNF (of φ or of Δ).
• Let Γ be any arbitrary CNF of φ and $\{\delta_1, \ldots, \delta_m\}$ the set of all prime factors of Γ. We call $\Gamma' := [\land[\delta_1 \ldots \delta_m]]$ a prime conjunctive normal form or PCNF (of φ or of Γ).

Each formula φ has a DNF Δ. The set of all prime factor of Δ is always finite and so the PDNF Δ' is always well defined (up to the order of its components). Δ' is uniquely defined, no matter which DNF Δ of φ was chosen.

Furthermore $\Delta' \Leftrightarrow \Delta$, because:
• Each prime factor γ_i is a factor of Δ, thus $\gamma_i \Rightarrow \Delta$ and $\Delta' \Rightarrow \Delta$.
• Every component $\gamma \in \Delta$ has a prime component
\(\gamma_i \in \Delta' \) such that \(\gamma \Rightarrow \gamma_i \), and so \(\Delta \Rightarrow \Delta' \).

This proofs the following

Theorem

For each formula \(\varphi \) there is
- one (up to the order of its components) uniquely defined PDNF \(\Delta' \) with \(\Delta' \Leftrightarrow \varphi \), called the PDNF of \(\varphi \).
- one (up to the order of its components) uniquely defined PCNF \(\Gamma' \) with \(\Gamma' \Leftrightarrow \varphi \), called the PCNF of \(\varphi \).

In other words: PDNF’s and PCNF’s are pre–canonic and the two according normalizers are well defined.

Corollary

For each PDNF \(\Delta \)
- \(\Delta \Leftrightarrow 0 \) iff \(\Delta = [v] \)
- \(\Delta \Leftrightarrow 1 \) iff \(\Delta = [v \lor \square] \)

For each PCNF \(\Gamma \)
- \(\Gamma \Leftrightarrow 0 \) iff \(\Gamma = [\square \lor v] \)
- \(\Gamma \Leftrightarrow 1 \) iff \(\Gamma = [\square] \)

The next theorem about 0– and 1–ary DNF’s and CNF’s, together with one about 2–ary forms stated later on, will be the starting point for our algorithms that can handle all \(n \)–ary formulas.

Theorem

- \([v] \) is a PDNF.
- \([\square] \) is a PCNF.
- Every DNF \([v \lor \gamma] \) with one component is a PDNF.
- Every CNF \([\square \land \delta] \) with one component is a PCNF.

This won’t need an explicit proof.

Syntactic measures

We will now seek for a precise concept of syntactic “size” and propose two syntactic measures: length and volume.

Definition

For a DNF \(\Delta = [v \lor \gamma_{11} \ldots \gamma_{1n_1}] \ldots [\lor \gamma_{m1} \ldots \gamma_{mn_m}] \) we put
- \(lg(\Delta) := m \) the length of \(\Delta \)
- \(vol(\Delta) := n_1 + n_2 + \ldots + n_m \) the volume of \(\Delta \).

For a CNF \(\Gamma = [\lor \gamma_{11} \ldots \gamma_{1n_1}] \ldots [\lor \gamma_{m1} \ldots \gamma_{mn_m}] \) we put
- \(lg(\Gamma) := m \) the length of \(\Gamma \)
- \(vol(\Gamma) := n_1 + n_2 + \ldots + n_m \) the volume of \(\Gamma \).

For example, for \(\Delta = [\lor \gamma ABC][\lor \gamma \bar{A}BC] \) there is \(lg(\Delta) = 2 \) and \(vol(\Delta) = 6 \).

Minimal Normal Forms

Definition

A DNF \(\Delta \) is said to be
- of minimal length, if there is no DNF \(\Delta' \) such that \(\Delta' \Leftrightarrow \Delta \) and \(lg(\Delta') < lg(\Delta) \)
- of minimal volume, if there is no DNF \(\Delta' \) such that \(\Delta' \Leftrightarrow \Delta \) and \(vol(\Delta') < vol(\Delta) \)
- a minimal disjunctive normal form or MDNF, if \(\Delta \) is of minimal length and minimal volume.

A CNF \(\Gamma \) is said to be
- of minimal length, if there is no CNF \(\Gamma' \) such that \(\Gamma' \Leftrightarrow \Gamma \) and \(lg(\Gamma') < lg(\Gamma) \)
- of minimal volume, if there is no CNF \(\Gamma' \) such that \(\Gamma' \Leftrightarrow \Gamma \) and \(vol(\Gamma') < vol(\Gamma) \)
- a minimal conjunctive normal form or MCNF, if \(\Gamma \) is of minimal length and minimal volume.

Remark

- In general, minimal length does not imply minimal volume. If we take the following two DNF’s as an example
 - \(\Delta_1 = [\lor \square A][\lor \square B] \)
 - \(\Delta_2 = [\lor \square A][\lor \square B] \)
 - we can easily verify that they are equivalent and both of minimal length, but obviously \(2 = vol(\Delta_2) < vol(\Delta_1) = 3 \).
 - It remains an open question here if a minimal volume implies a minimal length.\(^9\)

If \(\gamma \) is a component of a DNF \(\Delta \), but not prime, then there must be a shorter factor \(\gamma' \) of \(\Delta \). If \(\Delta' \) is obtained from \(\Delta \) by replacing \(\gamma \) with \(\gamma' \), then \(\Delta' \Leftrightarrow \Delta \) and \(vol(\Delta') < vol(\Delta) \). So, if a DNF is minimal, all its components must be prime factors.

Theorem

- All components of a MDNF are prime factors:
 - Let \(\Delta_m \) be a MDNF and \(\Delta_p \) a PDNF with \(\Delta_m \Leftrightarrow \Delta_p \), then \(\Delta_m \subseteq \Delta_p \).
- All components of a MCNF are prime factors:

\(^9\)I conjecture that this is actually the case: Normal forms of minimal volume are always of minimal length. If this wouldn’t be correct, then there wouldn’t be a MDNF for every formula and thus MDNF’s wouldn’t make a proper set of normal forms. To avoid this, we could have identified minimality with minimality of the volume. But eventually, only the MDNF’s of 0–1–, and 2–ary DNF’s are of interest in our paper. And restricted to these cases the normalizer is well defined and even pre-canonic, as we will see later on.
Let Γ_m be a MCNF and Γ_p a PCNF with $\Gamma_m \Rightarrow \Gamma_p$, then $\Gamma_m \subseteq \Gamma_p$.

For many formulas, the MDNF and PDNF are identical. $[\lor[\land A][\land AB]]$ for instance is both a MDNF and a PDNF.

But very often, they are different, as in the following example of two equivalent forms:

- $[\lor[\land AB][\land BC]]$ is a MDNF
- $[\lor[\land AB][\land BC][\land AC]]$ is the PDNF

The last theorem indicates a method how MDNF's can be constructed: First, find all prime factors (later on we introduce an algorithm that solves this problem). Then find out which of the subsets of the PDNF still makes an equivalent formula and select the best of them. But, different to PDNF’s MDNF’s are not always unique:

Theorem
- MDNF’s are not pre–canonic (thus not canonic), but 0– and 1–canonic.
- MCNF’s are not pre–canonic (thus not canonic), but 0– and 1–canonic.

Proof
- Both of the following DNF’s are minimal
 - $\Delta_1 = [\lor[\land BC][\land AB]]$
 - $\Delta_2 = [\lor[\land BC][\land AB][\land AC]]$
 and $\Delta_1 \Leftrightarrow \Delta_2$, but obviously not $\Delta_1 \approx \Delta_2$. So, MDNF’s are not (pre–)canonic.
- DNF’s are 0–canonic according to a theorem in chapter 4 and as such MDNF’s are 0–canonic.
- All components of a MDNF Δ are prime factors. The only prime factor of a tautologic DNF is $[\land \land]$. So $\Delta \Leftrightarrow 1$ if $\Delta = [\lor[\land \land]]$. In other words, MDNF’s are 1–canonic.

Theorem
- $[\lor]$ is a MDNF.
- $[\land]$ is a MCNF.
- Every DNF $[\lor[\land \gamma]]$ with one component is a MDNF.
- Every CNF $[\land[\land \delta]]$ with one component is a MCNF.

So, altogether we have “DNF = PDNF = MDNF”, if the length of the form doesn’t exceed 1.

Pairwise Minimal Normal Forms

In a later chapter we are going to prove that every 2–ary DNF $\Delta = [\lor[\land \gamma_L][\land \gamma_R]]$ has a (up to the order of the components) unique MDNF Δ', that has at least one and at most two components. We will implement an algorithm to construct Δ' and we write it as $\min(\gamma_L, \gamma_R) = \Delta'$.
min(∨, ∧) = [∨ ∧]

Later on we implement an effective version of the M–Procedure, in which the vague instruction “choose any two components” in (i) and the test in (ii) are merged into a single step.

Obviously this whole method is monotone shortening, the DNF is constantly getting better in this respect. One might be tempted to suggest that the finite result is the result an PDNF in general. Therefore we give is very often the case indeed, but not always. And nei-

Obviously this whole method is monotone shortening, the DNF is constantly getting better in this respect. One might be tempted to suggest that the finite result is always a MDNF. It therefore might surprise that this is only the case indeed, but not always. And neither is the result a PDNF in general. Therefore we give the forms that satisfy the terminating condition of the method, an own title:

Definition
• A DNF ∆ = [∨γ1...γn] is called pairwise minimal or a M2DNF if [∨γiγj] is minimal for all i, j ∈ {1,...,n} with i ≠ j.
• A CNF Γ = [∧δ1,...,δn] is called pairwise minimal or a M2CNF if [∧δiδj] is minimal for all i, j ∈ {1,...,n} with i ≠ j.

Theorem
• Every MDNF is a M2DNF.
• Not every M2DNF is a MDNF.
• Every PDNF is a M2DNF.
• Not every M2DNF is a PDNF.
• Every MCNF is a M2CNF.
• Not every M2CNF is a MCNF.
• Every PCNF is a M2CNF.
• Not every M2CNF is a PCNF.

Proof
• Obviously, every MDNF is a M2DNF.
• ∆ = [∨|∧ABC|∧AC] is an example for a M2DNF that isn’t a MDNF. The MDNF of ∆ is
• Suppose there is a PDNF ∆ = [∨γ1...γn] that isn’t a M2DNF. So there must be γi, γj ∈ ∆ such that there is a 1–ary DNF [∨γi] ⊨ [∨γiγj] or a 2–ary DNF [∨γiγj] ⊨ [∨γiγj] with γi⇒γj or γj⇒γi. (We will show that in detail later on.). But that would contradict the premise that γi and γj both have to be prime factors of ∆.
• Again ∆ = [∨|∧ABC|∧AC] is an example for a M2DNF that isn’t a PDNF, which is again ∆′.

Theorem
• M2DNF’s are 0–canonic, but not 1–canonic and thus not (pre–)canonic.
• M2CNF’s are 1–canonic, but not 0–canonic and thus not (pre–)canonic.

Proof
DNF’s are 0–canonic in general, so are M2DNF’s. ∆ = [∨|∧|] and ∆′ = [∨|∧ABC| ∧ACD] ∧ABC [∧ABC] ∧ACD ∧ACD [∧ABC] ∧ABC] are both tautologies and pairwise minimal, and so the M2DNF’s are not 1–canonic.

Quality comparison
Let us now compare the three special types of DNF’s according to the given criteria in the introduction.

Intuitivity
PDNF’s have the big advantage against the other two types that all factors can be read off directly from the form, and thus all subvalent formulas become directly identifiable, if they are given in DNF.10

In this respect, the PDNF’s are the most transparent of all DNF’s.

Canonicity
Of all three sets of DNF’s, only the PDNF’s are canonic.

Complexity of the representation
Actually all three types of normal forms are relatively condensed — this goal was our initial starting point. But the MDNF’s are the absolutely shortest by definition. PDNF’s and M2DNF’s both allow examples for which one type is shorter than the other.11

Computational complexity
Later on we are going to introduce an algorithm

10 see next chapter about “covering”
11 We already saw that a MDNF is always a subset of the equivalent PDNF. I conjecture that the MDNF is always at least half as long as the PDNF. [Comment September 2002: Actually, this conjecture is not correct in general.]
of polynomial complexity to transform DNF’s into M2DNF’s. We will extend this idea to build a PDNF-normalizer. PDNF’s are very efficient for the test on subvalence (see next chapter). Usually MDNF’s are constructed out of PDNF’s and thus MDNF’s have the highest computational costs.

- Conservativity
 The transformation of an arbitrary formula into a DNF usually changes the whole structure of the form. A further reduction into one of the three special DNF’s is, compare to that, very moderate.

- Realizability as technical devices
 I suppose, this is the real domain for the MDNF’s.

Conclusion
M2DNF’s are not very interesting for practical applications. Nevertheless they are indispensable for the theory and implementation of our PDNF system. MDNF’s are only superior when the representational complexity is the only and most important aspect. There are established methods to construct MDNF’s out of given PDNF’s and I wouldn’t know how to improve them. Therefore we will neglect these forms in the sequel.

PDNF’s are the only canonic forms. The rest of this paper is devoted to the construction of an effective PDNF system.

The analysis of the relation between two NLC’s stands at the center of our method and therefore this investigation is a chapter on its own. Subsequently we will first build a M2DNF and then a PDNF system. But first of all we demonstrate the subvalence test with prime normal forms, that also provides us with a criterion to decide between a PDNF and a PCNF system in concrete applications.
5 Covering and Subivalence

Because the PDNF-normalizer is 1–canonic, it holds for any two formulas φ_1 and φ_2 that

$$\varphi_1 \Rightarrow \varphi_2 \text{ iff } pdnf([\varphi_1 \rightarrow \varphi_2]) = [\lor \land].$$

In this way it is possible to implement the subvalence problem, i.e. the question, whether or not a formular implies another one.

In actual applications it is very often the case that one side is relatively constant (and then it is often called “program”, “data bank”, “axiom system”, etc.), while the other side (called “input”, “request”, etc.) varies. We could name application systems of the sort

- For consequence systems we construct the PCNF $\Gamma_{constant}$ of $\varphi_{constant}$ and a CNF $\Gamma_{variable}$ of $\varphi_{variable}$ and we decide the truth of $\Gamma_{constant} \Rightarrow \Gamma_{variable}$ by using the following covering concept.
- Accordingly the application of DNF’s suits very well for implicand systems.

The “covering method” reduces the subvalence problem to the pairwise comparison of NLC’s (NLD’s) and that doesn’t only accelerate the computer, it also supports the comprehension and mental arithmetic of formulas. The semantic of prime normal forms is exceptionally intuitive.

We noticed earlier that:

- For any two NLC’s γ_1 and γ_2: $\gamma_1 \Rightarrow \gamma_2$ iff $\gamma_2 \subseteq \gamma_1$.
- For any two NLD’s δ_1 and δ_2: $\delta_1 \Rightarrow \delta_2$ iff $\delta_1 \subseteq \delta_2$.

For each NLC γ and DNF’s $\Delta = [\lor \gamma_1 \ldots \gamma_n]$ and Δ' we define:

- $\gamma \subseteq \Delta$, γ is covered by Δ, iff there is a $\gamma_i \in \Delta$ such that $\gamma \Rightarrow \gamma_i$.
- $\gamma \not\subseteq \Delta$ iff γ is not covered by Δ.
- $\Delta \subseteq \Delta'$, Δ is covered by Δ', iff $\gamma_i \subseteq \Delta'$ for every $\gamma_i \in \Delta$.
- $\Delta \not\subseteq \Delta'$ iff Δ is not covered by Δ'.

For each NLD δ and CNF’s $\Gamma = [\land \delta_1 \ldots \delta_n]$ and Γ' we define:

- $\delta \subseteq \Gamma$, δ is covered by Γ, iff there is a $\delta_i \in \Gamma$ such that $\delta_i \Rightarrow \delta$.
- $\delta \not\subseteq \Gamma$ iff δ is not covered by Γ.
- $\Gamma \subseteq \Gamma'$, Γ is covered by Γ', iff $\delta_i \subseteq \Gamma'$ for every $\delta_i \in \Gamma$.
- $\Gamma \not\subseteq \Gamma'$ iff Γ is not covered by Γ'.

For DNF’s $\Delta \subseteq \Delta'$ always implies $\Delta \Rightarrow \Delta'$. But the reverse is generally only the case if Δ' is prime12.

Definition

For each NLC γ and DNF’s $\Delta = [\lor \gamma_1 \ldots \gamma_n]$ and Δ' we define:

- $\gamma \subseteq \Delta$, γ is covered by Δ, iff there is a $\gamma_i \in \Delta$ such that $\gamma \Rightarrow \gamma_i$.
- $\gamma \not\subseteq \Delta$ iff γ is not covered by Δ.
- $\Delta \subseteq \Delta'$, Δ is covered by Δ', iff $\gamma_i \subseteq \Delta'$ for every $\gamma_i \in \Delta$.
- $\Delta \not\subseteq \Delta'$ iff Δ is not covered by Δ'.

Theorem

- Let Δ be a DNF and Δ_p a PDNF. Then $\Delta \Rightarrow \Delta_p$ iff $\Delta \subseteq \Delta_p$.
- Let Γ_p be a PCNF and Γ a CNF. Then $\Gamma_p \Rightarrow \Gamma$ iff $\Gamma \subseteq \Gamma_p$.

Proof

For $\Delta = [\lor \gamma_1 \ldots \gamma_n]$ there is $\Delta \Rightarrow \Delta'$ iff

$$[[\lor \gamma_1 \ldots \gamma_n] \Rightarrow \Delta'] \iff 1 \iff [\lor \land \neg \gamma_1 \ldots \neg \gamma_n \Delta'] \iff 1 \iff [\land [\lor \neg \gamma_1 \Delta'] \ldots [\lor \neg \gamma_n \Delta'] \Rightarrow 1 \iff [\land [\lor \gamma_1 \rightarrow \Delta'] \ldots [\lor \gamma_n \rightarrow \Delta']] \Rightarrow 1 \iff \gamma_i \Rightarrow \Delta'$ for each $i = 1, \ldots, n$. Thus every $\gamma_i \in \Delta$ has to be a factor of Δ'. Since Δ' contains all prime factors, there must be a $\gamma_i' \in \Delta'$ for each $\gamma_i \in \Delta$ such that $\gamma_i \Rightarrow \gamma_i'$. Thus $\gamma_i \subseteq \Delta'$ for each $i = 1, \ldots, n$ and thus $\Delta \subseteq \Delta'$.

Theorem

\subseteq is a quasi-order13 on the set of all DNF’s (CNF’s).

12More general, if Δ' is “f–complete” (see below).
13Reflexive and transitive
6 * Implementation of a fast subvalence decision with Prime Normal Forms

The following table of algorithms gives an example of how these results can be implemented. It can later be attached to the fully developed PDNF and PCNF system.
Component pairs

In this chapter we will construct an algorithm that determines the MDNF and the PDNF of a 2-ary DNF \([\lor \land R]\). Both do exist and they are unique (up to the order of their components.)

First we introduce a special notation for a literal conjunction that might not be normal yet, but doesn’t contain doubles or complementary literals, and thus can easily be normalized by changing the order of the components:

Notation

Let \([\land \lambda_1, \ldots, \lambda_n]\) be a literal conjunction and \(i : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}\) a bijection such that \([\land \lambda_{i(1)}, \ldots, \lambda_{i(n)}]\) is a NLC. (Note that this bijection is unique if it exists.) We then write \([\land \lambda_1, \ldots, \lambda_n] := [\land \lambda_{i(1)}, \ldots, \lambda_{i(n)}]\)

Definition

Let
- \(\gamma_L = [\land \lambda_1, \ldots, \lambda_x]\) be a NLC
- \(\gamma_R = [\lor \lambda'_1, \ldots, \lambda'_y]\) be a NLC

We define the following sets (the order of the elements is of no interest here):
- \(\{\pi_1, \ldots, \pi_p\} := \{\lambda_1, \ldots, \lambda_x\} \cap \{\lambda'_1, \ldots, \lambda'_y\}\)
- \(\{\rho_1, \ldots, \rho_r\} := \{\lambda_1, \ldots, \lambda_x\} \cap \{\lambda'_1, \ldots, \lambda'_y\}\)
- \(\{\sigma_1, \ldots, \sigma_s\} := \{\lambda_1, \ldots, \lambda_x\} - \{\lambda'_1, \ldots, \lambda'_y, \lambda'_1, \ldots, \lambda'_y\}\)
- \(\{\tau_1, \ldots, \tau_t\} := \{\lambda'_1, \ldots, \lambda'_y\} - \{\lambda_1, \ldots, \lambda_x, \lambda'_1, \ldots, \lambda'_y\}\)

Thus
- \(\gamma_L = [\land \pi_1, \ldots, \pi_p \rho_1, \ldots, \rho_r \sigma_1, \ldots, \sigma_s]\)
- \(\gamma_R = [\lor \tau_1, \ldots, \tau_t]\)

We define
- \(\min(\gamma_L, \gamma_R)\)
- \(\prim(\gamma_L, \gamma_R)\)

according to the following table, depending on the values of \(p, r, s,\) and \(t\). In this table we use the abbreviations:

- “N” for any Number, i.e. \(\geq 0\)
- “P” for Positive, i.e. \(\geq 1\)
- “M” for Multiple, i.e. \(> 1\)

Without its long and non–informative proof we state the following

Theorem

- \(\min(\gamma_L, \gamma_R)\) is the (up to the order of its components) uniquely defined MDNF of \([\lor \land R]\).
- \(\prim(\gamma_L, \gamma_R)\) is the (up to the order of its components) uniquely defined PDNF of \([\lor \land R]\).

Example

\[
\gamma_L := [\land A B D E G R] \\
\gamma_R := [\lor A B C E F I J K L]
\]

For these two NLC’s we have
\[
\{\pi_1, \ldots, \pi_p\} = \{A, K\} \quad \text{thus } p = 2 \\
\{\rho_1, \ldots, \rho_r\} = \{B, E\} \quad \text{thus } r = 2 \\
\{\sigma_1, \ldots, \sigma_s\} = \{D, G\} \quad \text{thus } s = 2 \\
\{\tau_1, \ldots, \tau_t\} = \{C, H, I, J, L\} \quad \text{thus } t = 5
\]

This is the case “NMNN” in the table and so
\[
\min(\gamma_L, \gamma_R) = \prim(\gamma_L, \gamma_R) = [\lor \land R].
\]

We can see in the table that the number \(p\) of literals that occur both in \(\gamma_L\) and in \(\gamma_R\), doesn’t have any influence on the MDNF and PDNF solution, while the number \(r\) of literals that occur in \(\gamma_L\) and complemented in \(\gamma_R\) is very decisive. Therefore we call \([\lor \land R]\) or the relation between \(\gamma_L\) and \(\gamma_R\)

- **incomplementary**, if \(r = 0\)
- **complementary**, if \(r = 1\)
- **hyper–complementary** if \(r > 1\).

Furthermore we call \([\lor \land R]\) (or \(\gamma_L\) and \(\gamma_R\)) **minimal**, iff \(\min(\gamma_L, \gamma_R) = [\lor \land R]\).

As the table shows, this is exactly the case when \(r > 1\) or \((s > 0\) and \(t > 0\)).

In case \(\gamma_L\) and \(\gamma_R\) are complementary and minimal — and only in this case — the PDNF and the MDNF of \([\lor \land R]\) are different: the PDNF contains one additional prime factor. We call it the **complementary prime factor** or shorter the **c–prime factor** of \(\gamma_L\) and \(\gamma_R\) (or \([\lor \land R]\)).

14 The subscripts “L” and “R” stand for “left” and “right”.
15 We introduce these symbols, because in later algorithms we will make use the case symbols “N000”, “N00P”, ..., “NMNN” as identification symbols for the nine different cases.
\[\gamma_L \quad \gamma_R \quad \min \left(\gamma_L, \gamma_R \right) \quad \text{prim} \left(\gamma_L, \gamma_R \right) \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(r)</th>
<th>(s)</th>
<th>(t)</th>
<th>(\gamma_L)</th>
<th>(\gamma_R)</th>
<th>(\min \left(\gamma_L, \gamma_R \right))</th>
<th>(\text{prim} \left(\gamma_L, \gamma_R \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\wedge \pi_1 \ldots \pi_p)</td>
<td>(\wedge \pi_1 \ldots \pi_p)</td>
<td>(\vee \gamma_L = \vee \gamma_R)</td>
<td>(\vee \gamma_L = \vee \gamma_R)</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>P</td>
<td>(\wedge \pi_1 \ldots \pi_p)</td>
<td>(\wedge \pi_1 \ldots \pi_p \tau_1 \ldots \tau_t)</td>
<td>(\vee \gamma_L)</td>
<td>(\vee \gamma_L)</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>P</td>
<td>0</td>
<td>(\wedge \pi_1 \ldots \pi_p \sigma_1 \ldots \sigma_s)</td>
<td>(\wedge \pi_1 \ldots \pi_p)</td>
<td>(\vee \gamma_L)</td>
<td>(\vee \gamma_R)</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>P</td>
<td>P</td>
<td>(\wedge \pi_1 \ldots \pi_p \sigma_1 \ldots \sigma_s)</td>
<td>(\wedge \pi_1 \ldots \pi_p \tau_1 \ldots \tau_t)</td>
<td>(\vee \gamma_L \gamma_R)</td>
<td>(\vee \gamma_L \gamma_R)</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(\wedge \pi_1 \ldots \pi_p \rho_1)</td>
<td>(\wedge \pi_1 \ldots \pi_p \pi)</td>
<td>(\vee \gamma') with (\gamma' := \wedge \pi_1 \ldots \pi_p)</td>
<td>(\vee \gamma') with (\gamma' := \wedge \pi_1 \ldots \pi_p)</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>(\wedge \pi_1 \ldots \pi_p \rho_1)</td>
<td>(\wedge \pi_1 \ldots \pi_p \pi \tau_1 \ldots \tau_t)</td>
<td>(\vee \gamma' \gamma'_R) with (\gamma' := \wedge \pi_1 \ldots \pi_p \pi \tau_1 \ldots \tau_t)</td>
<td>(\vee \gamma' \gamma'_R) with (\gamma' := \wedge \pi_1 \ldots \pi_p \pi \tau_1 \ldots \tau_t)</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>P</td>
<td>0</td>
<td>(\wedge \pi_1 \ldots \pi_p \rho_1 \sigma_1 \ldots \sigma_s)</td>
<td>(\wedge \pi_1 \ldots \pi_p \pi)</td>
<td>(\vee \gamma' \gamma'_R) with (\gamma' := \wedge \pi_1 \ldots \pi_p \pi \sigma_1 \ldots \sigma_s)</td>
<td>(\vee \gamma' \gamma'_R) with (\gamma' := \wedge \pi_1 \ldots \pi_p \pi \sigma_1 \ldots \sigma_s)</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>(\wedge \pi_1 \ldots \pi_p \rho_1 \sigma_1 \ldots \sigma_s)</td>
<td>(\wedge \pi_1 \ldots \pi_p \pi \tau_1 \ldots \tau_t)</td>
<td>(\vee \gamma_L \gamma_R) with (\gamma_c := \wedge \pi_1 \ldots \pi_p \rho_1 \sigma_1 \ldots \sigma_s \tau_1 \ldots \tau_t)</td>
<td>the (c)-prime factor</td>
</tr>
<tr>
<td>N</td>
<td>M</td>
<td>N</td>
<td>N</td>
<td>(\wedge \pi_1 \ldots \pi_p \mu_1 \ldots \mu_r \sigma_1 \ldots \sigma_s)</td>
<td>(\wedge \pi_1 \ldots \pi_p \pi \tau_1 \ldots \tau_t)</td>
<td>(\vee \gamma_L \gamma_R)</td>
<td>(\vee \gamma_L \gamma_R)</td>
</tr>
</tbody>
</table>
8 * Implementation: Minimal and Prime Normal Forms of component pairs

The implementation of the two functions \(\text{min}(\gamma_L, \gamma_R) \) and \(\text{prim}(\gamma_L, \gamma_R) \) could be straightforward: first, determine the four sets \(\{\pi_1, ..., \pi_p\}, \{\rho_1, ..., \rho_r\}, \{\sigma_1, ..., \sigma_s\}, \) and \(\{\tau_1, ..., \tau_t\} \). Then, look up the case and the according instruction in the table and finally construct the formula. But we are eager to create a fast system. \(\text{min} \) is the core of the M2DNF system, \(\text{prim} \) will be the most often applied function in the PDNF system.

In fact, the algorithms will not use \(\text{min} \) and \(\text{prim} \), but the “extended” versions \(xmin \) and \(xprim \), where \(xmin(\gamma_L, \gamma_R) := (\xi, \min(\gamma_L, \gamma_R)) \) and \(xprim(\gamma_L, \gamma_R) := (\xi, \text{prim}(\gamma_L, \gamma_R)) \) and \(\xi \) is the case symbol, i.e. the abbreviations for the numbers of \(p, r, s, \) and \(t \) in the table.

Example

For \(\gamma_L = [\wedge ABDF] \) and \(\gamma_R = [\wedge BC] \) there are

- \(xmin(\gamma_L, \gamma_R) = (\text{"NIPP", }[,\wedge ABDF[,\wedge BC]]) \)
- \(xprim(\gamma_L, \gamma_R) = (\text{"NIPP", }[\vee ABDF[,\wedge BC]] [\wedge ACDF]]) \)

For the implementation of \(xprim \) we use the auxiliary recursive function \(xprec \). \(xprec \) terminates as soon as the case is clear, and that is mainly what makes it faster than the straightforward version. \(xprec \) is not the only version that would do the job, we don’t need to discuss it and the reader is free to use an own version.

The duality allows us to formulate \(xprec \) for DNF’s and CNF’s together and we use \(* \) as the Junctor symbol and \(\pi \) for the dual Junctor.

<table>
<thead>
<tr>
<th>Disjunctive component pairs: Declarations</th>
<th>Conjunctive component pairs: Declarations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{prim}(\gamma_L, \gamma_R)) in the PDNF of [(\vee \gamma_L, \gamma_R)], for any two NLC’s (\gamma_L) and (\gamma_R)</td>
<td>(\text{prim}(\delta_L, \delta_R)) is the PCNF of [(\delta_L, \delta_R)], for any two NLD’s (\delta_L) and (\delta_R)</td>
</tr>
<tr>
<td>(\min(\gamma_L, \gamma_R)) in the MNF of [(\vee \gamma_L, \gamma_R)], for any two NLC’s (\gamma_L) and (\gamma_R)</td>
<td>(\min(\delta_L, \delta_R)) is the CNF of [(\delta_L, \delta_R)], for any two NLD’s (\delta_L) and (\delta_R)</td>
</tr>
<tr>
<td>(xmin(\gamma_L, \gamma_R) := (\xi, \min(\gamma_L, \gamma_R))) where (\xi) is the case symbol according to the table in chapter 7</td>
<td>(xmin(\delta_L, \delta_R) := (\xi, \min(\delta_L, \delta_R))) where (\xi) is the case symbol according to the table in chapter 7</td>
</tr>
<tr>
<td>(xprim(\gamma_L, \gamma_R) := (\xi, \text{prim}(\gamma_L, \gamma_R))) and (\xi) is the case symbol according to the table in chapter 7</td>
<td>(xprim(\delta_L, \delta_R) := (\xi, \text{prim}(\delta_L, \delta_R))) and (\xi) is the case symbol according to the table in chapter 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disjunctive component pairs: Implementations</th>
<th>Conjunctive component pairs: Implementations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xprec([\vee \gamma_L, \gamma_R]) = \text{\texttt{L}})</td>
<td>(xprec([\vee \delta_L, \delta_R]) = \text{\texttt{L}})</td>
</tr>
<tr>
<td>(\text{prim}(\gamma_L, \gamma_R)) (:= \Delta), where (\Delta) is defined by ((\xi, \Delta) := \text{\texttt{L}}) (xprim(\delta_L, \delta_R)) (:= \Gamma), where (\Gamma) is defined by ((\xi, \Gamma) := \text{\texttt{L}})</td>
<td></td>
</tr>
<tr>
<td>(xmin(\gamma_L, \gamma_R) := (\xi, \text{\texttt{L}})) where ((\xi, \Delta) := \text{\texttt{L}}) (xmin(\delta_L, \delta_R) := (\xi, \text{\texttt{L}}))</td>
<td></td>
</tr>
<tr>
<td>(xprim(\gamma_L, \gamma_R) := (\xi, \text{\texttt{L}})) and ((\xi, \Delta) := \text{\texttt{L}})</td>
<td>(xprim(\delta_L, \delta_R) := (\xi, \text{\texttt{L}})) and ((\xi, \Gamma) := \text{\texttt{L}})</td>
</tr>
<tr>
<td>(\Delta' = \left{ \begin{array}{ll} \Delta & \text{if } g(\Delta) \in {1, 2} \ [\vee \gamma_L, \gamma_R] & \text{if } g(\Delta) = 3 \end{array} \right.)</td>
<td>(\Gamma' = \left{ \begin{array}{ll} \Gamma & \text{if } g(\Gamma) \in {1, 2} \ [\vee \delta_L, \delta_R] & \text{if } g(\Gamma) = 3 \end{array} \right.)</td>
</tr>
<tr>
<td>(\min(\gamma_L, \gamma_R)) (:= \Delta), where (\Delta) is defined by ((\xi, \Delta) := \text{\texttt{L}})</td>
<td>(\min(\delta_L, \delta_R)) (:= \Gamma), where (\Gamma) is defined by ((\xi, \Gamma) := \text{\texttt{L}})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathfrak{T} := \left{ \begin{array}{ll} \wedge & \text{if } * = \wedge \ \vee & \text{if } * = \vee \end{array} \right.) for * (\in {\wedge, \vee})</td>
</tr>
</tbody>
</table>

algorithm xprec \(([\{x_1, ..., x_n\} \cup \{y_1, ..., y_m\}], \{z_1, ..., z_p\}, \{w_1, ..., w_q\}, \{v_1, ..., v_s\}, \{r_1, ..., r_t\}, v, s, t) \) begin
if \(v > 1 \)
then \((\text{\texttt{BCD}}, [\{x_1, ..., x_n\} \cup \{y_1, ..., y_m\}], \{z_1, ..., z_p\}, \{w_1, ..., w_q\}, \{v_1, ..., v_s\}, \{r_1, ..., r_t\}, v, s, t)) \)
else if \(v = 0 \)
then \(\text{\texttt{L}} \)
then \(v = 0 \)
end
then if $(j = y$ and $t = 0$)
then ("N000", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x)|$)
else ("N00P", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x)|$
else if $(j = y$ and $t = 0$)
then ("N0P0", $|\mathbf{r} \ast (\lambda_1' \ldots \lambda_y')|$
else ("N0PP", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x') |\ast (\lambda_1' \ldots \lambda_y' \ast 1 \ldots \lambda_y')|$
else if $x \equiv 0$
then ("N000", $|\mathbf{r} \ast (\pi a_1 \ldots \pi a_n)|$
else ("N100", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x)|\ast (\pi a_1 \ldots \pi a_n)|$
else if $(j = y$ and $t = 0$)
then ("N1P0", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x)|\ast (\lambda_1' \ldots \lambda_y' \ast 1 \ldots \lambda_y')|$
else ("N1PP", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x') |\ast (\lambda_1' \ldots \lambda_y' \ast 1 \ldots \lambda_y')|\ast (\pi a_1' \ldots \pi a_n' \lambda_{y+1} \ldots \lambda_x)|$
else if $r \equiv 0$
then if $t = 0$
then ("N0P0", $|\mathbf{r} \ast (\lambda_1' \ldots \lambda_y')|$
else ("N0PP", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x') |\ast (\lambda_1' \ldots \lambda_y')|$
else if $t = 0$
then ("N0P0", $|\mathbf{r} \ast (\pi a_1 \ldots \pi a_n)|$
else ("N100", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x)|\ast (\pi a_1 \ldots \pi a_n)|$
else if $(j = y$ and $t = 0$)
then ("N1P0", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x)|\ast (\lambda_1' \ldots \lambda_y' \ast 1 \ldots \lambda_y')|$
else ("N1PP", $|\mathbf{r} \ast (\lambda_1 \ldots \lambda_x') |\ast (\lambda_1' \ldots \lambda_y' \ast 1 \ldots \lambda_y')|\ast (\pi a_1' \ldots \pi a_n' \lambda_{y+1} \ldots \lambda_x)|$
end
9 The M–Procedure

We already mentioned the M–Procedure:
Given a DNF Δ, then
(i) Choose any two components γ_L and γ_R of Δ and replace them by the components of $\min (\gamma_L, \gamma_R)$.
(ii) Repeat step (i) until every pair of components of Δ is minimal.
M–Procedure (Δ) shall denote the final result.
The result M–Procedure (Δ) is not uniquely defined. Depending on how the instruction “Choose any two components ...” is implemented, the result can be different (i.e. not equal and not similar), as the following example demonstrates. This shows again that the set of M2DNF’s is not (pre-)canonic.

Example
First version:
$$\Delta = [\lor [\land AB \ C] [\land ABC] [\land ABC] [\land ABC]]$$
$$\min ([\land ABC], [\land ABC]) = [\lor [\land AB]]$$
$$\min ([\land AC], [\land ABC]) = [\lor [\land AC] [\land BC]]$$

Second version:
$$\Delta = [\lor [\land AC] [\land ABC] [\land ABC] [\land ABC]]$$
$$\min ([\land ABC], [\land ABC]) = [\lor [\land AB]]$$
$$\min ([\land AC], [\land ABC]) = [\lor [\land AC] [\land BC]]$$

Depending on the order in which the components are chosen, the result of M–Procedure (Δ) is Δ_1 in the first version and Δ_2 in the second version, with $\Delta_1 \not\approx \Delta_2$.
(By the way, Δ_1 is the MDNF and Δ_2 is the PDNF of Δ.)
10 * Implementation of the M–Procedure

Notation
Let $\Delta = [\vee \gamma_1...\gamma_n]$ and $\Delta' = [\vee \gamma'_1...\gamma'_m]$ be two DNF’s. We define
\[\Delta \lor \Delta' := [\vee \gamma_1...\gamma_n \gamma'_1...\gamma'_m] \]
Accordingly we write $\Delta_1 \lor ... \lor \Delta_d$ for more than two DNF’s.

We are going to create the recursive algorithm mrec to implement the M–Procedure.
Let Δ be an arbitrary DNF that is going to be transformed into a M2DNF.
First of all we split Δ into two DNF’s
\[\Delta = [\vee ... \vee] \Delta_0 \lor [\vee ... \vee] \Psi_2 \]
called Δ_0 and Ψ_2, so $\Delta = \Delta_0 \lor \Psi_2$. In particular
- Δ_0 is the part of Δ that isn’t pairwise minimal yet, while
- Ψ_2 is the part of Δ, that is already a M2DNF.

At the beginning, of course there is
- $\Delta_0 = \Delta$
- $\Psi_2 = [\lor]$

As the procedure proceeds we attempt to increase Ψ_2, while Δ_0 is getting smaller, until finally $\Delta_0 = [\lor]$ and Ψ_2 is returned as the result of the procedure. Therefore in each single step we take the first component γ_1 of Δ_0 and for every component μ_i of Ψ_2 we minimize by means of $min(\gamma_1, \mu_i)$. We further split Ψ_2 into $\Psi_2 = \Delta_1 \lor \Delta_2$ where
- Δ_1 is the part of Ψ_2 that already is a M2DNF together with γ_1 (we call it Ψ_1) and
- Δ_2 is the remaining part of Ψ_2.

At the beginning of this inner loop we initialize
- $\Delta_1 := [\lor]$
- $\Delta_2 := \Psi_2$

When we continue and if we reach $\Delta_2 = [\lor]$, we put $\Psi_2 := [\lor \gamma_1] \lor \Psi_2$ and erase γ_1 from Δ_0.
In the following full definition of mrec it is important to note that
- at each step the conditions for Ψ_1 and Ψ_2 are satisfied
- the whole expression $\Delta = \Delta_0 \lor \Delta_1 \lor \Delta_2$ is constantly getting shorter, or it remains the same while Ψ_1 or Ψ_2 is increasing
so that finally Ψ_2 is returned as the M2DNF of Δ.

Definition and theorem
Let
- $\Delta_0 = [\lor \gamma_1...\gamma_n]$ be a DNF with $c \geq 0$
- $\Delta_1 = [\lor \mu_1...\mu_n]$ be a M2DNF with $n \geq 0$
- $\Delta_2 = [\lor \mu_{n+1}...\mu_{n+m}]$ be a M2DNF with $m \geq 0$ such that
- $\Psi_1 := \{ [\lor \mu_1...\mu_n] \text{ if } c = 0 \}$
- $\{ [\lor \gamma_1 \mu_1...\mu_n] \text{ if } c > 0 \}$
- $\Psi_2 := \Delta_1 \lor \Delta_2 = [\lor \mu_1...\mu_n \mu_{n+1}...\mu_{n+m}]$ is a M2DNF.

Then we define
$\text{mrec} (\Delta_0, \Delta_1, \Delta_2)$
according to the table at the end of this chapter. Then it holds that
- $\text{mrec} (\Delta_0, \Delta_1, \Delta_2) \Rightarrow \Delta_0 \lor \Delta_1 \lor \Delta_2$
- $\text{mrec} (\Delta_0, \Delta_1, \Delta_2)$ is a M2DNF.

The definition of mrec immediately allows to derive:
- An implementation of the M–Procedure:
 Definition
 $\text{M–Procedure} (\Delta) := \text{mrec} (\Delta, [\lor], [\lor])$
 for every DNF Δ.
 Theorem
 $\text{M–Procedure} (\Delta)$ is a M2DNF of Δ, for every DNF Δ.
- A M2DNF normalizer:
 Definition
 $m2dnf (\varphi) := \text{M–Procedure} (dnf (\varphi))$
 for every formula φ.
 Theorem
 $m2dnf (\varphi)$ is a M2DNF of φ, for every formula φ.
- A special fast disjunctor:
 Definition
 $dnf–or–m2dnf (\Delta_1, \Delta_2) := \text{mrec} (\Delta_1, [\lor], \Delta_2)$
 for every DNF Δ_1 and M2DNF Δ_2.
 Theorem
 $dnf–or–m2dnf (\Delta_1, \Delta_2)$ is a M2DNF of $\Delta_1 \lor \Delta_2$,
 for every DNF Δ_1 and M2DNF Δ_2.

Proof of the correctness of mrec

We want to proof that mrec is well defined and does exactly what is told. This proof actually comprises four
parts:
(I) mrec is well-defined: in any case the recursion calls itself, the conditions of the definition must hold.
(II) mrec terminates: the algorithm has to terminate after a finite number of steps for every permitted input.
(III) mrec \((\Delta_0, \Delta_1, \Delta_2)\) is a M2DNF.

When we start with \(\Delta_0 := \Delta_0\), \(\Delta_1 := \Delta_1\), and \(\Delta_2 := \Delta_2\), the application of mrec initiates a sequence
\[
\text{mrec} \left(\Delta_0^0, \Delta_1^0, \Delta_2^0 \right) = \text{mrec} \left(\Delta_0^1, \Delta_1^1, \Delta_2^1 \right) = \ldots = \text{mrec} \left(\Delta_0^{i+1}, \Delta_1^{i+1}, \Delta_2^{i+1} \right) = \ldots
\]

For the proof of (I) we will need two lemmas, where the first one was mentioned earlier, and the second one is quite obvious:

Lemma 1 Every DNF of length 0 or 1 is a M2DNF.

Lemma 2 If \(\Psi \subset \Psi'\) and \(\Psi'\) is a M2DNF, so is \(\Psi\).

(I) Proof that mrec is well-defined

Each step of the recursion has the general form
\[
\text{mrec} \left(\Delta_0^i, \Delta_1^i, \Delta_2^i \right) = \left\{ \begin{array}{ll}
\Delta_0^i \lor \Delta_2^i & \text{in case (1)} \\
\text{mrec} \left(\Delta_0^{i+1}, \Delta_1^{i+1}, \Delta_2^{i+1} \right) & \text{in case (2) or (3.x)}
\end{array} \right.
\]

We need to show by induction that the recursion step \(i + 1\) is well defined, in other words that the conditions for \(\Psi_1^{i+1}\) and \(\Psi_2^{i+1}\) of the definition are met. In particular we have:

\[
\begin{align*}
(3.1) \quad \Psi_1^{i+1} &= \begin{cases}
\{ \lnot \gamma \} & \text{if } c = 1 \\
\{ \lnot \gamma \} & \text{if } c > 1
\end{cases} \quad \text{is a M2DNF} \\
& \quad \text{(Lemma 1)} \\
\iff \\
\Psi_2^{i+1} &= \{ \lnot \gamma_2 \} \quad \text{is a M2DNF (induction)}
\end{align*}
\]

(3.2) \quad \Psi_1^{i+1} = \begin{cases}
\{ \gamma \} & \text{if } c = 1 \text{ and } m = 1 \\
\{ \gamma \} & \text{if } c = 1 \text{ and } m > 1 \\
\{ \lnot \gamma \} & \text{if } c > 1
\end{cases} \quad \text{is a M2DNF (Lemma 1)}

\[
\Psi_2^{i+1} = \{ \gamma_2 \} \quad \text{is a M2DNF (induction)}
\]

Thus, mrec is well-defined.

(II) Proof that mrec terminates

We define the following strict order\(^{16}\) \(>\) on the set of all DNF triples:

\[
(\Delta_0, \Delta_1, \Delta_2) > (\Delta_0', \Delta_1', \Delta_2')
\]

\[
\begin{cases}
\text{vol} (\Delta_0' \lor \Delta_1' \lor \Delta_2') < \text{vol} (\Delta_0 \lor \Delta_1 \lor \Delta_2) \quad \text{or} \\
\lfloor \text{lg} (\Delta_0') \rfloor < \lfloor \text{lg} (\Delta_0) \rfloor \\
\lfloor \text{lg} (\Delta_2') \rfloor < \lfloor \text{lg} (\Delta_2) \rfloor
\end{cases}
\]

Obviously, every chain \((\Delta_0^0, \Delta_1^0, \Delta_2^0) > (\Delta_0^1, \Delta_1^1, \Delta_2^1) > \ldots \) has to terminate. And because the following table shows that

\[
(\Delta_0^i, \Delta_1^i, \Delta_2^i) > (\Delta_0^{i+1}, \Delta_1^{i+1}, \Delta_2^{i+1})
\]

indeed for every \(i\) for which the triple \(i + 1\) is defined,

\(^{16}\)asymmetric and transitive
we have proven that \(mrec(\Delta_0, \Delta_1, \Delta_2) \) terminates for every permitted input.

\[
\text{(III) Proof that } mrec(\Delta_0, \Delta_1, \Delta_2) \text{ is a M2DNF}
\]

The algorithm terminates if and only if \(\Delta_0 = [v] \). And then it returns \(\Delta_1 \lor \Delta_2 =: \Psi_2 \) which is a M2DNF.

\[
\text{(IV) Proof that } mrec(\Delta_0, \Delta_1, \Delta_2) \Leftrightarrow \Delta_0 \lor \Delta_1 \lor \Delta_2 \n\]

In each recursion step the components only change their order or they are replaced by equivalent components. All these operations don’t change the semantic.

<table>
<thead>
<tr>
<th>Case</th>
<th>vol ((\Delta_0^{i+1} \lor \Delta_1^{i+1} \lor \Delta_2^{i+1}))</th>
<th>is ((\Delta_0^{i+1}))</th>
<th>is ((\Delta_2^{i+1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>(\text{is (} \Delta_0^i \text{) - 1})</td>
<td>---</td>
</tr>
<tr>
<td>(3.1)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i)) - (\text{is (} \gamma_1 \text{)})</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(3.2)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i)) - (\text{is (} \gamma_{i+1} \text{)})</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(3.3)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i)) - (\text{is (} \gamma_1 \text{)})</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(3.4)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>(\text{is (} \Delta_0^i \text{) - 1})</td>
<td>(\text{is (} \Delta_2^i \text{) - 1})</td>
</tr>
<tr>
<td>(3.5)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(3.6)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(3.7)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(3.8)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>(\text{is (} \Delta_0^i \text{) - 1})</td>
<td>(\text{is (} \Delta_2^i \text{) - 1})</td>
</tr>
<tr>
<td>(3.9)</td>
<td>vol ((\Delta_0^i \lor \Delta_1^i \lor \Delta_2^i))</td>
<td>(\text{is (} \Delta_0^i \text{) - 1})</td>
<td>(\text{is (} \Delta_2^i \text{) - 1})</td>
</tr>
</tbody>
</table>

end of proof.
\[
\text{mrec} \left([\lor \gamma_1 \ldots \gamma_c], [\lor \mu_1 \ldots \mu_n], [\lor \mu_{n+1} \ldots \mu_{n+m}] \right) \\
\begin{align*}
&= \begin{cases} \\
&[\lor \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}] \quad \text{if } c = 0 \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c], [\lor \gamma_1 \mu_1 \ldots \mu_n] \right) \quad \text{if } c > 0 \text{ and } m = 0 \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c], [\lor \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N000", [\lor \mu_{n+1}]) \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c \mu_{n+2} \ldots \mu_{n+m}], [\lor \gamma_1 \mu_1 \ldots \mu_n] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N00P", [\lor \gamma_1]) \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c], [\lor \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N0P0", [\lor \mu_{n+1}]) \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c \gamma'_1], [\lor \gamma_1 \mu_1 \ldots \mu_n \mu_{n+2} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N0PP", [\lor \gamma_1 \mu_{n+1}]) \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c \gamma'_1]', [\lor \gamma_1 \mu_1 \ldots \mu_n \mu_{n+2} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N100", [\lor \gamma'_1]) \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c \gamma'_1], [\lor \gamma_1 \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N10P", [\lor \gamma_1 \mu_{n+1}]) \\
&\text{mrec} \left([\lor \gamma_2 \ldots \gamma_c \gamma'_1], [\lor \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("N1PP", [\lor \gamma'_1 \mu_{n+1}]) \\
&\text{mrec} \left([\lor \gamma_1 \ldots \gamma_c], [\lor \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}] \right) \quad \text{if } c > 0 \text{ and } m > 0 \text{ and } \\
&\quad x_{\min} (\gamma_1, \mu_{n+1}) = ("NMNN", [\lor \gamma_1 \mu_{n+1}]) \\
\end{cases}
\]
11 The completeness theorem and the \(P \)-Procedure

The completeness theorem

The \(M \)-Procedure generates a \(M2\text{-DNF} \) of a given \(\text{DNF} \). But actually we are much more interested in a \(P \)-Procedure to derive the PDNF. In this chapter we will formulate the completeness theorem that gives us necessary and sufficient criteria for which a \(M2\text{-DNF} \) is complete by means of the covering concept, and that will be the foundation for the \(P \)-Procedure.

Definition

A \(\text{DNF} \) \(\Delta \) is called factor complete or \(f\)-complete, if \(\gamma \subseteq \Delta \) for every factor \(\gamma \) of \(\Delta \).

In other words, \(\Delta \) is \(f\)-complete iff every prime factor of \(\Delta \) is a component of \(\Delta \) (i.e. \(\Delta_p \subseteq \Delta \) where \(\Delta_p \) is the PDNF of \(\Delta \)).

Examples

\(\bullet \) \([\lor] \) is \(f\)-complete in a trivial way, because it has no factor.

\(\bullet \) \([\lor[\land]] \) is \(f\)-complete, because every \(\text{NLC} \) \(\gamma \) is a factor, \(\gamma \Rightarrow [\land] \) and so \(\gamma \subseteq [\lor[\land]] \).

Definition

For a \(\text{DNF} \) \(\Delta \) we define \(CPrimes(\Delta) \) to be the \(\text{DNF} \) which components are the \(c\)-prime factors of all the complementary and minimal pairs of components of \(\Delta \). Thus:\(^{17}\)

\(\text{Algorithm } CPrimes([\lor[\forall\gamma_1\ldots\gamma_n]]) \) begin
\(\Delta' := [\lor] \);
for \(i := 1 \) to \(n - 1 \) do
\(\text{for } j := i + 1 \) to \(n \) do
\(\text{if } [\lor[\forall\gamma_i,\gamma_j]] \) is complementary minimal with the \(c\)-prime factor \(\gamma' \)
\(\text{then } \Delta' := \Delta' \lor [\lor[\forall\gamma']] \);
return \(\Delta' \);
end.

Example

\(\Delta = [\lor[\land[\land[AB]]\land[BC]][\land[\land[AC]]]] \) contains three pairs of components that are complementary minimal, namely

\(\bullet \) \([\land[AB]] \) and \([\land[BC]] \). Their \(c\)-prime factor is \([\land[AC]] \).

\(\bullet \) \([\land[AB]] \) and \([\land[AC]] \) with \(c\)-prime factor \([\land[BC]] \).

\(\bullet \) \([\land[BC]] \) and \([\land[AC]] \) with \(c\)-prime factor \([\land[AB]] \).

So \(CPrimes(\Delta) = [\lor[\land[AC]][\land[BC]][\land[AB]]] \)

Definition

A \(\text{DNF} \) \(\Delta \) is said to be complementary prime complete or \(c\)-complete iff \(CPrimes(\Delta) \subseteq \Delta \).

Example

Again let \(\Delta = [\lor[\land[AB]][\land[BC]][\land[\land[AC]]]] \). \(\Delta \) is not \(c\)-complete because, for example \([\land[AC]] \in CPrimes(\Delta) \), but \([\land[AC]] \notin \Delta \) and thus \(CPrimes(\Delta) \notin \Delta \).

Theorem

Every \(f\)-complete \(\text{DNF} \) is \(c\)-complete.

Proof

Easy, since every \(c\)-prime factor of a pair of complementary minimal components is a factor.

Corollary

\(\bullet \) \([\lor] \) and \([\lor[\land]] \) are \(c\)-complete.

\(\bullet \) Every \(\text{PDNF} \) is \(c\)-complete.

Now we are able to state the central completeness theorem:

Theorem (Completeness)

For every \(\text{DNF} \) \(\Delta \) the following statements are equivalent

(i) \(\Delta \) is a PDNF

(ii) \(\Delta \) is a \(f\)-complete \(\text{M2DNF} \)

(iii) \(\Delta \) is a \(c\)-complete \(\text{M2DNF} \)

To proof this, we first proof two lemmata:

Lemma 1

For every \(\text{DNF} \) \(\Delta \) and \(\text{NLC} \gamma \) with \(\text{At} (\Delta) \subseteq \text{At} (\gamma) \) there is \(\gamma \Rightarrow \Delta \) iff \(\gamma \subseteq \Delta \).

Proof

Let \(\gamma' \in \Delta \). With \(\text{At} (\Delta) \subseteq \text{At} (\gamma) \) we have \(\text{At} (\gamma') \subseteq \text{At} (\gamma) \). So there are exactly two different possibilities:

\(\bullet \) either \(\gamma' \subseteq \gamma \), and then \(\gamma \Rightarrow \gamma' \), and so \(\gamma \subseteq \Delta \)

\(\bullet \) or \(\gamma' \nsubseteq \gamma \), and then there must be (at least) one literal \(\lambda \in \gamma' \) with \(\lambda \in \gamma \), so that \([\land[\land[\forall\gamma']] \Rightarrow 0 \)

We can now proof that \(\gamma \Rightarrow \Delta \) iff \(\gamma \subseteq \Delta \).

\(\bullet \) Suppose that \(\gamma \Rightarrow \Delta \). Because \(\gamma \Rightarrow 0 \) for every \(\text{NLC} \gamma \), there must be at least one \(\gamma' \in \Delta \) such that \([\land[\land[\forall\gamma']] \Rightarrow 0 \). But this implies that \(\gamma' \subseteq \gamma \) and \(\gamma \subseteq \Delta \).

\(\bullet \) Suppose that \(\gamma \nsubseteq \Delta \). Then there is a \(\gamma' \in \Delta \) with \(\gamma \Rightarrow \gamma' \) by definition, and so \(\gamma \Rightarrow \gamma' \Rightarrow \Delta \).

Thus: \(\gamma \Rightarrow \Delta \) iff \(\gamma \subseteq \Delta \).

\(^{17}\)Again \(\Delta_1 \lor \Delta_2 \) denotes the simple concatenation of two \(\text{DNF} \)’s.
Lemma 2
If ∆ is a c–complete M2DNF and γ a factor of ∆, then γ ⊑ ∆.

Proof
Suppose γ = [∧λ1...λn]. We put {α1, ..., αu} := At (∆) − At (γ). (The α1, ..., αu are uniquely defined if we demand that α1 < ... < αu. But in fact their order is of no importance here.)
We are going to proof that γ ⊑ ∆ by induction on a.
• Suppose a = 0.
Then At (∆) ⊑ At (γ). And since γ is a factor and γ ⇒ ∆, there is γ ⊑ ∆ according to lemma 1.
• Suppose a > 0.
We put γ0 := [∧λ1...λaπ] and γ1 := [∧λ1...λaα1] so that γ = [∧λ1...λa] ⇔ [∨γ0γ1]. By virtue of the induction it holds that γ0 ⊑ ∆ and γ1 ⊑ ∆.
So there must be γ0, γ1 ⊑ ∆ such that γ0 ⇒ γ0 (i.e. γ0 ⊑ γ0) and γ1 ⇒ γ1 (i.e. γ1 ⊑ γ1). We distinguish the following three cases:
• First case: aγ1 ∉ γ0.
Then γ0 ⊑ γ0 ⊑ γ and so γ ⇒ γ0, and that means that γ ⊑ ∆ because γ0 ⊑ ∆.
• Second case: α1 ∉ γ1.
Similar to the first case, γ0 ⊑ γ0 ⊑ γ and so again γ ⊑ ∆.
• Third case: aγ1 ∈ γ0 and α1 ∈ γ1.
In this case γ0 and γ1 have exactly this one complementary literal, and that makes them complementary NLC’s. And since ∆ is a M2DNF and γ0 and γ1 are components of ∆, they must be a minimal pair. So, γ0 = [∧π0...π0aπ1s...πs] and γ1 = [∧π0...π0sα1t1...t1] with p ≥ 0, s > 0, t > 0, {π0, ..., πs} ∩ {t1, ..., t1} = {} and {π0, ..., πs, t1, ..., t1} ⊆ {λ1, ..., λa}, γ0′ := [∧π0...π0sπ1...πs] is the c–prime factor of γ0 and γ1 and so γ ⊑ γ, that is γ ⇒ γ.
∆ is c–complete, so γ0 ⊑ ∆ and that means that ∆ ⊑ ∆.
Thus, γ ⊑ ∆ in each case.

Now we are able to give the whole proof of the completeness theorem:

Proof (Completeness Theorem)
(i) implies (ii)
Every P–DNF is both f–complete and pairwise minimal, as we already proved.
(ii) implies (i)
Let ∆ be a f–complete M2DNF. Suppose that ∆ is not a P–DNF. So there must be a component γ ∈ ∆ that is not a prime factor of ∆.

is f–complete, there must be a γ′ ∈ ∆ with γ⇒γ′.
But in that case min (γ, γ′) = [∨γγ′] so that ∆ wouldn’t be minimal, different to the initial assumption. Thus, every f–complete M2DNF must be a P–DNF.

(ii) implies (iii)
Let ∆ be a f–complete M2DNF. If there is a complementary and minimal pair γL and γR of components in ∆ and their c–prime factor is γ, then γ ⇒ [∨γLγR] ⇒ ∆, so that γ is a factor of ∆. Because ∆ is f–complete it holds that γ ⊑ ∆. So ∆ is c–complete.

(iii) implies (ii)
Let ∆ be a c–complete M2DNF and γ be any factor of ∆. According to lemma 2 there is γ ⊑ ∆. So ∆ is f–complete.

Summary: (i) iff (ii) iff (iii)

The P–Procedure

Lemma 3
[∨γLγR] ⊑ min (γL, γR), for any two NLC’s γL and γR.

Proof

min (γL, γR) is
• either of length 1, thus of the form [∨γ], and then γL ⇒ γ′ and γR ⇒ γ′
• or of length 2, thus of the form [∨γ′γ′], and then γL ⇒ γ′ and γR ⇒ γR.
So there is always [∨γLγR] ⊑ min (γL, γR).

Lemma 4
∆ ⊑ M–Procedure (∆) for every DNF ∆.

Proof

In every step of the M–Procedure two components γL and γR of ∆ are replaced by the components of min (γL, γR). Let ∆‘ be the result of this replacement. Because [∨γLγR] ⊑ min (γL, γR) (Lemma 3) there is ∆ ⊑ ∆‘ and thus ∆ ⊑ ... ⊑ M–Procedure (∆). ∆ is transitive, so ∆ ⊑ M–Procedure (∆).

Lemma 5
Let ∆1 be a DNF and ∆2 be a M2DNF. If M–Procedure (∆1 ∨ ∆2) ≈ ∆2, then ∆1 ⊑ ∆2.

Proof

Because M–Procedure (∆1 ∨ ∆2) ≈ ∆2 and Lemma 4, there is ∆1 ∨ ∆2 ⊑ ∆2 and thus ∆1 ⊑ ∆2.

Now, we have all the ingredients to implement the P–Procedure that transforms any DNF into its P–DNF. It
is standing on two feet: the M–Procedure and the completeness theorem, that guarantees us that a M2DNF \(\Delta \) is a PDNF if \(CPrimes(\Delta) \subseteq \Delta \). Because of lemma 5 it follows that for a DNF \(\Delta \) and \(\Pi := CPrimes(\Delta) \) holds:

- if \(M–Procedure(\Pi \vee \Delta) \approx \Delta \), then \(\Delta \) is a M2DNF with \(\Pi \subseteq \Delta \) and thus \(\Delta \) is a PDNF.

We use this to implement the P–Procedure that generates for a given DNF \(\Delta \) a sequence \(\Delta^1, \Pi^1, \Delta^2, \Pi^2, \ldots, \Delta^{i–1}, \Pi^i, \ldots \) where

- \(\Delta^1 := M–Procedure(\Delta) \)
- \(\Pi^i := CPrimes(\Delta^i) \)
- \(\Delta^{i+1} := M–Procedure(\Pi^i \vee \Delta^i) \)

We know that \(\Delta \Leftrightarrow \Delta^1 \Leftrightarrow \ldots \Leftrightarrow \Delta^i \Leftrightarrow \ldots \). So, if there is a fixpoint \(z \) with \(\Delta^z \approx \Delta^{z+n} \) (and thus \(\Delta^z \approx \Delta^{z+1} \) for all \(n \)), \(\Delta^z \) has to be the PDNF of \(\Delta \). Thus, the only thing that is left to be proven is that such a \(z \) actually exists for every DNF \(\Delta \).\(^{18}\) But first we formulate this implementation of the P–Procedure properly:

Algorithm P–Procedure (\(\Delta \))

```plaintext
begin
  \( i := 1 \);
  \( \Delta^1 := M–Procedure(\Delta) \);
repeat
  \( \Pi^i := CPrimes(\Delta^i) \);
  \( i := i + 1 \);
  \( \Delta^i := M–Procedure(\Pi^{i–1} \lor \Delta^{i–1}) \);
until \( \Delta^1 \approx \Delta^{i–1} \);
return \( \Delta^i \);
end.
```

The following theorem will enable the proof that the P–Procedure terminates for every input DNF \(\Delta \).

Theorem

\(\subseteq \) is a (partial) order on the set of all M2DNF’s in the following sense:

- \(\subseteq \) is reflexive
- \(\subseteq \) is transitive
- \(\subseteq \) is anti-symmetric: \(\Delta_1 \subseteq \Delta_2 \) and \(\Delta_2 \subseteq \Delta_1 \) implies \(\Delta_1 \approx \Delta_2 \)

Proof

We stated earlier that \(\subseteq \) is a quasi–order on the set of DNF’s. It remains to show the anti–symmetry: Assume that \(\Delta_1 \subseteq \Delta_2 \) and \(\Delta_2 \subseteq \Delta_1 \), but \(\Delta_1 \not\approx \Delta_2 \). That would mean the existence of a \(\gamma \in \Delta_1 \) with \(\gamma \not\approx \Delta_2 \) (or the other way round). Since \(\Delta_1 \subseteq \Delta_2 \) there must be a \(\gamma' \in \Delta_2 \) with \(\gamma \Rightarrow \gamma' \). On the other hand \(\Delta_2 \subseteq \Delta_1 \) implies the existence of a \(\gamma'' \in \Delta_1 \) with \(\gamma' \Rightarrow \gamma'' \). But then \(\gamma \Rightarrow \gamma'' \), and \(min(\gamma, \gamma'') = [\gamma'' \gamma'] \), and that contradicts the assumption that \(\Delta_1 \) is pairwise minimal.

Proof (Termination of the P–Procedure)

The sequence \(\Delta^1, \Delta^2, \ldots, \Delta^{i–1}, \Delta^i, \ldots \) that the P–Procedure generates, is finite because:

(i) The set \(\{\Delta^1, \Delta^2, \ldots, \Delta^{i–1}, \Delta^i, \ldots\} \) is finite. For every DNF \(\Delta \) there is \(At(\Delta) \subseteq At(\Delta) \) and \(At(M–Procedure(\Delta)) \subseteq At(\Delta) \) and so \(At(\Delta^i) \subseteq At(\Delta) \) for every \(i \). But since there is only a finite number of NLC’s on a finite atom set and M2DNF’s don’t have any two equal components, there is only a finite number of M2DNF’s on a finite atom set.

(ii) \(\Delta^1 \subseteq \Delta^2 \subseteq \Delta^3 \subseteq \ldots \) because for every \(i = 1, 2, 3, \ldots \)

- \(\Delta^i \subseteq \Pi^i \lor \Delta^i \) following immediately from \(\Delta^i \subseteq \Pi^{i–1} \lor \Delta^{i–1} \)
- \(\Pi^i \lor \Delta^i \subseteq M–Procedure(\Pi^i \lor \Delta^i) \) according to lemma 4 and so, since \(\subseteq \) is transitive:

 - \(\Delta^i \subseteq M–Procedure(\Pi^i \lor \Delta^i) =: \Delta^{i+1} \)

Thus, for every sequence \(\Delta^1 \subseteq \Delta^2 \subseteq \Delta^3 \subseteq \ldots \) there must be a \(z \) such that \(\Delta^z \approx \Delta^{z+1} \approx \Delta^{z+2} \approx \ldots \) and this is the condition for the algorithm to terminate.

We summarize:

Theorem

P–Procedure(\(\Delta \)) is the PDNF of \(\Delta \), for every DNF \(\Delta \).

\(^{18}\)There is even an apriori upper bound for \(z \), namely the number of atoms in \(\Delta \). But in average applications \(z \) is actually very small and quite independent of the number of atoms.
12 * Implementation of the P–Procedure

Our implementation of the P–Procedure comprised three operations: the M–Procedure, the generation of $CPrimes$ and the \approx–decision. But instead of performing these operations subsequently, we can merge them into one single step and increase the speed of the algorithm considerably. Instead of first constructing the M–Procedure by using min and afterwards generating all the c–prime factors, we could immediately combine these by using prim instead of min, since “$\text{prim} = \text{min} + \text{c–prime}$$\). We define a recursive algorithm prec to transform the P–Procedure similar to the algorithm mrec by extending its three arguments to four. Δ_3 is the collection of all the c–prime factors of $[\forall \gamma_1 \mu_1],[\forall \gamma_1 \mu_2], \ldots,[\forall \gamma_1 \mu_n]$. If required Δ_3 will be attached to Δ_0 such that the property $CPrimes (\Psi_2) \subseteq \Delta_0 \lor \Delta_1 \lor \Delta_2 \lor \Delta_3$ is maintained in every step of the process, so that in the end, when Ψ_2 is returned, it is guaranteed to be c–complete.

Definition and Theorem

Let
- $\Delta_0 = [\forall \gamma_1 \ldots \gamma_n]$ be a DNF with $c \geq 0$
- $\Delta_1 = [\forall \mu_1 \ldots \mu_n]$ be a M2DNF with $n \geq 0$
- $\Delta_2 = [\forall \mu_{n+1} \ldots \mu_{n+m}]$ be a M2DNF with $m \geq 0$
- $\Delta_3 = [\forall \pi_1 \ldots \pi_p]$ a DNF with $p \geq 0$
- $\Delta := \Delta_0 \lor \Delta_1 \lor \Delta_2 \lor \Delta_3$

such that
- $\Psi_1 := \left\{ \begin{array}{ll} [\forall \mu_1 \ldots \mu_n] & \text{if } c = 0 \\ [\forall \gamma_1 \mu_1 \ldots \mu_n] & \text{if } c > 0 \end{array} \right.$ is a M2DNF
- $\Psi_2 := \Delta_1 \lor \Delta_2 = [\forall \mu_1 \ldots \mu_n \mu_{n+1} \ldots \mu_{n+m}]$ is a M2DNF
- $CPrimes (\Psi_2) \subseteq \Delta$

Then we define $\text{prec} (\Delta_0, \Delta_1, \Delta_2, \Delta_3)$ according to the table at the end of this chapter. Then it holds that

\begin{align*}
\text{prec} (\Delta_0, \Delta_1, \Delta_2, \Delta_3) & \Rightarrow \Delta \\
\text{prec} (\Delta_0, \Delta_1, \Delta_2, \Delta_3) & \text{ is a PDNF}
\end{align*}

The definition of prec immediately allows to derive:
- A new and faster implementation of the P–Procedure:
 - Definition
 $P\text{-Procedure} (\Delta) := \text{prec} (\Delta, [\forall], [\forall], [\forall])$ for every DNF Δ.
 - Theorem
 $P\text{-Procedure} (\Delta)$ is the PDNF of Δ, for every DNF Δ.
- A PDNF normalizer:
 - Definition
 $dnf (\varphi) := P\text{-Procedure} (dnf (\varphi))$ for every formula φ.
 - Theorem
 $dnf (\varphi)$ is the PDNF of φ, for every formula φ.
- A special disjunctor:
 - Definition
 $dnf-or-pdnf (\Delta_1, \Delta_2) := \text{prec} (\Delta_1, [\forall], \Delta_2, [\forall])$ for every DNF Δ_1 and PDNF Δ_2.
 - Theorem
 $dnf-or-pdnf (\Delta_1, \Delta_2)$ is the PDNF of $\Delta_1 \lor \Delta_2$, for every DNF Δ_1 and PDNF Δ_2.

Proof (Correctness of prec)
The correctness of mrec and the P–Procedure (in the first version) have been proved thoroughly. The correctness of prec can be proven analogue to mrec. Only the fact that prec always terminates deserves additional attention, and this is guaranteed by the correctness proof of the P–Procedure.
\[
\text{prec}
\begin{align*}
&\left[\forall \gamma_1 \ldots \gamma_n, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c = 0 \text{ and } p = 0 \\
&\left[\forall \pi_1 \ldots \pi_p, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c = 0 \text{ and } p > 0 \\
&\left[\forall \gamma_1 \pi_1 \ldots \pi_p, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c > 0 \text{ and } m = 0 \\
&\left[\forall \gamma_2 \ldots \gamma_p, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c > 0 \text{ and } m > 0 \text{ and } \text{xprim}\ (\gamma_1, \mu_{n+1}) = \left("N000", \left[\forall \mu_{n+1}\right]\right) \\
&\left[\forall \gamma_2 \ldots \gamma_p, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c > 0 \text{ and } m > 0 \text{ and } \text{xprim}\ (\gamma_1, \mu_{n+1}) = \left("N00P", \left[\forall \gamma_1\right]\right) \\
&\left[\forall \gamma_2 \ldots \gamma_p, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c > 0 \text{ and } m > 0 \text{ and } \text{xprim}\ (\gamma_1, \mu_{n+1}) = \left("N0PP", \left[\forall \gamma_1 \mu_{n+1}\right]\right) \\
&\left[\forall \gamma_2 \ldots \gamma_p, \left[\forall \mu_1 \ldots \mu_n, \left[\forall \mu_{n+1} \ldots \mu_{n+m}, \left[\forall \pi_1 \ldots \pi_p\right]\right]\right]\right] \\
&\text{if } c > 0 \text{ and } m > 0 \text{ and } \text{xprim}\ (\gamma_1, \mu_{n+1}) = \left("NMNN", \left[\forall \gamma_1 \mu_{n+1}\right]\right)
\end{align*}
\]
13 * Implementation: The PDNF and the PCNF system

Now we are able to gather the pieces to present the final PDNF and PCNF systems:

- Due to the duality principle we can implement the PCNF system dual to the PDNF system. All the auxiliary algorithms (jrec, prec, xprim, prim, and xprec) are exactly the ones already defined in earlier chapters, except that they make use of the junctor variable \ast, to serve for the PCNF system as well as for the PDNF system.

- In the last chapter we implemented the PDNF normalizer as follows:
 $$\text{pdnf}(\varphi) := P\text{-Procedure}(\text{dnf}(\varphi))$$
 $$:= \text{prec}(\text{dnf}(\varphi), [\lor], [\lor], [\lor])$$
 But dnf makes repeatedly use of the distributive law and multiple occurings of components are not deleted. The resulting length of the DNF can explode, even for a simple looking φ. And instead of reducing this DNF in a second step by means of prec, it is in general more efficient\(^{19}\) to define pdnf as a recursion that operates itself only on PDNF’s. Besides, that is more elegant. So we don’t define the final PDNF system as an extension of the earlier defined DNF system, but design it as an independent one, only similar to the DNF system.

Finally note that:

- The following systems are only precanonic. We mentioned earlier how this can easily be extended to a canonic system. One can implement
 - $\text{ord}(\Phi)$ a standard sorting algorithm that rearranges the components of the DNF or CNF Φ according to the given (or any other) linear order on the set of NLC’s and NLD’s, so that the result is an ordered DNF or CNF.
 - $\text{opdnf}(\varphi) := \text{ord}(\text{pdnf}(\varphi))$ for the unique ordered PDNF and $\text{opcnf}(\varphi) := \text{ord}(\text{pcnf}(\varphi))$ for the unique ordered PCNF of each formula φ.
 - The part with the algorithms on subvalence and covering can simply be attached.

\(^{19}\) at least if we consider the worst case
The PDNF and the PCNF system

<table>
<thead>
<tr>
<th>The PDNF system: Declaration</th>
<th>The PCNF system: Declaration</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Normalizer</td>
<td>The Normalizer</td>
</tr>
<tr>
<td>(pdnf(\varphi)) is the PDNF of (\varphi), for every formula (\varphi)</td>
<td>(pcnf(\varphi)) is the PCNF of (\varphi), for every formula (\varphi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjunctions and Disjunctions</th>
<th>Conjunctions and Disjunctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nlc-and-pdnf(\gamma_1, \gamma_2)) is the PDNF of ([\gamma_1 \land \gamma_2]), for every two NLC's (\gamma_1) and (\gamma_2)</td>
<td>(nd-and-pcnf(\delta_1, \delta_2)) is the PCNF of ([\varphi_1 \land \varphi_2]), for every two NLD's (\varphi_1) and (\varphi_2)</td>
</tr>
<tr>
<td>(nlc-or-pdnf(\gamma_1, \gamma_2)) is the PDNF of ([\gamma_1 \lor \gamma_2]), for every two NLC's (\gamma_1) and (\gamma_2)</td>
<td>(nd-or-pcnf(\delta_1, \delta_2)) is the PCNF of ([\varphi_1 \lor \varphi_2]), for every two NLD's (\varphi_1) and (\varphi_2)</td>
</tr>
<tr>
<td>(nlc-and-pdnf(\gamma, \Delta)) is the PDNF of ([\gamma \land \Delta]), for every NLC (\gamma) and PDNF (\Delta)</td>
<td>(nd-and-pcnf(\delta, \Gamma)) is the PCNF of ([\varphi \land \Gamma]), for every NLD (\varphi) and PCNF (\Gamma)</td>
</tr>
<tr>
<td>(nd-or-pdnf(\Delta_1, \Delta_2)) is the PDNF of ([\Delta_1 \lor \Delta_2]), for every two PDNF's (\Delta_1) and (\Delta_2)</td>
<td>(nd-or-pcnf(\Gamma_1, \Gamma_2)) is the PCNF of ([\Gamma_1 \lor \Gamma_2]), for every two PCNF's (\Gamma_1) and (\Gamma_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The PDNF system: Implementation</th>
<th>The PCNF system: Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pdnf(\varphi))</td>
<td>(pcnf(\varphi))</td>
</tr>
<tr>
<td>[[\varphi]] (\varphi) is an atom</td>
<td>[[\varphi]] if (\varphi) is an atom</td>
</tr>
<tr>
<td>[[\varphi]] (\varphi) if (\varphi = 0)</td>
<td>[[\varphi]] if (\varphi = 0)</td>
</tr>
<tr>
<td>[[\varphi]] (\varphi) if (\varphi = 1)</td>
<td>[[\varphi]] if (\varphi = 1)</td>
</tr>
<tr>
<td>[[\varphi \lor \alpha]] (\varphi \lor \alpha) if (\varphi \lor \alpha) is an atom</td>
<td>[[\varphi \lor \alpha]] if (\varphi \lor \alpha) is an atom</td>
</tr>
<tr>
<td>[[\varphi]] (\varphi) if (\varphi = 0)</td>
<td>[[\varphi]] if (\varphi = 0)</td>
</tr>
<tr>
<td>[[\neg \varphi]] (\neg \varphi) if (\neg \varphi) is an atom</td>
<td>[[\neg \varphi]] if (\neg \varphi) is an atom</td>
</tr>
<tr>
<td>[[\neg \varphi]] (\neg \varphi) if (\neg \varphi) if (\neg \varphi) is an atom</td>
<td>[[\neg \varphi]] if (\neg \varphi) is an atom</td>
</tr>
<tr>
<td>[[\neg \varphi]] (\neg \varphi) if (\neg \varphi) if (\neg \varphi) is an atom</td>
<td>[[\neg \varphi]] if (\neg \varphi) is an atom</td>
</tr>
</tbody>
</table>

\(\equiv \) \(= \)
\[\text{nlc-or-nlc} (\gamma_1, \gamma_2) \]
\[\coloneqq \text{pren} (\gamma_1, \gamma_2) \]
\[\text{nlc-and-pdnf} (\gamma, [\gamma_1 \ldots \gamma_n]) \]
\[\coloneqq \text{pren-adj} (\text{nlc-and-nlc} (\gamma, \gamma_1), \ldots, \text{nlc-and-nlc} (\gamma, \gamma_n)) \]
\[\text{nlc-or-pdnf} (\gamma, \Delta) \]
\[\coloneqq \text{pren} ([\gamma], \Delta, [\{\}]) \]
\[\text{pren-adj} (\text{nlc-or-nlc} (\gamma, \gamma_1), \Delta) \]
\[\coloneqq \text{pren} ([\gamma_1, [\gamma]], \Delta_1, [\{\}]) \]
\[\text{pren-adj} (\text{nlc-or-pdnf} (\Delta_1, \gamma), \Delta_2, [\{\}]) \]
\[\text{pren-conj} (\Delta_1, [\{\gamma_1, \ldots, \gamma_n\}]) \]
\[\coloneqq \begin{cases} [\gamma_1] & \text{if } n = 0 \\ \Delta_1 & \text{if } n = 1 \end{cases} \]
\[\text{pren-and-adj} (\text{nlc-or-pdnf} (\Delta_1, \text{pren-conj} (\Delta_2, [\{\gamma_1, \ldots, \gamma_n\}])), [\{\}]) \]
\[\text{pren-conj} (\{\gamma_1, \ldots, \gamma_n\}) \]
\[\coloneqq \begin{cases} [\gamma_1] & \text{if } n = 0 \\ \Gamma_1 & \text{if } n = 1 \end{cases} \]
\[\text{pren-and-adj} (\text{nlc-or-pdnf} (\Gamma_1, \text{pren-conj} (\Gamma_2, [\{\gamma_1, \ldots, \gamma_n\}])), [\{\}]) \]
\[\text{pren-conj} (\{\gamma_1, \ldots, \gamma_n\}) \]
\[\coloneqq \begin{cases} [\gamma_1] & \text{if } n = 0 \\ \Gamma_1 & \text{if } n = 1 \end{cases} \]
\[\text{pren-and-adj} (\text{nlc-or-pdnf} (\Gamma_1, \text{pren-conj} (\Gamma_2, \{\gamma_1, \ldots, \gamma_n\})), [\{\}]) \]
\[\text{pren-conj} (\{\gamma_1, \ldots, \gamma_n\}) \]
\[\coloneqq \begin{cases} [\gamma_1] & \text{if } n = 0 \\ \Gamma_1 & \text{if } n = 1 \end{cases} \]

Auxiliary algorithms

\[\exists \equiv \begin{cases} \lor & \text{if } x \equiv \land \\ \land & \text{if } x \equiv \lor \end{cases} \text{ for } x \in \{\land, \lor\} \]
\[\text{pren} ([\pi_1 \ldots \pi_m], [\lambda_1 \ldots \lambda_n], [\mu_1 \ldots \mu_k]) \]
\[\begin{cases} [\pi_2 \ldots \pi_m \lambda_1 \ldots \lambda_n] & \text{if } n = 0 \\ [\pi_2 \ldots \pi_m \mu_1 \lambda_1 \ldots \lambda_n] & \text{if } m = 0 \end{cases} \]
\[\begin{array}{l}
\text{pren} ([\lambda_1 \ldots \lambda_n], [\lambda_1 \ldots \lambda_n], [\mu_1 \ldots \mu_k]) \text{ if } n > 0 \text{ and } m > 0 \text{ and } [\lambda_1] < [\lambda_1'] \\
\text{pren} ([\lambda_1 \ldots \lambda_n], [\lambda_1 \ldots \lambda_n], [\mu_1 \ldots \mu_k]) \text{ if } n > 0 \text{ and } m > 0 \text{ and } [\lambda_1] < [\lambda_1'] \\
\text{pren} ([\lambda_1 \ldots \lambda_n], [\lambda_1 \ldots \lambda_n], [\mu_1 \ldots \mu_k]) \text{ if } n > 0 \text{ and } m > 0 \text{ and } \lambda_1 = \lambda_1' \\
\end{array} \]
\[\begin{cases} [\pi_1 \ldots \pi_m \mu_1 \mu_1 \ldots \mu_1] & \text{if } \pi = \varnothing \text{ and } \mu = \varnothing \end{cases} \]
\[\begin{array}{l}
\text{pren} ([\pi_1 \ldots \pi_m], [\mu_1 \ldots \mu_k]) \text{ if } \pi = \varnothing \text{ and } \mu = \varnothing \\
\text{pren} ([\lambda_1 \ldots \lambda_n], [\mu_1 \ldots \mu_k]) \text{ if } \pi = \varnothing \text{ and } \mu = \varnothing \\
\text{pren} ([\lambda_1 \ldots \lambda_n], [\pi_1 \ldots \pi_m], [\mu_1 \ldots \mu_k]) \text{ if } \pi = \varnothing \text{ and } \mu = \varnothing \\
\text{pren} ([\lambda_1 \ldots \lambda_n], [\pi_1 \ldots \pi_m], [\mu_1 \ldots \mu_k]) \text{ if } \pi = \varnothing \text{ and } \mu = \varnothing \\
\text{pren} ([\lambda_1 \ldots \lambda_n], [\pi_1 \ldots \pi_m], [\mu_1 \ldots \mu_k]) \text{ if } \pi = \varnothing \text{ and } \mu = \varnothing \\
\end{array} \]
\[\begin{cases} [\pi_1 \ldots \pi_m] & \text{if } \pi = \varnothing \text{ and } \mu = \varnothing \end{cases} \]