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Figure 1: Bit values and their algebra

Bit values

B :={0,1} is the bit value class, where 0 is the zero bit and 1 the unit bit.

Bit value algebra

B := (B, <,0,1,A,V, A\, V,-) is the bit value algebra, where

B1 A B2 = N{B1,B2}
B1 < B2 iff B =00r By =1

B1V B2 =V {B1, B2}

for all 8, 81,82 € B and B C B.
We also write, for all 81,...,8, € B with n > 0,

iz\lﬂi for A{B1,...,Bn} and

Theorem

B is a complete boolean algebra.

0 ifoenB
NB _{1 else

1 if1eB
s _{0 else

V Bi for V{B1,...,Bn}

i=1
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Figure 2: Bit tables and their algebras

Bit tables
For every set A and each natural number k we define
BE - {Akfl it k=0
B, — B ifk>0
the bit table set of carrier A and degree k.

In our default notation for functions®, each bit table Q € ]B’j‘ with £ > 1 is then given by

k—1
o_ B, —B
w — Q(w)

Similar to geometry, bit tables of small degree k = 0,1, 2,3 are also called bit points, bit lines, bit squares and bit cubes, respectively. In
traditional propositional logic, bit squares are also known as truth tables.

Bit table diagrams
If both A and k are finite, we can represent each 2 € IB%’Z by its bit table diagram. For example
(1) If A= {a,b} and kK =1 then ) If A= {a,b} and k = 2 then @) If A= {a} and k = 3 then

]EZA—>IB

B, — B

[o][o]—p
- - =01
oo

T an 0 ol
CeJEre]| a— By gg f;; - '—>52 o[o[1JoJz] ._ [o][1] P2
b Bs o[ 5s [1]o] 1 ; 50 Bl 61 [x][o]

¢ B NEN T, 115 [Ps [

[o]1]

| G

Bit table algebras
B = <IB];‘, EZ, L]j‘, TZ, I_I’j.‘7 u’j‘, Hz, ]_[’j47 ﬁ’j{> is the bit table algebra, for each set A and k > 1, where

QCh Q iff Q(w) < (w) for all w € BY !

B5 ' — B BN — B Bl — B
Qnk o = 4 QuUk Q = ko= |
w i Qw) A Q' (w) w i Qw) VO (w) w = -Q(w)
B! — B B: ' — B B! — B B — B
N -— T [I5T = LI5T =
w0 w1 e AMOw) | 2 €T} w e V{QW) | 2 €T)

for all Q,Q" € B% and T C B .
Using bit table diagrams and taking A = {a, b} and k = 2 for example, the operations are

Te] o) B1 < 81 and T7] 7]
olo| By olo[+1 > < 85 and ofofo olof[1
1o 62| C2 [1]0][~o] iff Pa < 12 =[1]ofo T2 =[1]o[1
DRES 0|13 B3 < 63 and o[1]o ol1][1
1184 1[1][~a Ba < 64 110 111
a]b afb alb afb alb [a]?] [aT®] [«]®]
N ER olo[[-31 olo] 31 , [o]of~ o081 A1 olo|[B , [oJolx olo[[B1 V1
—al1|o]Bz| =[1|0]-82 10| Ba| My [1|0f[r2] =[1]0]Bs Ars 1|0 Ba| UL [1]|0f[ra]| =|1|0] BV s
ol1] 53 o[1]-83 ol1] 53 o[1]~3 o183 A3 ol1] 53 o[1]~3 o1 B3 V3
1184 1]1][-84 1184 EEN 1(1][84 A s 1184 11 ~a 11][84 Vs
These methods hold similarly for other A and k.
Theorem
%f;\ is a complete boolean algebra, for every set A and k > 1.
X —Y
@ In our notation we write f = for a function f: X — Y that maps each z € X to a well-defined f(z) € Y.

z — f(x)
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Figure 3: Hyper—propositional logic

Formulas

For every set A and k € N we define ]Fljl the (hyper—propositional) formulas of carrier A and degree k recursively as follows

(i) If k = 0 then FY := A.

i) If kK > 0 then IFZ comprises the following expressions:

—p (negation)
Qo (diamond) F
k for all o € F&~* [p1 AREERA on ] (conjunction) for all @, 1,...,pn € FY
Lo (box)

[e1 \k/ S \;i ©n ] (disjunction)

We write [/k\] and [\k/] for nullary, and [2\ ¢1] and [\k/ 1] for unary conjunctions and disjunctions, respectively.

Super—-models and model classes

For every class A and every natural number k € N we define the (super—) model function

modﬁfl :]F]j‘ — ]B"Z — B
where mod’frl(ap)(Q) is defined, for each ¢ € ]F’;‘ and Q € B’j\» by induction on k as follows:
() If k=0 then p € F4 = A and Q € BY = A and
1 ife=0Q
dl Q) =
mod} ()(2) {0 e

i) If kK > 0, we define by structural induction on the form of ¢ as follows:
mod’;’+1 <<k>a> ()

mod¥® Tt (E\o’) ()

V{mod} (0)(w) | w € B, Q(w) = 1}

A{mod" (o) (w) | w € B5 ™1, Q(w) = 1}

mod¥® ! (;gp) (Q) = -mod®(p)(Q2)
mod’™ (L1 ppend) @) i= A {mods (e)(@).... mods™ (o) ()}
mod’;" (m Ve m) @) = V{mod}" (¢1)(®),..., modk (¢.) (@)}

Furthermore:
() mod¥ ! (9)(Q) € B is the so—called truth value of ¢ and (the interpretation) Q

B If modi+l(<p)(Q) = 1 we say that “Q is a model for ¢” or “Q satisfies ¢”, and this is also expressed by writing Q = ¢ .

(v) Accordingly and for each given ¢ € ]F"Z, its model class is a subset of BZ, defined by

Mod¥ () := {QeBk | mod]f:rl(ap)(ﬂ) =1}

(5) Note, that for each k € N, mod);;rl : ]F)f4 — IBZJrl, because ]Blj_ﬁl = (]E%’ji —— B) (hence the superscript “k + 1”7 in “mod):rl”)‘ We
call mod”®*?! p) € B%*+! the super-model or truth table of p € F5.
A A 27y A

Subvalence and equivalence

Given A and k, we define two relations on ]F];x- For all ¢, ¢ € ]F)j‘ let

e =k iff VQeBE . (Q = ¢ implies Q = ) p el iff VOQEBE . (QEeiff Q=)
iff  Modf (¢) C Mod¥ (¥) iff Mod! (¢) = Mod ()
iff modXT (p) CK™ modX ™ (v) iff modX™ (p) = mod¥T (v)

If ¢ élz 1 then we say that “p is subvalent to 1” or “p implies ¥” or “¢ entails 1” or “i is a consequence of ¢”. And ¢ ’;>]f4 v is read
as “p and 1 are equivalent”.
The quasi-boolean lattice of formulas

5 = (FR, =5, <8, 17, t5, AR, VP =F) is the default formula algebra of A and k, where for all ¢, € F%

£ = [v] 8 = [A] eA Y=o Ay] eVEY =[oVy] -Fo =
Theorem
S’IZ is a quasi—boolean algebra, for every A and k > 1.

Theorem
mod);"*'1 : Sl;‘ — %IXH, i.e. modl;"'*'1 : IF’Z — IBI/T'l is an embedding of S"’Z into %’XH, for all A and k > 1.
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Figure 4: Set field logic

Set expressions

For every class A we define

(i) A itself is called the set variable class
(i) Stm (A) , the set term class of A, comprises
a for each a € A (set symbol)
empty (empty set symbol)
full (full set symbol)
[o\ 9] for all 0,9 € Stm (A) (difference)
[oin...Nop] for all o1,...,0, € Stm (A) (intersection)
[o1U...Uoy] for all o1,...,0, € Stm (A) (union)
(iii) Sfm (A) , the set formula class of A, comprises
[o C 9] for all 0,9 € Stm (A) (inclusion)
false (false symbol)
true (true symbol)
'z for all ¢ € Sfm (A) (negation)
[e1 Ao Apn] for all ¢1,...,¢n, € Sfm (A) (conjunction)
[e1V...Veonl] for all p1,...,¢, € Sfm (A) (disjunction)

Set field interpretations

For every class A, a set field interpretation of A is given by a function J: A — P (C), where the set C is the so—called carrier of J.

Sfint (A) denotes the class of all such set field interpretations on A.

Bach J € Sfint (A) induces two more functions:

(i) sety
sety(a)

set;(empty)

sety (full)

sets([o\9])

sety([o1N...Noy])

setz([o1U...Uoy])

(ii) truthy

truth;([o C 9])

truth; (false)
truthj(true)
truthy(—p)

truth;([p1 A ... Ay )
truthy([¢01 V... Ve,])

Set term and set formula algebra

For every given A we define

: Stm (A) — P (C), the set function of J, that returns

a

subset sety (o) of C for every set term o, defined by

I (a)

0

c

sety (o) \ sety(0)
sety(o1)N...Nsety(oy)
sety(o1)U...Usetz(on)

: Sfm (A) — B, the truth value function of J, which returns a bit value truth;(¢) for every set formula ¢, defined by

if set; (o) C set; (V)

&

else
0
1
-truth;(¢)

truthy(p1) A ... Atruthy(¢,)
truthy(p1) V...V truthy(e,)

Gtm (A) = <Stm (A),C,=,L1,T,n,4, ﬁ>, the default set term algebra of A, where for all 0,9 € Stm (A)

[ond]

o=19 iff VI e Sfint(A) .set;(o) = set;(9)

o9 [cUud] -0 = [full \ o]

Sfm (A) = <Sfm A),C,=,1,T,m,4, ﬂ), the default set formula algebra of A, where for all ¢, ¢, € Sfm (A)

)
cC 9 iff VJe Sfint(A) .set;(0) C set;(9)
1 := empty T :=full oMy =
(i)
e C ¢ iff VI € Sfint(A) . truth;(p) < truthy(y)
1 := false T :=true eny
Theorem

For every A holds:
(i) &tm (A) is a quasi-boolean algebra
(i) Sfm (A) is a quasi-boolean algebra

=[pAy]

p=1 iff VI € Sfint (A) . truthy(¢) = truth;(v¥)

pUp = [pV] op =
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Figure 5: Embedding set field logic into hyper—propositional logic

Let A be an arbitrary class.
Theorem (The embedding of set field logic into hyper—propositional logic)

() f:6tm(A) — FY, ie. fis an embedding of Gtm (A) into FY, where

Stm (A) — F}

ab—><1>a
empty — [V]
£ o= full — [ A ]
[o\ 9] [£(0) A ~H(9)]
i
[

[oin...Nop]— (01)/1\.4./1\f'(<7n)]

[o1U...Uop]— t"(Ul)\l/.‘.\l/f(an)]

(ii) f:6im(A) — F2 , l.e. fis an embedding of Gfm (A) into 32, where
A A

Sfm (A) — F%

[0 C9]—Dl~f0) v E®)]
falseb—>[\2/]
f = true»—»[/z\]
WDH;?(VJ)
[pr A Apn] = [£(01) 4 - AE(en)]
1 V.. Veon]=[fe1)y ...y E(en)]




