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1 Preliminaries

1.1 Overview

Objective of this paper is a concise and ex-
haustive axiomatic definition of a theory al-
gebra. The final result of this effort is given
on the four pages of the appendix (section
4). Of course, this presentation is rather a
dense summary than a proper introduction,
so at least some explanation is given (section
2) along with the most important models of
theory algebras (section 3): the theory alge-
bras based on formulas and worlds.

There is a very close relationship between the-
ories (as abstract elements of a theory alge-
bra), formulas and worlds: Worlds are the
most intuitive representation of theories and
their properties. But in general, they are not
suitable for daily life and computer implemen-
tations. This is the real strength of formulas,
which can be seen as representations of worlds
— at least if the worlds are finite.

So if you need a gentle introduction into
theory algebras, this axiomatic appoach is
not the first choice. You should rather con-
sult the various documentations on the men-
tioned standard models first, also available on
www.bucephalus.org.

1.2 Notations

Placeholders or anonymous variables are used
to denote the syntax of function and relation
symbols. For example, �ξ� means, that the
operation or relation ξ is defined to be written
in infix notation.

Next to the standard symbolism
we use the following notations:

X\Y := {x ∈ X|x 6∈ Y } set sub-
traction

P (X) is the power set of X, i.e.
the set of all its subsets

Fin(X) the set of all finite subsets
of X

X∗ sequences or lists with com-
ponents from X

f : X −→ Y denotes a function f from X
into Y

R : X ! Y denotes a relation R be-
tween X and Y

2 Definitions of theory
algebras

2.1 Basic sets, operations
and relations

(See the first two parts of the axiom system
below: signature and axioms.)

A theory algebra is made of two sets

X (theories) A (atoms)

a couple of boolean junctions and relations

vw≡ ⊥> u t ¬ →↔

and some non–boolean operations and rela-
tions

@ @− @+ ⊆̂ ⊇̂ =̂ ‖ ⇓ ⇑ @| v̂ ŵ ≡̂

such that a certain set of axioms (see below)
is satisfied.

The theory algebra is complete if two more
boolean junctors

∏
and

∐
are defined too.1

The theory algebra is canonic, if the biequiv-
alence is the identitiy on X , i.e. if x ≡̂ y im-
plies x = y, for all x, y ∈ X .

2.2 Characterizations of
theory algebras

It is a common exercise in mathematics to
reduce the number of operations and axioms
in an axiomatic definition. For example, a
canonic theory algebra is fully determined by
the quadrupel (X ,v,A, @ ). Every other rela-
tion and operation is then just a derived con-
cept.

It is also possible to define theory algebras
in terms of order– and lattice theory, but
only if this whole subject is first generalized
from posets (sets with a transitive, reflex-
ive and antisymmetric relation) to quasi–
ordered sets (sets with a transitive and re-
flexive relation). In this context, there is a
sequence of specializations: quasi–ordered
set, quasi–lattice, boolean quasi–lattice,
free boolean quasi–lattice, that finally al-
lows to define a theory algebra as a free
boolean quasi–lattice with a certain atom
structure (A, @ ) attached.2

1Actually, if the theory algebra is not complete, some modifications of the axiom system
would have to be made. In particular, every occurence of P (A) in the type definitions would
have to be replaced by Fin(A) or A∗.

2This whole generalization of lattice theory and reconstruction of theory algebras is subject
to a forthcoming paper.
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But in practice it is probably more conve-
nient to approach theory algebras as an ax-
iomatic definition of their standard models,
namely world algebras3 (see below). It can
be shown that any given theory algebra on an
atom setA is quite the same as the world alge-
bra on A.Or putting it another way, a theory
algebra is categorically defined by the cardi-
nality of its atom set A, because:
• Every theory algebra has a canonization,

e.g. by replacing X by the quotient set
X/ ≡̂ .

• Every theory algebra has a completion,
i.e. an embedding into a complete theory
algebra.

• If X1 and X2 are two canonic, complete the-
ory algebras, then X1 and X2 are isomorph
iff A1 and A2 have the same cardinality.

All this justifies the use of Th(A) as the stan-
dard identifier for a whole canonic theory al-
gebra on a given set A.

2.3 Subalgebras

(See the part called subalgebras in the axiom
system below.)

For a given atom set A ∈ P (A), Th(A) is
the subalgebra of all the theories on A, and
FinTh(A) is the subalgebra of all finite the-
ories on A.

If Th(A) is a canonic theory algebra, then
it has two distinguished boolean subalgebras,
which are no proper theory algebras anymore:
the set XTh(A) of all expanded theories on A,
where each member x has @ (x) = A, and the
set RTh(A) of reduced theories on A, where
each member x has @ (x) = @+ (x) ⊆ (A).

For example, if the theory algebra is canonic
and A = {a} ⊆ A, then

Th(A) = {⊥,⊥ ‖ A, a,¬a,>,> ‖ A}
RTh(A) = {⊥, a,¬a,>}
XTh(A) = {⊥ ‖ A, a,¬a,> ‖ A}

Recall, that e.g. ⊥ ‖ A ≡̂ a u ¬a, but ⊥ ‖
A ˆ6≡ ⊥, so that ⊥ and ⊥ ‖ A are two equiva-
lent, but different entities in terms of theory
algebras.

2.4 Special theories and
theory decompositions

(See the according part in the axiom system
below.)

A literal is either an atom (positive literal)
or a negated atom (negative literal).

Suppose the given the algebra is canonic and
complete.
• A theory is an elementary theory or

elem4 is a direct v–successor of ⊥.
Elem(A) denotes the set of all elems with
atom set A.

• A theory is a coelementary theory or
coelem is a direct v–predecessor of >.
Coel(A) is the set of all coelems with atom
set A.

Another criterion for elems and coelems on a
given A in free quasi–boolean algebras is the
fact that they are the literal conjunctions and
disjunctions where each atom of A occurs ei-
ther negative or positive, i.e.
• c ∈ Elem(A) iff there is a B ⊆ A with

c ≡̂
∏

{¬b | b ∈ B} u
∏

(A\B)

• d ∈ Coel(A) iff there is a B ⊆ A with

d ≡̂
∐

{¬b | b ∈ B} t
∐

(A\B)

This criterion is actually taken as the defini-
tion for elems and coelems in (non–canonic)
theory algebras, because the first character-
ization implies that there might be differ-
ent, but (bi–)equivalent elems and coelems,
respectively. But we need these sets to be
canonic or minimal, similar to a basis defined
in linear algebra.

For example, ¬a1 u a2 u a3 u a4 u ¬a5 is an
elem on {a1, a2, a3, a4, a5}.

Note, that in non–complete theory algebras
and for infinite A, the sets Elem(A) and
Coel(A) are empty.

But the set of elems or coelems of a given the-
ory x always makes up x again in the sense
that, when

Elem(x) := {c ∈ Elem(@ (x)) | c v x}
Coel(x) := {d ∈ Coel(@ (x)) | x v d}

3So the best way of understanding the definition, i.e. the relations and operations of a the-
ory algebra is probably an introduction of a world algebra. See the paper on World algebras,
also available on www.bucephalus.org.

4Unfortunately, these successor elements of ⊥ are often called atoms in lattice theory, dif-
ferent to the common definition of atoms in logic and our terminology. Our creation here
might not be so lucky either, since now some elements are elementary and others are not. But
it does reflect the analogy with sets, because in elementary boolean algebras, every member
is a union (i.e. disjunction) of its elems.
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then

x ≡
∐

Elem(x) ≡
∏

Coel(x)

This elementary and coelementary recon-
struction of a theory resembles the equiva-
lent representation of a given formula by its
natural conjunctive / disjunctive nor-
mal form. 5

For example, for a theory x = a ↔ b in a
canonic theory algebra, there is
• Elem(x) = {¬a u ¬b, a u b}, so that

x ≡ (¬a u ¬b) t (a u b)
• Coel(x) = {¬a t b, a t ¬b}, so that

x ≡ (¬a t b) u (a t ¬b)

The union Fac(A) :=
⋃

B⊆A Elem(B) of el-
ems is the set of all the factors. In other
words, a factor is just a normal literal con-
junction, where normal means that no atom
occurs positive as well as negative. Dually, a
cofactor is a normal literal disjunction.

The factor set Fac(x) of a given theory x is
defined to be the set of all subvalent factors
of x from Fac(@ (x)). Accordingly, the su-
pervalent cofactors make up the cofactor set
Cof(x) of x.

3 Models of theory al-
gebras

3.1 The (non–canonic,
non–complete) theory
algebra of formulas

Let A be a set of identifiers and Form(A)
the set of boolean formulas6, i.e. the ex-
pressions generated from A and at least the
symbols ∧, ∨, ¬. For ∧ and ∨ it is very con-
venient to define them for any finite amount
of arguments, including 0 and 1, such as [∧ ]
and [∧¬a ]. For an elegant canonization, the
symbol ‖ is also very useful, but it can as well
be replaced, for example by using

[ ϕ ‖ ϕ1 . . . ϕn ] := [ ϕ∨ [ [∨ ]∧ϕ1 ∧ · · · ∧ϕn ] ]

If v is the usual subvalence or consequence
relation on Form(A) (also written as ⇒ or
|=), then (Form(A),v) is a free boolean
quasi–lattice on A. It is really “quasi”, i.e.
non–canonic, because there are equivalent,
but non–identical formulas like [ a ∧ ¬b ] and
[¬b ∧ a ].

The most natural way to define the boolean
junctors by means of ∧, ∨ and ¬ is given by

⊥ := [∨ ]

> := [∧ ]

ϕ1 u ϕ2 := [ ϕ1 ∧ ϕ2 ]

ϕ1 t ϕ2 := [ ϕ1 ∨ ϕ2 ]

ϕ1 → ϕ2 := [¬ϕ1 ∨ ϕ2 ]

ϕ1 ↔ ϕ2 := [ [ ϕ1 ∧ ϕ2 ] ∨ [¬ϕ1 ∧ ¬ϕ2 ] ]

But there are plenty of alternative definitions,
like

⊥ := ¬[∧ ]

ϕ1 u ϕ2 := [ ϕ2 ∧ ϕ1 ∧ ϕ2 ] ... etc

By definition, formulas are always finite ex-
pressions. So there is no

∏
and

∐
defined on

arbitrary sets of formulas, the structure is not
complete.

@ (ϕ) is the atom set occuring in a formula ϕ.
For example, @ [ a ∧ ¬b ∧ ¬a ] = {a, b}. For
a proper implementation, the result of @ (ϕ)
would rather be an ordered list instead of a
finite set, assuming that there is some strict
linear order < defined on A.

An atom α is negative or redundant in a
formula ϕ, if there is a formula ϕ′ equivalent
to ϕ that doesn’t contain α. So, @− (ϕ) is
the negative atom set of ϕ and @+ (ϕ) :=
@ (ϕ)\@− (ϕ) is its positive atom set.

The atomic and theory order and equivalence
relations are introduced as

ϕ1 ⊆̂ϕ2 :iff @ (ϕ1) ⊆ @ (ϕ2)

ϕ1 =̂ ϕ2 :iff @ (ϕ1) = @ (ϕ2)

ϕ1 v̂ ϕ2 :iff ϕ1 v ϕ2 and ϕ1 ⊆̂ϕ2

ϕ1 ≡̂ ϕ2 :iff ϕ1 ≡ ϕ2 and ϕ1 =̂ ϕ2

The expansion is easy: for every list
[ α1 . . . αn ] of atoms and formula ϕ, we put

ϕ ‖ [ α1 . . . αn ] := [ ϕ ‖ α1 . . . αn ]

But for the two reductions ⇑,⇓: Form(A)×
A∗ −→ Form(A) the result would have to be
some kind of normal form in general, at least
if only boolean formulas allowed. The same
holds for @| (ϕ), the standard reduction of

5Commonly called canonic conjunctive / disjunctive normal form. But this title is
incorrect, because e.g. if ϕ ≡ ⊥, it has many equivalent “canonic” conjunctive normal forms,
such as [ [∨¬a ] ∧ [∨a ] ] and [ [∨¬b ] ∧ [∨b ] ].

6See Bucanon syntax or the Bucanon manual on www.bucephalus.org for a proper definition
of boolean and theory formulas.
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ϕ, which must be an equivalent form without
negative atoms.

A factor is a normal literal conjunction [ λ1∧
· · · ∧ λn ]. We remove all ambiguities by de-
manding that the atoms of the literals are
written in strict linear order, and the order
< on A is predifined.

Factors on A = {a1, a2, a3} with a1 < a2 <
a3 are, for example: [¬a1 ∧ a2 ∧ ¬a3 ], [ a1 ∧
¬a2 ∧ ¬a3 ], [¬a1 ∧ ¬a3 ], [∧ ] and [ a2 ∧ a3 ].
Only the first two example factors are elemen-
tary or elems on A.

A factor is elementary or an elem on a given
atom set A, if it contains all atoms of A.

For a given formula ϕ, say ϕ = [ a → b ], a
factor of ϕ is a factor γ with γ v ϕ, e.g.
γ = [¬a ∧ b ]. Elementary factors or elems of
ϕ are the longest, prime factors of ϕ are the
maxima of all these factors.

Dual to factors, elems and primes, the no-
tions cofactors, coelems and coprimes are
defined for formulas.

For every formula ϕ the following boolean
normal form theorems hold:
• ϕ is equivalent to the disjunction of its el-

ems. (natural DNF)
For the example ϕ := [ a → b ] this is:
ϕ ≡ [ [¬a ∧ ¬b ] ∨ [¬a ∧ b ] ∨ [ a ∧ b ] ]

• ϕ is equivalent to the conjunction of its
coelems. (natural CNF)
For the example, ϕ ≡ [∧[¬a ∨ b ] ]

• ϕ is equivalent to the disjunction of its
primes. (prime DNF or PDNF)
For example, ϕ ≡ [ [∧¬a ] ∨ [∧b ] ]

• ϕ is equivalent to the conjunction of its co-
primes. (prime CNF or PCNF)
For the example, the natural and the prime
CNF are equal: ϕ ≡ [∧[¬a ∨ b ] ]

These boolean, i.e. equivalent normal forms
are not theory normal forms, i.e. biequiv-
alent in general, because they are not always
equiatomic to the original form. For exam-
ple, for ϕ := [ a → a ], the PCNF of ϕ is
[∧ ], but @ (ϕ) = {a} 6= {} = @([∧ ]). The
reason for this atomic difference is the obser-
vation, that in some cases — cases where ϕ
contains negative or redundant atoms —
the transformation to the normal form might
loose this negative atoms. So, in order to ob-
tain an equiatomic normalization, we simply
attach all negative atoms by means of expan-
sion: If ϕ′ is a boolean normal form of ϕ, then
[ ϕ′ ‖ @− (ϕ) ] is a theory normal form, i.e. it
is biequivalent to ϕ.

We define this explicitly for the prime nor-

mal forms: For every formula ϕ with negative
atoms {α1, . . . , αn} and α1 < · · · < αn:
• If ∆ is the PDNF of ϕ then [ ∆ ‖ α1 . . . αn ]

is the extended PDNF or XPDNF of ϕ.
• If Γ is the PCNF of ϕ then [ Γ ‖ α1 . . . αn ]

is the extended PCNF or XPCNF of ϕ.

For example, the XPCNF of [ a → a ] is
[ [∧ ] ‖ a ].

3.2 The two canonic theory
algebras of extended
prime normal forms

Let
• XPDNF (A)

be the set of all XPDNF’s on A
• XPCNF (A)

be the set of all XPCNF’s on A
• xpdnf : Form(A) −→ Form(A)

the XPDNF–canonizer, which assigns
the unique biequivalent XPDNF to each
given formula

• xpcnf : Form(A) −→ Form(A)
the XPCNF–canonizer, which assigns
the unique biequivalent XPCNF to each
given formula

In the sequel, we concentrate on the
XPDNF’s, but the dual statements hold for
the XPCNF’s as well.

XPDNF (A) is a subset of Form(A) and
with the same subvalence relation v it im-
mediately becomes a canonic theory alge-
bra. All the boolean junctions, the expan-
sion and reductions are uniquely determined
and don’t depend on the concrete definition
in Form(A), they are given by v due to the
canonicity of XPDNF (A). For example, for
all Ξ1, Ξ2 ∈ XPDNF (A),

Ξ1 u Ξ2 = xpdnf([ Ξ1 ∧ Ξ2 ])

= xpdnf([ Ξ2 ∧ Ξ1 ∧ Ξ2 ]) = ...

However, XPDNF (A) is not a proper sub-
structure of Form(A), because one thing has
changed: the atoms A of Form(A) are no
longer the atoms of XPDNF (A). Instead,
the new atom set is

xpdnf(A) = {[ [∨[∧α ] ] ‖ [ ] ] | α ∈ A}

But since xpdnf defines a bijection be-
tween the old and new atom set, we rather
write α again for each such atomic XPDNF
[ [∨[∧α ] ] ‖ [ ] ].

These two canonic theory algebras
XPDNF (A) and XPCNF (A) can be im-
plemented effectively.7

7For a precise definition of these algorithms and a concrete software implementation, see
the according sources on www.bucephalus.org.
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3.3 The complete canonic
theory algebra of
worlds

Let B be the set of two bit values, e.g. given
by B := {0, 1}.

Let A be any set. A valuation of A is a
function ω : A −→ B. And a world on A is a
function that assigns a bit value to each val-
uation of A. So, a world τ on A is a function
τ : (A −→ B) −→ B.

If A has n elements, then the set BA of all the
valuations of A has 2n elements and the set
BBA

of all worlds on A has 22n
members.

A world on a finite set can be represented by
a table. For example, a world τ on A = {a, b}
is given by

a b τ
0 0 1
1 0 0
0 1 1
1 1 1

saying that, for example the valuation ω,
given by ω(0) = 1 and ω(1) = 1, has the
value τ(ω) = 1.

Another — but ambiguous — representation
of finite worlds uses boolean formulas. The
last example τ is thus represented by [¬a∨b ]
or ¬[ a∧¬b ] etc. Each formula ϕ with @ (ϕ) =
A defines a unique world world(ϕ) on A.

This relation with boolean formulas motivates
the introduction of all boolean relations and
junctions. If the formula ϕi represents the
world τi, then e.g. negation and conjunction
of worlds can be defined by

¬τ1 := world(¬ϕ1)

τ1 u τ2 := world([ ϕ1 ∧ ϕ2 ])

Note that the definition doesn’t depend on the
chosen representing formulas, because worlds
are canonic, here in the sense that two formu-
las are biequivalent if and only if they have
the same world.8

An alternative and intuitive introduction of
these boolean concepts on worlds goes as fol-
lows. A world τ on A is also given as a pair
(A, Ω), where Ω is the set of all valuations ω
of A with τ(ω) = 1. The subvalence v on
worlds is then exactly the order on sets, with

(A, Ω1) v (A, Ω2) :iff Ω1 ⊆ Ω2

But some more explanations are needed for
the general case, where the worlds atom sets
are not equal.

Note, that the resulting theory algebra of
worlds is not only canonic, but also complete.
Infinite A do not need extra care.

Let A be any set, then the world algebra
generated by A has the carrier set

World(A) := {τ : (A −→ B) −→ B | A ⊆ A}

But note, that the atom set of this resulting
theory algebra is not given by A itself, but by
the atomic worlds

τ : ({α} −→ B) −→ B with ω 7→ ω(α)

for α ∈ A, which are given by

α τ
0 0
1 1

in tabular notation. But again, due to the
bijective relation between the elements of A
and these atomic worlds, we can simply write
α again, without the danger of confusion.

Similarly for elementary worlds or the el-
ems and factors of this algebra, which can
simply be written as valuations, although
they are defined to be the worlds, where ex-
actly this one valuation has the value 1.

8For a full introduction of all the relations and operations, see The algebra of worlds on
www.bucephalus.org.
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4 Appendix: The axiom system of a complete
theory algebra

Signature
Sets

X the set of theories

A ⊆ X the set of atoms or atomic theories

Atom set functions

@ : X −→ P (A) atom set function

@− : X −→ P (A) negative atom set function

@+ : X −→ P (A) positive atom set function

Atomic relations

� ⊆̂� : X ! X subatomic relation

� ⊇̂� : X ! X superatomic relation

� =̂ � : X ! X equiatomic relation

Atomic expansion and reduction

� ‖ � : X × P (A) −→ X expander

� ⇑ � : X × P (A) −→ X infimum reductor

� ⇓ � : X × P (A) −→ X supremum reductor

@| : X −→ X standard reductor

Boolean relations

� v � : X ! X subvalence

� w � : X ! X supervalence

� ≡ � : X ! X equivalence

Boolean junctors

⊥ ∈ X zero junctor or bottom

> ∈ X unit junctor or top∏
: P (X ) −→ X infimum junctor or big conjunctor∐
: P (X ) −→ X supremum junctor or big disjunctor

� u� : X × X −→ X meet or small conjunctor

� t� : X × X −→ X join or small disjunctor

¬ : X −→ X negator

� → � : X × X −→ X subjunctor

� ↔ � : X × X −→ X equijunctor

Theory relations

� v̂ � : X ! X bisubvalence

� ŵ � : X ! X bisupervalence

� ≡̂ � : X ! X biequivalence

Axioms
for all x, y, z ∈ X and a, b ∈ A and X, Y, Z ⊆ X and A,B ⊆ A :

Boolean relations

v is a quasi–order relation (i.e. reflexive and transitive)

w is a quasi–order relation (i.e. reflexive and transitive)

≡ is an equivalence relation (i.e. reflexive, transitive and symmetric)

x w y iff x v y

x ≡ y iff x v y and x w y

Junctor axioms

⊥ v x least element

> w x greatest element

⊥ t x ≡ x neutral element of disjunction

> u x ≡ x neutral element of conjunction

x u ¬x ≡ ⊥ conjunctive complement

x t ¬x ≡ > disjunctive complement

x u x ≡ x conjunctive idempotence

x t x ≡ x disjunctive idempotence

7



x u y ≡ y u x conjunctive commutativity

x t y ≡ y t x disjunctive commutativity

x u (y u z) ≡ (x u y) u z conjunctive associativity

x t (y t z) ≡ (x t y) t z disjunctive associativity

x u y ≡
∏
{x, y} small conjunction

x t y ≡
∐
{x, y} small disjunction

x u
∐

Y ≡
∐
{x u y | y ∈ Y } distributivity

x t
∏

Y ≡
∏
{x t y | y ∈ Y } distributivity

¬
∏

X ≡
∐
{¬x | x ∈ X} de Morgan

¬
∐

X ≡
∏
{¬x | x ∈ X} de Morgan

x → y ≡ ¬x t y subjunction

x ↔ y ≡ (x u y) t (¬x u ¬y) equijunction

Atom set function

@ (⊥) = {}
@ (>) = {}
@ (a) = {a}
@ (x u y) = @ (x) ∪@ (y)

@ (x t y) = @ (x) ∪@ (y)

@ (
∏

X) =
⋃
{@ (x) | x ∈ X}

@ (
∐

X) =
⋃
{@ (x) | x ∈ X}

Atomic relations

x ⊆̂ y iff @ (x) ⊆ @ (y)

x ⊇̂ y iff @ (x) ⊇ @ (y)

x =̂ y iff @ (x) = @ (y)

⊆̂ is a quasi–order relation (i.e. reflexive and transitive)

⊇̂ is a quasi–order relation (i.e. reflexive and transitive)

=̂ is an equivalence relation

Theory relations

x v̂ y iff (x ⊆̂ y and x v y)

x ŵ y iff (x ⊇̂ y and x w y)

x ≡̂ y iff (x =̂ y and x ≡ y)

v̂ is a quasi–order relation (i.e. reflexive and transitive)

ŵ is a quasi–order relation (i.e. reflexive and transitive)

≡̂ is an equivalence relation

Defining axioms of expansion and reduction

x ‖ A ≡̂ x u (> t
∐

A) ≡̂ x t (⊥ u
∏

A)

x ⇑ A ≡̂
∐
{y ∈ X | @ (y) = A and y v x}

x ⇓ A ≡̂
∏
{y ∈ X | @ (y) = A and y w x}

Atomic and boolean axioms of expansion and reduction

@ (x ‖ A) = @ (x) ∪ A

@ (x ⇑ A) = A

@ (x ⇓ A) = A

x ‖ A ≡ x

x ⇑ A v x

x ⇓ A w x

Expansion and reduction of junctions

⊥ ‖ A ≡ ⊥ ⇑ A ≡ ⊥ ⇓ A

> ‖ A ≡ > ⇑ A ≡ > ⇓ A

(¬x) ‖ A ≡ ¬(x ‖ A)

(¬x) ⇑ A ≡ ¬(x ⇓ A)

(¬x) ⇓ A ≡ ¬(x ⇑ A)

(x u y) ‖ A ≡ (x ‖ A) u (y ‖ A)

(x u y) ⇑ A ≡ (x ⇑ A) u (y ⇑ A)

(x u y) ⇓ A v (x ⇓ A) u (y ⇓ A)

(x t y) ‖ A ≡ (x ‖ A) t (y ‖ A)

(x t y) ⇑ A w (x ⇑ A) t (y ⇑ A)
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(x t y) ⇓ A v (x ⇓ A) t (y ⇓ A)

(
∏

X) ‖ A ≡
∏
{x ‖ A | x ∈ X}

(
∏

X) ⇑ A ≡
∏
{x ⇑ A | x ∈ X}

(
∏

X) ⇓ A v
∏
{x ⇓ A | x ∈ X}

(
∐

X) ‖ A ≡
∐
{x ‖ A | x ∈ X}

(
∐

X) ⇑ A w
∐
{x ⇑ A | x ∈ X}

(
∐

X) ⇓ A ≡
∐
{x ⇓ A | x ∈ X}

Negative and positive atoms

@− (x) = {a ∈ @ (x) | x ⇑ (@ (x)\{a}) ≡ x ⇓ (@ (x)\{a})}
@+ (x) = {a ∈ @ (x) | x ⇑ (@ (x)\{a}) 6≡ x ⇓ (@ (x)\{a})}
@− (x) ∩@+ (x) = ∅
@− (x) ∪@+ (x) = @ (x)

x ⇑ @− (x) ≡ x ⇑ ∅
x ⇓ @− (x) ≡ x ⇓ ∅
x ⇑ @+ (x) ≡ x

x ⇓ @+ (x) ≡ x

Reductions onto ∅

x ⇑ ∅ ≡̂
{

⊥ if x 6≡ >
> if x ≡ >

infimum reduction onto ∅ as tautology criterion

x ⇓ ∅ ≡̂
{

⊥ if x ≡ ⊥
> if x 6≡ ⊥

supremum reduction onto ∅ as satisfiability criterion

Standard reduction

@| (x) ≡ x

@+ (@| (x)) = @ (@| (x)) = @+ (x)

@− (@| (x)) = ∅

Subalgebras
for every A ∈ P (A) and all X, Y ⊆ X :

Relations between theory sets

X ≡ Y :iff (∀x ∈ X.∃y ∈ Y.x ≡ y) and (∀y ∈ Y.∃x ∈ X.y ≡ x) equivalence

X ≡̂ Y :iff (∀x ∈ X.∃y ∈ Y.x ≡̂ y) and (∀y ∈ Y.∃x ∈ X.y ≡̂ x) biequivalence

Special theory sets on a given atom set

Th(A) := {x ∈ X | @ (x) ⊆ A} the set of theories on A

FinTh(A) := {x ∈ X | @ (x) ⊆ A and @ (x) is finite } the set of finite theories on A

XTh(A) := {x ∈ X | @ (x) = A} the set of expanded theories on A

RTh(A) :=
{

x ∈ X | @ (x) = @+ (x) ⊆ A
}

the set of (standard) reduced theories on A

Identification of the algebra by its atom set

X = Th(A)

Algebraic closure properties

Th(A) is a complete theory algebra

XTh(A) is a complete quasi–boolean algebra

RTh(A) is a complete quasi–boolean algebra

FinTh(A) is a theory algebra

Algebraic closure properties of the quotient structures

Th(A)/ ≡̂ is a canonic complete theory algebra

XTh(A)/ ≡̂ = XTh(A)/ ≡ is a complete boolean algebra

RTh(A)/ ≡̂ = RTh(A)/ ≡ is a complete boolean algebra

FinTh(A)/ ≡̂ is a canonic theory algebra

Mutual definability

Th(A) ≡̂ {x ‖ B | x ∈ RTh(A), B ⊆ A}
Th(A) ≡̂ {x ⇑ B | x ∈ XTh(A), B ⊆ A}
Th(A) ≡̂ {x ⇓ B | x ∈ XTh(A), B ⊆ A}
XTh(A) ≡̂ {x ‖ A | x ∈ Th(A)}
XTh(A) ≡̂ {x ‖ A | x ∈ RTh(A)}
RTh(A) ≡̂ {@| (x) | x ∈ Th(A)}
RTh(A) ≡̂ {@| (x) | x ∈ XTh(A)}
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Special theories and theory decompositions
for all A ∈ P (A) and x ∈ X :

Special theories on a given atom set

Lit(A) := A ∪ {¬a | a ∈ A} the literals on A

Elem(A) := {
∏
{¬b | b ∈ B} u

∏
(A\B) | B ⊆ A} the elementary theories or elems on A

Coel(A) := {
∐
{¬b | b ∈ B} t

∐
(A\B) | B ⊆ A} the coelementary theories or coelems on A

Fac(A) :=
⋃

B⊆A Elem(B) the factors on A

Cof(A) :=
⋃

B⊆A Coel(B) the cofactors on A

Cardinalities

|Lit(A)| = 2|A|
|Elem(A)| = 2|A|

|Coel(A)| = 2|A|

Subvalent characterizations

Elem(A) is (bi)equivalent to the set of all subvalent successors of ⊥
Coel(A) is (bi)equivalent to the set of all subvalent predecessors of >
Partition properties∐

Elem(A) = > ‖ A and c1 u c2 ≡ ⊥ for c1, c2 ∈ Elem(A) with c1 6= c2∏
Coel(A) = ⊥ ‖ A and d1 t d2 ≡ > for d1, d2 ∈ Coel(A) with d1 6= d2

Special theories of a given theory

Elem(x) := {c ∈ Elem(@ (x)) | c v x} the elements of x

Coel(x) := {d ∈ Coel(@ (x)) | x v d} the coelements of x

Fac(x) := {f ∈ Fac(@ (x)) | f v x} the factors of x

Cof(x) := {g ∈ Cof(@ (x)) | x v g} the cofactors of x

Prim(x) :=
{

p ∈ Fac(@ (x)) | p ⊆̂ f for all f ∈ Fac(x) with f v p
}

the primes of x

Copr(x) :=
{

q ∈ Cof(@ (x)) | q ⊆̂ g for all g ∈ Cof(x) with q v g
}

the coprimes of x

Subset relations between special theories of a given theory

Elem(x) ⊆ Fac(x)

Coel(x) ⊆ Cof(x)

Prim(x) ⊆ Fac(x)

Copr(x) ⊆ Cof(x)

Subvalent characterizations

Prim(x) is the set of subvalent maxima of Fac(x)

Copr(x) is the set of subvalent minima of Cof(x)

Elementary reconstructions of expansion and reduction

x ‖ A ≡̂
∐
{c ∈ Elem(A ∪@ (x)) | c v x}

x ‖ A ≡̂
∏
{d ∈ Coel(A ∪@ (x)) | x v d}

x ⇑ A ≡̂
∐
{c ∈ Elem(A) | c v x}

x ⇑ A ≡̂
∏
{d ∈ Coel(A) | d t x 6≡ >}

x ⇓ A ≡̂
∐
{c ∈ Elem(A) | c u x 6≡ ⊥}

x ⇓ A ≡̂
∏
{d ∈ Coel(A) | x v d}

Theory reconstructions and normal forms∐
Elem(x) ≡ x with

∐
Elem(x) ≡̂ x for x 6≡ ⊥ natural disjunctive normal form∏

Coel(x) ≡ x with
∏

Coel(x) ≡̂ x for x 6≡ > natural conjunctive normal form∐
Fac(x) ≡ x with

∐
Fac(x) ≡̂ x for x 6≡ ⊥∏

Cof(x) ≡ x with
∏

Cof(x) ≡̂ x for x 6≡ >∐
Prim(x) ≡ x with

∐
Prim(x) ≡̂ @| (x)∏

Copr(x) ≡ x with
∏

Copr(x) ≡̂ @| (x)

x ≡
∐

Prim(x) prime disjunctive normal form (PDNF)

x ≡
∏

Copr(x) prime conjunctive normal form (PCNF)

@ (Prim(x)) = @+ (x)

@ (Copr(x)) = @+ (x)

x ≡̂
∐

Prim(x) ‖ @− (x) expanded PDNF (XPDNF)

x ≡̂
∏

Copr(x) ‖ @− (x) expanded PCNF (XPCNF)
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