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1 Abstract

By (schematic) relation we mean a generalization of two other relation concepts: the
n–ary or ordinary relations from mathematics and the partial tables from database
theory. A theory algebra is similar to a boolean algebra. But next to this “seman-
tical” order structure it also comprises a “syntactical” structure, which is more or
less a boolean algebra as well.

This text introduces these kind of relations, a couple of operations on them and
investigates their properties. Certain classes of relations together with this operations
constitute these (powerful, flexible and elegant) theory algebras.

For the development of the whole theory some preliminary chapters are also covered:
On generalizations of partial order structures and lattices, called quasi–hierarchies.
On records, operations and order structures on records. On schemas and their
various products. On graphs (here defined as record classes) and certain operations
on them.
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2 Foreword

Foreword to version 1.0

This text is a generalization of the relation concept in mathematics and computer
science in a context of a whole algebra. As it is given here, the subject is a self–
contained, systematic and closed piece of mathematics.

On the other hand, it emerged as part of a bigger foundation project, one that puts
the emphasis on “relation” rather than “set” or “function” as the most important and
most basic concept for metamathematics. The main motivation for a theory algebra
of relations then lies in the idea that standard predicate logic has an insufficient
semantics. Given a first–order signature S and formulas ϕ, ψ on that grammar, there
is a standard definition of the notions “ϕ is valid” and “ϕ entails ψ”. But this semantic
is only binary, a decision whether validity or entailment either holds or doesn’t hold.
It induces a (quasi-) boolean algebra and tells us how and when a formula is valid or
subvalent to another formula. But it doesn’t tell the “meaning” of the formula. The
theory algebra Prel(X) of relations does provide such a semantic. The schema X is
a translation of the signature S and every (closed or open) formula denotes a unique
relation in Prel(X).

Actually, there have been earlier and well–elaborated other works to fill this gap in
logical semantics. The one that comes closest to the design of theory algebras is
probably the cylindric algebra.1 However, our text here is quite isolated and doesn’t
pay proper respect to these alternative approaches. The only excuse is the impression,
that they are still too artificial for our main purposes and that there is a much more
“natural” semantics. The relation concept in this text (together with terminology
like “record”, “schema” etc.) is taken from relational database theory.2 But again,
the ongoing research in this area is neglected here as well.

In fact, in this text we don’t even deal with the connections to logical semantics.
We just present a self–contained definition of these “theory algebras of relations” and
we investigate their properties. Most readers will probably discover the postponed
potential applications for predicate logic themselves, since the boolean properties are
so similar.

This text will certainly need error updates, maybe even changes in content over time.
Therefore it carries a version number, starting with “1.0”. The idea is, to increase
the minor number for each minor error update. The major number is reserved for
significant changes.

Thanks to the numerous unselfish projects and people who created a whole new
dimension and platform for scientific work and communication over the last years.

1Leon Henkin, J. Donald Monk, Alfred Tarski: Cylindric Algebras, (two parts) North–Holland 1971.
2The foundation paper is: E.F. Codd: A Relational Model of Data for Large Shared Data Banks, Communications of the ACM, Vol.13/6,

June 1970. A classic text book is: C.J. Date: An introduction to Database Systems, Addison Wesley, several editions.
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Special thanks to the GNU/Linux and TEX/LATEX community. This text was entirely
written with Kile, a free LATEX editor.
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Part I

Introduction



Theory algebras on relations www.bucephalus.org 7

3 Introduction to Theory Algebras of Relations

3.0.1 Overview

This introduction has three subsections:
(1) First, we define a “relation” as a schematic relation. This

definition is a generalization of the usual relation concept in
mathematics, that we call ordinary relation. It also includes
the relation concept from database theory, called partial ta-
ble in our terminology.

schematic
relation

ordinary relation
(mathematics)

partial table
(database theory)

�
��

@
@@

(2) Relations are interesting only when we can operate with
them, i.e. in the context of an algebra of relations. We are
particularly interested in operations that altogether consti-
tute a theory algebra of relations, as we call it.

(3) One motivation for these algebras of relations is proposi-
tional logic, which can be reconstructed as a special exam-
ple. On the other hand, relation algebras can be seen as
generalizations of propositional logic in the sense that the
restriction on binary values is repealed and arbitrary values
are allowed for each atom.

3.1 What is a relation?

3.1.1 What is a schematic relation?

(1) A record (9.1.2) ξ = [ξi|i ∈ I] has for each index or at-
tribute i of its domain I a value ξi. If I = {i1, . . . , in} is
finite, we also write ξ as2664

i1 7→ ξi1
.
.
.

.

.

.

in 7→ ξin

3775
(2) A schema (9.3.1) is a record X = [Xi|i ∈ I], where every

value Xi is a class.

(3) The cartesian product (12.1.2) ⊗X of such a schema X
is the class of all records that fit into X. More precisely,

⊗X = {[xi|i ∈ I] | i ∈ Xi for all i ∈ I}

(4) A schematic relation (17.2.1) R is essentially made of a
schema X = [Xi|i ∈ I] and a graph Γ, where Γ ⊆ ⊗X. Our
default notation for such an R is"

X

Γ

#
or [X,Γ]

For every x ∈ ⊗X we write x ∈ R, “x is a member of R” or
“R holds for x”, iff x ∈ Γ. Otherwise, we write x 6∈ R.

3.1.2 What is a table?

If R = [X,Γ] is relation with X = [Xi|i ∈ I], and both the at-
tribute class I = {i1, . . . , in} and the graph Γ = {x1, . . . , xm}
are finite, then R is called a table (17.5.3), often written as

i1 : Xi1 . . . in : Xin

x1,i1 . . . x1,in

.

.

.
.
.
.

xm,i1 . . . xm,in

The head row of the table is the schema X, each subsequent
row is one of the members xj of the graph, where

X =

2664
i1 7→ Xi1
.
.
.

.

.

.

in 7→ Xin

3775 and xj =

2664
i1 7→ xj,i1
.
.
.

.

.

.

in 7→ xj,in

3775 for j = 1, . . . ,m

For example, a table is given by

account no : Integer owner : String balance : Real

12340 ”alice” 243.25

12342 ”bob” −12.05

12347 ”carl” 2000.00

3.1.3 What is a partial table?

A partial table (18.1.2) is a table, but it allows gaps or so–
called null values in place of proper values. For example

account no : Integer owner : String balance : Real

12340 243.25

12342 ”bob”

12347 ”carl” 2000.00

is a partial table, where the owner component of the first record
and the balance in the second are not specified.

A partial table is very much the definition of a “relation” in
database theory, where it is used to manage and retrieve (large
amounts of) information. However, the interpretation of these
partial tables is a controversial issue in database theory. The
relational model was originally introduced by Codd3, but soon
the various versions of the structured query language or SQL
applied a somewhat different understanding, which is some-
times critized for being less consequent and logical from the
original point of view. Nowadays SQL has become the stan-
dard in practical and commercial systems, but this dominance
has its critics.4

In our text we will not refer to this discussion. Our genuine

3E. F. Codd, “A relational model of data for large shared data banks”, 1970, Communications of the ACM, 13(6):377-387.
4For an introduction to these issues, see e.g. the article “Relational model” on en.wikipedia.org.
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motivation is a generalization and reconstruction of logical cal-
culi rather than the implementation of a database management
system. However, in digression 18 we present an interpreta-
tion of null values, that allows us to properly subsume partial
tables under schematic relations. In our approach we obtain

tables ⊆ partial tables ⊆ schematic relations

That way, we are probably more close to Codd and his prede-
cessors than to the SQL approach.

3.1.4 What is an ordinary relation?

It is pretty much the standard in mathematics to define:
(1) A (n–ary) tuple (5.4.1) ξ = 〈ξ1, . . . , ξn〉 is a sequence of
n components ξ1, . . . , ξn.

(2) A (n–ary) cartesian product (5.6.9) of classes C1, . . . , Cn
is the class of all n–tuples that fit in, i.e.

C1 × . . .× Cn = {〈x1, . . . , xn〉 | x1 ∈ C1, . . . , xn ∈ Cn}

(3) An ordinary relation R (5.7.10) is essentially given by its
domain, which is a cartesian product C1× . . .×Cn, and its
graph Γ, which is a subclass of this domain.

In our default notation (5.7.10) we write such an ordinary
relation as

R =

"
C1 ! . . .! Cn

〈x1, . . . , xn〉 ϕ

#

where “C1 ! . . .! Cn” is the type expression for R and ϕ
is a formula that determines which 〈x1, . . . , xn〉 is a member
of Γ.

For example

R :=

"
Z! Z! Z

〈a, b, c〉 a+ b = c

#

defines R to be the ordinary relation that holds for three in-
tegers a, b, c iff c is the sum of a and b. “Ordinary” can
be rephrased “ordinal arity”. This example R is “3–ary” or
“ternary”.

3.1.5 What makes every ordinary relation a schematic relation?

A tuple 〈ξ1, . . . , ξn〉 can be (re–)defined (9.2.1) as a finite
record on the ordinal number5 {1, . . . , n}, i.e. we could de-
clare

〈ξ1, . . . , ξn〉 := [ξi|i ∈ {1, . . . , n}]

That way and with some changes in the notation, every or-
dinary relation turns into a schematic relation: The cartesian
class product C1 × . . . × Cn now is the special case of the
more general cartesian product applied to the ordinal schema
〈C1, . . . , Cn〉, i.e.

C1 × . . .× Cn = ⊗〈C1, . . . , Cn〉

The change of an ordinal relation

R =

"
C1 ! . . .! Cn

〈x1, . . . , xn〉 ϕ

#

into a proper schematic relation is then merely a change in the
notation

R =

"
〈C1, . . . , Cn〉

{〈x1, . . . , xn〉 ∈ ⊗〈C1, . . . , Cn〉 | ϕ}

#

so that we may state that it actually is a schematic relation,
i.e.

ordinary relation ⊆ schematic relation

3.1.6 What is a relation?

A schematic relation is a generalization of both the “relation”
from mathematics and the “relation” in database theory, at
least in some particular version of database theory. Due to this
general character we usually say relation instead of schematic
relation.

3.2 What is a theory algebra of re-
lations?

3.2.1 What do Proj(X), Rel(X) and Prel(X) stand for?

P(C) := {A | A ⊆ C} is the power class (5.6.13) of a given
class C.

Let X = [Xi|i ∈ I] be a proper schema from now on. Then

Proj(X) := {[Xj |j ∈ J] | J ⊆ I}

is the projection class (10.2.6) of X

Rel(X) :=

("
X

Γ

#
Γ ⊆ ⊗X

)

is the relation class (17.2.6) on X

Prel(X) :=
S

Y∈Proj(X)
Rel(Y )

is the projection relation class (17.8.1) on X

3.2.2 What makes Proj(X) a boolean algebra?

For two records, in particular for two schemas Y = [Yj |j ∈ J]
and Z = [Zk|k ∈ K] we define (10.3.2)

Y ≤ Z iff J ⊆ K and Yj = Zj for all j ∈ J

Thus Proj(X) is the class of all the schemas Y with Y ≤ X.
And together with ≤, this class makes a poclass (i.e. ≤ is a
partial order on Proj(X)).˙
Proj(X),≤

¸
even turns out to be a boolean algebra (11.9.4)

with
♣ Y ∧ Z := [Xi|i ∈ (J ∩K)] the meet of Y and Z

5 More often, the n–th ordinal number is defined as {0, 1, . . . , n− 1} rather than {1, . . . , n}, but that wouldn’t make a significant

difference.
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♣ Y ∨ Z := [Xi|i ∈ (J ∪K)] the join of Y and Z

♣ X \ Y := [Xi|i ∈ (I \ J)] the complement of Y

♣ 〈〉 the bottom element

♣ X the top element

for all Y = [Xj |j ∈ J] and Z = [Xk|k ∈ K] in Proj(X).

3.2.3 What makes Rel(X) a boolean algebra?

We can inherit the inclusion ⊆ from the algebra of classes, i.e.
we put (19.5.1) "

X

Γ

#
⊆
"
X

Σ

#
iff Γ ⊆ Σ

That way Rel(X) turns into a poclass, isomorph to˙
P(⊗X),⊆

¸
. As such, it even is a (complete) boolean alge-

bra (19.5.10), denoted by Rel(X), with"
X

Γ

#
∩
"
X

Σ

#
:=

"
X

Γ ∩ Σ

# "
X

Γ

#
∪
"
X

Σ

#
:=

"
X

Γ ∪ Σ

#

as meet and join and

¬
"
X

Γ

#
:=

"
X

(⊗X) \ Γ

#
⊥X :=

"
X

∅

#
>X :=

"
X

⊗X

#

as complement, bottom and top, respectively.

3.2.4 What makes Prel(X) a quasi–boolean algebra?

Prel(X) is a superclass of Rel(Y ), for every Y ≤ X, and each
Rel(Y ) is a boolean algebra. So let us seek for a structure
Prel(X) on the carrier class Prel(X) which is a superstruc-
ture of each of the Rel(Y ). And this time, let us use the square
symbols “v,≡,u,t” to denote the according operations. The
unary ¬ remains the same with the definition from in 3.2.3.

For all R = [Y,Γ] and S = [Z,Σ] in Prel(X) the new op-
erations must satisfy the embedding properties (20.4.4): If
Y = Z, then

R u S := R ∩ S R t S := R ∪ S R v S iff R ⊆ S

The problem is the definition of the more general case, where
Y 6= Z may occur.

Later on, we will succeed in defining these operations properly
and Prel(X) will be a kind of boolean algebra as well, but
only a “quasi” kind. Different to ⊆, this v is not a partial
order, but a only a quasi–order. It is not canonic (or anti–
symmetric) anymore, i.e. R and S may be equivalent (R ≡ S,
i.e. R v S and S v R), but still not the same. 6

For example, for Y 6= Z, the two relations ⊥Y and ⊥Z are
equivalent, however not identical.

3.2.5 What makes Prel(X) a theory algebra?

That it is not just one, but a special combination of two quasi–

order structures is the characteristic feature of a theory alge-
bra. For this particular structure Prel(X) this means:
♣ The semantic structure is given by the subvalence relation
v (and the derived ≡,u,t etc.), which essentially compares
the graphs of the given relations.

♣ The syntactic structure on the other hand is given by the

subschema relation E (and the derived ,,⇑,⇓ etc.).

The definition (19.1.2) of E on Prel(X) is simply"
Y

Γ

#
E

"
Z

Σ

#
iff Y ≤ Z

Again, E is not a proper partial, but only a quasi–order on
Prel(X), because there are equi–schematic (19.1.2) relations

(R , S, i.e. R E S and S E R), which are not identical. For

example, ⊥X , >X .

For this particular theory algebra Prel(X), identity means
“bi–equivalence” in the sense that"

Y

Γ

#
=

"
Z

Σ

#
iff

"
Y

Γ

#
,

"
Z

Σ

#
and

"
Y

Γ

#
≡
"
Z

Σ

#

Similar to the operations u,t etc. we could introduce say
“∧,∨” etc. by specifying the “. . .” in the definitions"

Y

Γ

#
∧
"
Z

Σ

#
:=

"
Y ∧ Z
. . .

#
and

"
Y

Γ

#
∨
"
Z

Σ

#
:=

"
Y ∨ Z
. . .

#

etc. But we use a different approach, one that is less elegant
from an algebraic point of view, but more practical for the
application fields we have in mind. We define ‖,⇑,⇓ not as
binary functions on Prel(X), but as binary operations of the
mixed type

Prel(X)×Proj(X) −→ Prel(X)

So let R = [Y,Γ] ∈ Prel(X) and Z ∈ Proj(X) be given.

First of all, the expansion (20.1.1) of R by Z has the form

R ‖ Z :=

"
Y ∨ Z

Γ′

#

where Γ′ is uniquely determined by demanding that R ‖ Z ≡ R
shall hold.7

On the other hand, we should have a similar equivalent reduc-
tion (21.1.2) of R onto Z,

R m Z :=

"
Z

Γ′′

#

where again Γ′′ is determined by R m Z ≡ R. But different
to the expansion, such a graph for an equivalent schema re-
duction does not always exist. However, we have two unique
reductions onto Z, that come closest to R, namely

♣ a supremum reduction (21.6.1) R ⇓ Z, that is the least su-
pervalent relation on Z, i.e. the least of all the R′ ∈ Rel(Z)
with R v R′, and similarly,

♣ a infimum reduction (21.6.1) R ⇑ Z, which is the greatest
subvalent element of Rel(Z).

6 Important structures on poclasses (7.2.2), in particular lattices (7.4.9) and boolean lattices/algebras (7.6.2), have become standard

concepts in mathematics. But a generalization of order– and lattice theory on the basis of quasi–ordered classes (7.2.2) that introduces

quasi–lattices (7.4.9) and quasi–boolean algebras (7.6.2), is not that common. We therefore give an overview of such a generalization in

the special chapter of III .
7 In fact, this Γ′ is given by Γ′ = {ξ ∨ υ | ξ ∈ Γ, υ ∈ ⊗(Z \ Y )}. In the main text we actually turn around the order of the definitions

and use ‖ to define v,≡,u etc. For R = [Y,Γ] and S = [Z,Σ] we put (20.2.2): R v S iff (R ‖ Z) ⊆ (S ‖ Y ), R u S := (R ‖ Z) ∩ (S ‖ Y ),

etc.
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So we always have

R ⇑ Z v R ≡ R ‖ Z v R ⇓ Z

∈ ∈ ∈ ∈

Rel(Z) Rel(Y ) Rel(Y ∨ Z) Rel(Z)

3.2.6 What else?

The main subject of this text is the introduction and investiga-
tion of these theory algebras of relations. In order to provide
suitable tools for practical applications, we provide more op-
erations on relations and discuss some other relational struc-
tures. But most of them are merely variations of the same
theme.

We will not discuss possible applications and implementations
of these algebras.8 We only demonstrate how propositional
logic can be reconstructed as a special case of relation alge-
bra. Or the other way round, how relation algebras can be un-
derstood as arbitrary value generalizations of the two–valued
propositional logic.

3.3 Besides, what makes proposi-
tional logic a special case of re-
lation algebra?

3.3.1 What is the boolean table of a propositonal formula?

Two examples of propositional formulas (6.4.1) are

-[ a ∧ -b ] and [ a ∨ [ a ∧ b ] ∨ -b ]

Their semantics can be defined by so–called truth tables or
boolean tables. For example

a b

0 0 1

1 0 0

0 1 1

1 1 1

is the same boolean table for both given formulas (which is
why they are called equivalent). Beside the head row, the ta-
ble has four rows, each one for each possible valuation of the
two atoms a and b with either a 0 (or false) or a 1 (or true).
And the value in the extra right column tells us if the particu-
lar valuation turns the formula into a true (=1) or false (=0)
statement.

3.3.2 How does a formula turn into a relation?

Each of the four valuations can be defined as a record, which
maps the atoms a, b to values of B = {0, 1}. The collection of
these four records can accordingly be defined as the cartesian
product ⊗X of the schema

X :=

"
a 7→ B
b 7→ B

#

So

⊗X =

("
a 7→ 0

b 7→ 0

#
,

"
a 7→ 1

b 7→ 0

#
,

"
a 7→ 0

b 7→ 1

#
,

"
a 7→ 1

b 7→ 1

#)

Now if ϕ is one of the two example formulas, say -[ a∧-b ], then
three of the four valuations hold for ϕ and the semantics of ϕ
is represented by the (schematic) relation

266664
X("

a 7→ 0

b 7→ 0

#
,

"
a 7→ 0

b 7→ 1

#
,

"
a 7→ 1

b 7→ 1

#)
377775

according to 3.1.1, and element of Rel(X).

And this relation can as well we written in the table form of
3.1.2

a : B b : B
0 0

0 1

1 1

That way, we can say that every formula ϕ with atom class A is
just a representation of an element of Rel([B|A]) where [B|A] is
only another notation (9.2.4) for the schema X = [Xa|a ∈ A]
with Xa = B for all a ∈ A.

More general and in this interpretation, the class Form(A)
of all propositional formulas with atoms taken from a class
A quasi is just a class of representations for the relations in
Prel ([B|A]).

3.3.3 What makes propositional logic an algebra of relations?

Both structures are quite the same or isomorph in the sense
that the formula constructors -,∧,∨ behave like the ¬,u,t.

For example, for A = {a, b, c, . . .} let ϕ1, ϕ2 ∈ Form(A) be
two formulas with their corresponding T1, T2 ∈ Prel ([B|A])
be given by

ϕ1 = -[ a ∧ -b ] ϕ2 = [ -b ∨ [ c ∧ -c ] ]

T1 =

a b

0 0 1

1 0 0

0 1 1

1 1 1

T2 =

b c

0 0 1

1 0 0

0 1 1

1 1 0

Then

8Please, check out www.bucephalus.org for more information.
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T1 u T2 =

a b c

0 0 0 1

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 0

0 1 1 0

1 1 1 0

is the table of [ϕ1 ∧ ϕ2 ]

T1 t T2 =

a b c

0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 1

0 1 1 1

1 1 1 1

is the table of [ϕ1 ∨ ϕ2 ]

¬T1 =

a b

0 0 0

1 0 1

0 1 0

1 1 0

is the table of -ϕ1

That way, Prel ([B|A]) is a quasi–boolean algebra. It behaves
as propositional logic.

3.3.4 Are there expansions and reductions for propositons?

Even more, Prel ([B|A]) is a theory algebra according to 3.2.5
with the well–defined E, ‖,⇑,⇓ etc. But here, we can simplify
their type from

Prel ([B|A])×Proj([B|A]) −→ Prel ([B|A])

to

Prel ([B|A])×P(A) −→ Prel ([B|A])

because each [B|A′] ∈ Proj([B|A]) is entirely given by A′ only.

So if we take T1 again, we have e.g.

T1 ‖ {c} =

a b

0 0 1

1 0 0

0 1 1

1 1 1

‖ {b, c} =

a b c

0 0 0 1

1 0 0 0

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 0

0 1 1 1

1 1 1 1

Now ϕ1 = -[ a ∧ -b ] is a formula for T1. And T1 ‖ {c} is a
truth table for ϕ1 as well, it only has one more atom c.
If we want a proper definition of ‖ on formulas, we need to
look for a transformation that returns an equivalent form, but
adds the specified atoms. This task can be solved e.g. by the
following approaches:

ϕ ‖ {a1, . . . , an} := [ϕ ∧ [ a1 ∨ -a1 ∨ . . . ∨ an ∨ -an ] ]

ϕ ‖ {a1, . . . , an} := [ϕ ∨ [ 0 ∧ a1 ∧ . . . ∧ an ] ]

We can define the expansion within the usual framework of
propositional logic. But this is not possible anymore with the
reductions ⇑ and ⇓. The perform an operation that is usually
called quantification: ⇑ is similar to “∀” and ⇓ is similar to
“∃”. 9

3.4 What is a theory algebra, any-
way?

3.4.1 What is a theory algebra?

In 3.2.5 we already mentioned that the characteristic feature of
theory algebras would be a certain combination of two more or
less lattice–like structures, one “syntactic” and one “seman-
tic” structure.

It is common in logic to formally characterize a theory T as a
pair, made of
♣ the syntax or language Λ, which is defined as a formal lan-

guage, i.e. a class of sentences, (closed) formulas or expres-
sions, defined by means of a signature.

♣ And a semantic, axiom class or theorem class Θ, which is
a selection of all the sentences, namely the ones that are
(supposed to be) valid.

This pair character of theories induces two order structures on
the class of all theories:

♣ A syntactical order, T1 E T2 iff Λ1 ⊆ Λ2, and

♣ a semantical order, where T1 v T2 iff Θ1 ⊆ Θ2,

for any two theories T1, T2 with languages Λ1,Λ2 and theorem
classes Θ1,Θ2, respectively.

The semantical order, the consequence or entailment relation,
is a (quasi–) boolean lattice, theories can be negated, conjunc-
tively and disjunctively combined to new theories. All that is
part of daily live in mathematics. But the syntactical order is
very lattice–like as well. For certain classes of theories, this is
a (quasi–) boolean lattice as well. The combination of these
two lattices makes a certain kind of structure with very specific
features.

A theory algebra is the abstraction of this kind of structures
on theories. Is is an attempt to capture the features and prop-
erties of these double order structures. 10

3.4.2 Again, what is a theory algebra of relations?

So now we have a text on the “theory algebras of relations”,
but without an appropriate definition of a “theory algebra”.
However we choose to keep the “theory” in the title, because
there are some other designs of “relation algebras” out there
and it ought to be useful to have a distinguishing and descrip-
tive component in the title.

9 For more information on these enriched versions of propositional logic as theory algebras, see other introductions on www.bucphalus.org,

e.g. “The Algebra of Worlds”.
10 In a paper called “Axioms of Theory Algebras” we presented an elaboration of this principle. But it was too closely related to

propositional logic, and certain features are chosen too specific to cover a structure such as Prel(X) as well.
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Part II

The language of mathematics
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4 Idiosyncratic features

4.0.3 Reading advice

In 5, we introduce the basic syntax of the language we are
about to use, i.e. we provide a formal definition for expres-
sions. The syntax is complete in the sense, that it is sufficient
to express every mathematical statement that can be made at
all. We intended to use standard terminology and symbolism,
as far as there is one. However, in some cases we departed from
conventions or created something unusual and these novelties
shall be motivated and explained first here in section 4 .

4.1 Text arrangement, style and
layout

4.1.1 Text pieces and addressing

The main parts are called chapters and they are identified by
big romans numbers. Every proper sentence of this text oc-
curs in a paragraph, and each paragraph is uniquely identified
by three decimal numbers “n.n.n” as its index. The overall
structuring of this text is done as follows:

index titles of the parts and subparts

II this chapter

4 this section

4.1 this subsection

4.1.1 this paragraph

To provide some reference and structure inside paragraphs, we
use

(1), (2), (3), ... (a), (b), (c), ... (i), (ii), (iii), ...

and in case there is no order required, we use item list:

♣ top level item

♠ second level item

♥ third level item

♦ fourth level item

4.1.2 Text style features

This text uses a couple of features to support efficient read-
ing and the search of more important parts and key words.

this indicates the definition of a new notion, which
is also listed in the index register at the end

this indicates the definition of an important new
symbol or formalization, which is also listed
in the summary of symbols register at the end

4.1.3 Two–dimensional expressions

If expressions become long, we sometimes use compact two–
dimensional11 versions. For class expressions, for example, we
sometimes use

8>>><>>>:
x1,
x2,

.

.

.
xn

9>>>=>>>; or

8>>>>><>>>>>:

x ∈ C
ϕ1,

.

.

.

ϕn

9>>>>>=>>>>>;
and

8>>><>>>: x ∈ C

ϕ1,

.

.

.

ϕn

9>>>=>>>;
(often without the commas) for the usual {x1, x2, . . . , xn} or
{x ∈ C | ϕ1, . . . , ϕn}. Similarly for tuples 〈. . . , . . . , . . .〉 and
other kind of expressions (. . . , . . . , . . .) we may write

*
. . .
. . .
. . .

+
and

0BB@
. . .

. . .

. . .

1CCA
instead.

4.2 Deviant use of common notions

4.2.1 General concepts

Operation In algebra, an “operation” is usually a binary endo-
function on a given class C, i.e. a function of type C×C −→
C. Instead we use operation as an informal collective notion
for “relation, constant or function”. Accordingly, we can say
that a structure is made of one or more classes with a couple
of operations on them.

Class A class is any collection of elements. Usually in mathe-
matics, the term “set” is preferred over “class”, as a kind of
well–defined class, since an all too naive class concept can
lead to paradoxes. But we do not care about the “dangers”
here and consequently favor the more general concept.You
may read “set” everywhere you find a “class”, the difference
does not concern this text.

Identifier We occasionally say something like “let I be a class
of identifers”. In a proper mathematical sense that only
means that I can be just any class. The term identifier will
remain an undefined notion, like point is undefined in geom-

11 G. Frege introduced a two–dimensional notation for mathematical logic in his Begriffsschrift. That didn’t survive and G. Peano’s

linear symbolism (with ∃ and ∀ etc.) became established instead. But our proposal here is made in times of TEX LATEX and other tools,

where beautiful layout doesn’t take extra efforts and really supports efficient reading.
12 It is probably fine to think of identifiers as strings like "example1", including decimal numerals like "2345" as numerical strings. This

is useful, because we define records as mappings from identifiers i1, . . . , in to objects xi1 , . . . , xin , and tuples as special records, where the

identifiers i1, . . . , in are the integers 1, . . . , n.
13 We could take strings as identifiers, but these strings can themselves be defined as character tuples. The same way we can define

decimal numerals as tuples of the decimal digits 0,1,...,9. Leaving identifiers undefined provides us with a certain flexibility.
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etry.12The point is, that I should be a pretty primitive type
in practice, e.g. strings, integers, or even just finitely many
character.13

4.3 Default syntax for operations

4.3.1 Standard notation for operations

We propose

symbol :=

24 syntax

semantics

35

as our standard form for the definition of functions and rela-
tions.14

♣ The “symbol” is an identifier, sometimes together with
some graphical features pictured by means of placeholders

©1 , ©2 , . . ..

For example, “ ©1 + ©2 ” means that “+” is used as a bi-

nary operation symbol in infix notation. “ ©1 f ” explains,

that the unary operation f is used in superscript notation
when applied to arguments. As it is common in mathemat-

ics, we consider “ f(©1 ) ” as the default arrangement for the

application of an operation f . And in that case we simply
write “f” again on the left side of such a definition.

♣ The “syntax” is a type expression, i.e.

♠ D −→ C for functions, and

♠ D1 ! . . .! Dn for n–ary relations1516

♣ The “semantics” is one of the following:

(a) A map(ping) expression17 a 7→ τ , saying that any

value for the variable a turns into the value which is de-
fined by the term τ . A map expression on its own defines
a mapping and we make a clear distinction between the

(untyped) mapping and the (typed) function.

(b) A predicator expression a ϕ , saying that any value

for the variable a turns into the (false or true) expression,

which is defined by the formula ϕ. The predicator expres-
sion defines what we call the predicator. Neither the pred-
icator notion nor a separate notation like our  are com-
mon concepts and that is a gap in the tradition.18Note,
that we again make a clear distinction between the (un-
typed) predicator and the (typed) relation.19

For the time being we assume, that operations are ordinary
or n–ary in the sense that their domain is an n–ary cartesian

product D1 × . . . × Dn. An then, we use tuples 〈a1, . . . , an〉
of variables in place of the single variable a and summarize:

♣ The default n–ary function expression has the form264 D1 × . . .×Dn −→ C

〈a1, . . . , an〉 7→ τ

375
where f is an identifier, the D’s and C are class expressions,
the a’s are variables and τ is a term with no more free vari-
ables than the given a’s.

♣ The default n–ary relation expression is264 D1 ! . . .! Dn

〈a1, . . . , an〉 ϕ

375
where R is an identifier, the D’s are class expressions, the
a’s are variables again and ϕ is a formula with no more free
variables than the given a’s.

4.3.2 Examples

(1) The square function on the class Z of integers can be de-
fined in our standard notation by

©1 2 :=

24 Z −→ Z

n 7→ n · n

35
(2) The usual linear order relation on the class N := {0, 1, . . .}

of natural numbers is given by

14 In my opinion there is the unfortunate tradition in mathematics that even the most precise authors not even try to invent a standard

form at least for functions and use tiresome prose instead. Masses of clumsy sentences could be condensed into a proper notation and that

can really ease the reading of texts. On the other hand, we try to be rather pragmatic than formalistic here ourselves and don’t apply the

proposed notation everywhere.
15 Different to function type expressions D −→ C, there is no common standard for (ordinary) relation type expressions yet. Paul

Taylor: A practical foundation of mathematics, 2000, suggests D1 ↼⇁ D2 instead of our D1 ! D2.
16 We occasionally also need a relation type expression like R : D1 ! . . .! Dn for the cases n = 1 and n = 0. In this text we often

say that, for an operation symbol •, a dotted ©1 • ©2 • . . . • ©n is just a convention for the more precise
n•
i=1
©i , which can actually be

written for n = 1 and n = 0. So when it comes to relation type expressions, it would be R :
1
!
i=1

Di and R :
0
!
i=1

Di . But it is probably

nicer and makes sense to agree (see 5.6.8) on R : Pty (D1) for the unary and R : B for the nullary case. (Recall, that B = {0, 1} and

there are exactly two nullary relations.) Later on (in 17.2.6), we introduce a notation that will also cover these cases. In this notation we

would write R : Rel(〈D1〉) for unary and R : Rel(〈〉) for nullary relation type expressions.

17Another tradition (going back to A. Church) uses the lambda expressions λa . τ instead of our map expression a 7→ τ .
18 Be aware, that there is a difference between the formula ϕ and the predicator expression a ϕ. The variable a occurs free in ϕ, but

is bound in a ϕ.

Recall, that a map expression a 7→ τ can be applied to an argument c, often written (a 7→ τ)(c) . The result of this application is the

term τ ′, obtained from τ by replacing c for every free occurence of a in τ . Similarly, we can apply a predicator expression a  ϕ to an

argument c, written again as (a ϕ)(c) , and the result is ϕ′, where each free occurence of a is replaced by c.
19To memorize this non–standard taxonomy of typed and untyped operations we could use “function=domain+codomain+mapping” and

“relation=domain+predicator”.
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©1 ≤ ©2 :=

264 N! N

〈n,m〉 (∃d ∈ N . n+ d = m)

375

=

264 N! N

〈n,m〉 (m− n ≥ 0)

375
(3) If Z+ := N\{0} denotes the positive integers, the division

rest function can be defined recursively by

©1 mod ©2 :=

266664
N× Z+−→ N

〈n,m〉 7→
(
n if n < m

(n−m) mod m else

377775
(4) An example of a ternary (3–ary) relation on N is the well–

known “m and n are equivalent modulo d”, for d 6= 0. We
put

©1 ≡ ©2 MOD ©3 :=

264 N! N! Z+

〈n,m, d〉 (n mod d = m mod d)

375
(5) Structures, basically a collection of operations on given

classes, can be defined accordingly. For example, take a
look at definition 5.8.4 to see how compact and lucid these
declarations can become once the notation is accepted.

4.3.3 More complicated examples

Higher–order operations (i.e. operations with operations as ar-
guments or results) can be elegantly formalized. Consider the
previous relation

©1 ≡ ©2 MOD ©3 : N! N! Z+

again. It could alternatively be defined as a function

MOD ©1 : Z+−→ (N! N)

which returns, for every positive d, the equivalence relation
(©1 ≡ ©2 MOD d) on the natural numbers. Written as an
anonymous function this is

2666666664

Z+−→ (N! N)

d 7→

264 N! N

〈n,m〉 (n mod d = m mod d)

375

3777777775

Alternatively the symbol definition can be integrated in the
whole definition:

MOD ©1 :=

26666666666664

Z+−→ (N! N)

d 7→
“
©1 ≡ ©2 MOD d

”

:=

2664 N! N

〈n,m〉 
“
n mod d = m mod d

”
3775

37777777777775

4.4 From ordinal to schematic
mathematics

4.4.1 Variations and generalizations

Having proposed a standard for relation expressions, we are
about to modify it again in the main part of this text, when we
generalize the ordinary relation concept (in definition 17.2.1).
We still use the general form

24 syntax

semantics

35
for (typed) operations. But our default form for ordinary re-
lations

264 D1 ! . . .! Dn

〈a1, . . . , an〉 ϕ

375
will be changed:
♣ The “syntax”, formerly given by the ordinary relation type

expression D1 ! . . . ! Dn, will now be the class tuple
〈D1, . . . , Dn〉. A class tuple is the special ordinary case of
a schema20and such a schema is the type of the new gener-
alized type of relation. The relations domain is always the

cartesian product ⊗X of its schema X. So the information

is unchanged really.

♣ The “semantics” may be specified by the graph of the re-
lation, i.e. the characteristic subclass of its domain. The
predicator expression x  ϕ can then be replaced by the
class expression {x ∈ ⊗X | ϕ}. But obviously, the informa-
tion again is still the same.

4.4.2 From “ordinary” to “schematic”

Modern mathematics is “ordinary” in the sense that operations
have “ordinal arity”: their arguments are arranged as tuples
and they are identified by their order in which they appear
in writing. This ordinal design can be generalized towards
a “schematic” form of mathematics, where the components
are freed from their ordinal determination and arbitrary index
classes are allowed instead. The key terms of this transforma-
tion are the following:
♣ The main role of the tuple is now taken by the record, i.e.

functions that return certain values ξi for given indices i.
We often use the form 2664

i1 7→ ξi1
.
.
.

.

.

.

in 7→ ξin

3775
for finite records. Now, a tuple is just a special case of a
finite record, defined as

〈ξ1, . . . , ξn〉 :=

2664
1 7→ ξ1
.
.
.

.

.

.

n 7→ ξn

3775
♣ A schema is the name of a record, in which each value is a

class.

♣ The ordinary cartesian product operator × now becomes

a special case of the more general cartesian product ⊗ , i.e.

D1× . . .×Dn can be redefined as ⊗〈D1, . . . , Dn〉, and such
a catesian product is defined for every schema, not just for

20 The “schema” is standard terminology in relational database theory.
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class tuples 〈D1, . . . , Dn〉.
♣ Consequently, “ordinary relations” have now become special

instances of “schematic relations”.

This “schematization” of ordinary mathematics can be taken
much further and one highlight will be the translation of whole
structures into one relation. But all this will be properly in-
troduced in due course.
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5 Basic concepts and notations

5.1 Stylistic conventions

5.1.1 Definition Stylistic conventions

iff is an abbreviation of “if, and only if”

new word this is how we mark the definition of
new notions in the text

new symbol indicates the definition of an important
new symbol or formalization

5.2 Expressions

5.2.1 Definition Expressions

An identifier or symbol is a basic building unit for expres-
sions.
An expression is

(1) either a primitive expression

ι

i.e. an identifier or symbol ι itself

(2) or a complex expression

o

ξ1 ξ2 . . . ξn
�

��
�
��

@
@@

i.e. an application of the (operator) expression o to its

(argument) expressions ξ1, . . . , ξn.

5.2.2 Example

For example, suppose

+ · ˆ a 2 4 7

are seven identifiers, then

+

4 ·

ˆ 7

a 2

��

��

��

@@

@@

@@

is an expression.

5.2.3 Remark Expressions, identifiers and symbols

(1) The “tree” definition 5.2.1 of complex expressions and the
example expression in 5.2.2 may look strange and is proba-
bly not what one usually imagines.

Well, first of all note, that a tree is not the picture of a
tree. The point is only, that the complex expression can be
uniquely decomposed into its components again, and that
this deconstruction is a primitive syntactical operation. In-
stead of writing

o

ξ1 ξ2 . . . ξn
�

�
�
�

@
@

we could have written

o(ξ1, . . . , ξn) or (o, ξ1, . . . , ξn)

and that would turn our example into

+(4, ·(ˆ(a, 2))) or (+, 4, (·, (ˆ, a, 2), 7))
But that might still look strange, because one rather expects
some picture like

“4 + a2 · 7”
(2) For a proper understanding of the expression concept, it is

important to understand the following distinction:

(a) An utterance is the material appearence of an expres-
sion. This can be as speach, i.e. a sequence of phonems,
as computer code, i.e. a sequence of keyboard characters,
or as a graphic on screen or paper, i.e. a two–dimensional
display of graphems.

(b) A parse tree reflects the inner structure of an expression.

For example, “FourPlusSmallASquareTimesSeven” or the
LATEX code “4+2^2\cdot7” or the graphical “4 + a2 · 7” are
utterances that, given the usual syntax rules, stands for a
parse tree which might be represented by

+

4 ·

ˆ 7

a 2

��

��

��

@@

@@

@@

It is important to note, that mathematics is (almost) always
communicated by means of utterances, but that the notion
expression means the parse tree, i.e. the unambiguous syn-
tactical structure.
In computer science, this utterance–parse-tree conversion is
an issue and solutions are implemented in parsers, compil-
ers, speach recognition devices etc. But in mathematics,
a proper understanding of this process is usually taken for
granted and entirely left to the reader. We will also take
this easy way, usually just talk about expressions and trust
on the readers intuition and education.

(3) We will not define identifiers. They could comprise dec-
imal numerals like “2435”. But they could as well be re-
stricted to digits and letters, in which case “2435” is not a
primitive, but a complex expression, made of four digits.
However, for our purposes it is probably the best to asso-
ciate identifers with short strings like “sample”, including
numerical strings like “2435” and special characters like “+”,
“Σ”, or “

R
”.

We summarize these remarks as follows.
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5.2.4 Definition Meta–syntactical conventions

oξ or o(ξ) for the unary case and more general

o(ξ1, . . . , ξn) for the n–ary case is the default notation
for the application of an operator o on
arguments ξ1, . . . , ξn. In other words,
it is the default graphical representa-

tion for the expression

o

ξ1 ξ2 . . . ξn
���� @@

.
But depending on the symbolization of
o, there are many deviant notations and
alternative configurations in mathemat-
ics. For all these non–default cases we
use the following

©1 , ©2 , . . . placeholders for anonymous expressions
or the definition of syntax features. For
example, “©1 ≤ ©2 ” explains, that the
identifier ≤ is used as a binary operator
symbol in infix notation.

( ) Parentheses are used to disambiguate
the formal structure of expressions.

5.2.5 Remark

(1) Placeholders enable us to turn an identifier (or token) (like
“+” or “≤” or “pr”) into a proper symbol, i.e. the to-
ken plus its graphical outfit when the according operator is
applied (e.g. “©1 + ©2 ” or “©1 ≤ ©2 ” or “pr©1 ”). Oc-
casionally there are more identifiers to make one symbol
(e.g. the three ones “if”, “then”, and “else” in the symbol
“if ©1 then ©2 else ©3 ”) or even no identifier at all (e.g.
the binary symbol “©1 ©2 ” for the default operator appli-
cation or “©1 ©2 ” for the exponentiation). However, in the
sequel we will not be precise on the distinction between iden-
tifiers and symbols and just talk about symbols in general.

(2) Parentheses are no symbols in the just mentioned sense,
but only auxiliary tokens to generate expressions from given
utterances (see 5.2.3(1)). Due to the common conventions,
we do use parentheses explicitely in particular in “f(x)”,
i.e. applications of an operator f on an argument x. But
it usually doesn’t lead to ambiguities to write “(fx)” or
“fx” instead. There are however some exceptions: we
use parentheses in “f(x1, . . . , xn)” as an abbreviation for
“f(〈x1, . . . , xn〉)”, which is standard notation in mathemat-
ics.

(3) When choosing words or acromyms for identifiers, we try
to follow the standard if there is some. For example, “dom”,
“false” and “id”. In our own creations we loosely apply the
rule to

(a) start with a capital letter, e.g. “Rel”, if the whole thing
stands for a class, in this case a class of relations,

(b) start with a small letter, e.g. “rel”, if the whole expres-
sion stand for a single say relation, and

(c) use capital letters exclusively, e.g. “REL”, for the
proper class of relations (i.e. a class too big to be a set).

5.2.6 Example Example

So if we consider example 5.2.2 again, this time with sym-
bols instead of identifiers, then “4 + a2 · 7” or more precisely
“4 + ((a2) · 7)” would be a graphical representation for the
expression

©1 + ©2

4 ©1 · ©2

©1 ©2 7

a 2

��

��

��

@@

@@

@@

5.2.7 Definition Two–dimensional expressions

If expressions become long, we sometimes use compact
two–dimensional versions. In particular, we may write0BBBBBB@

ξ1

ξ2

.

.

.

ξn

1CCCCCCA or

0BBBBBB@
ξ1,

ξ2,

.

.

.

ξn

1CCCCCCA for (ξ1, . . . , ξn) ,

8>>><>>>:
ξ1
ξ2
.
.
.
ξn

9>>>=>>>; or

8>>><>>>:
ξ1,
ξ1,

.

.

.
ξn

9>>>=>>>; for {ξ1, . . . , ξn} ,

8>>>>><>>>>>:

ξ : C

ϕ1

.

.

.

ϕn

9>>>>>=>>>>>;
or

8>>><>>>: ξ : C

ϕ1

.

.

.

ϕn

9>>>=>>>; for {ξ : C | ϕ1, . . . , ϕn}

etc.

5.2.8 Definition Substitution

ξ[ x/υ ] the “substitution of υ for x in ξ” or “ξ with
x replaced by υ”, denotes the expression ξ,
where every occurence of the identifier or sym-
bol x is replaced by the expression υ.

5.2.9 Example Example

(4 + a2 · 7)[ a/− 1 ] is 4 + (−1)2 · 7

5.2.10 Remark

We define expression classes, e.g. the propositional formula
class Form (A) in 6.4.1, in a traditional way: in prose. But
later on in 13.2, we present a proper formal and much more
elegant way to (context–free) formal languages, namely as co-
products of schemas (12.1.2).

5.3 A sketch of mathematical se-
mantics

5.3.1 Remark Introduction

The explanations here in this subsection 5.3 about the seman-
tics of mathematics are not very thorough. One goal of the
whole text is the attempt to fill this gap later on.
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5.3.2 Definition Types, values and environments

An expressions ξ can have a type τ , which is a class, and
a value ω, which is an element of τ .
An environment (or context) is a collection of expressions
together with their possible types and values.
In a given environment, an expression is called
(well-) typed if it has a well–defined class as type,

(well-) instantiated if it has a well–defined value, and

(well-) defined if it is both well–typed and well–

instantiated and its value is a proper element of its type.
There is also an alternative terminology that we are going
to use: If, in a given environment, an expression does have
a unique value assigned, we call it closed and its potential
value is a constant (value). Otherwise, the expression is

open and its value is a variable (value).

5.3.3 Remark

(1) Not all the expressions need to be typed and instantiated
explicitely in an environment. Often, their types and values
are derivable. For example, if “5” is the usual well–defined
integer and “©1 · ©2 ” the usual integer multiplication, we
can evaluate the value and type for “5 · 5” according to the
usual method from 5.3.4.

(2) If again “5” and “©1 ≤ ©2 ” are the usual constant opera-
tors on the class Z of integers and v is a new identifier in the
given environment, then “v ≤ 5” is an open expression, or
more precisely, an open formula (5.3.11). “∀v . v ≤ 5” is a
closed formula, however not a well–typed one, because v is
not yet typed. “∀v : Z . v ≤ 5” on the other hand would be
typed and the whole formula is well–defined. Also, if “v : Z”
has modified the envionment before so that v is typed, then
“∀v . v ≤ 5” would as well be a well–defined formula and its
value would be true.

(3) The previous example also shows that an environment is
a somehow dynamic concept, often varying between an ex-
pression and its subexpressions because some operators like
the ones in 5.3.5, but also closing operators like “∀” or “ 7→”
create (temporary) bindings for their arguments.

(4) Two special and important environments in mathematics
are created in the following two cases.

(a) The definition of a (concrete) structure, see for example
the boolean value algebra in 5.8.4, introduces a couple of
well–defined identifiers or symbols.

(b) A theory or abstract structure first introduces a signa-
ture, i.e. same class variables and some typed operator
variables, and second names some axioms, i.e. closed for-
mulas based on this vocabulary.

5.3.4 Remark Type and value evaluation

Given an environment ε and an expression ξ.
(1) If ξ is an identifier ι, the type of ξ is the type of ι and the

value of ξ is the value of ι in ε.

(2) If ξ is an complex expression o(ξ1, . . . , ξn), then

(a) ξ can be well–defined only if o is an operator expression
and the codomain types of the ξ1, . . . , ξn are compatible
with the domain type of o,

(b) the type of ξ is the codomain type of o, and

(c) the value of ξ is the result of the ξ1, . . . , ξn under o.

As it is common in mathematics and some computer languages
(while forbidden in others), we allow symbols to be overloaded,
i.e. one symbol may be used to represent several different op-
erators, if the domains of these operators are clearly distinct.
For example, “©1 ≤ ©2 ” denotes the linear order between in-
tegers as well as real numbers, we will use it to compare two

records etc. In all these cases, it is the type of the used argu-
ments that determines which of the operators is intended in a
given application.

5.3.5 Definition Operators on environments

ξ := ω is the general form of an assignment (or

instantiation) and it defines ω to be the
(new) value of ξ in the current environ-
ment. Usually, ξ is an identifier or symbol,
but occasionally it may be a more complex
expression.

ξ : τ is the general form of an type expression,
which is a constraint to the possible val-
ues of ξ, that now has to be element of the
class τ .

ξ :=

24 τ
ω

35 stands for (ξ : τ) := ω or ξ := (ω : τ)
and is our default notation for a full op-
erator definition, i.e. a simultaneous type
constraint and instantiation.

5.3.6 Remark

(1) “ξ : τ” is what we call a type expression, but sometimes,
that notion only applies to the class expression “τ”. This
ambiguity shouldn’t cause major problems in the sequel.

(2) Somehow, the type expression “ξ : C” is similar to the
element expression “ξ ∈ C”. But “ξ ∈ C” denotes a truth
value, “ξ : C” denotes the value ξ and causes a kind of side
effect on the environment that restricts the possible values
for ξ. However and despite these fundamental differences,
both expressions are often confused and it is very common to
use the element expression instead of a type expression. We
will also do so and write something like “{n ∈ N | n ≥ 7}”
(see 5.6.2) or “∀n ∈ N . n+ 7 > 5” (see 5.5.5).

(3) According to the derivability of types (5.3.4) there is a
certain freedom on the location of type expression. Using
the “©1 : ©2 ” notation is a side effect on the environment
but does not change the value. Let us take the two most
important kinds of operators to explain that:

(a) A function is a mapping with an explicit domain and
codomain (see 5.7.3) But this could also be written as a
map expression with implicit type exprssions. For exam-
ple, the square function ©1 2 on the integers is in our de-

fault notation (see 5.7.3) written as “

"
Z −→ Z
n 7→ n · n

#
”. But

one would get the same information with “(n : Z) 7→
((n · n) : Z)” or “(n 7→ n · n) : (Z −→ Z)”.

(b) An ordinary relation in our default notation (see 5.7.10),
e.g. the linear order on the natural numbers"

N! N
〈n,m〉 (∃d ∈ N . n+ d = m)

#
can as well be written as

〈n : N,m : N〉 (∃d ∈ N . n+ d = m)

or

(〈n,m〉 (∃d ∈ N . n+ d = m)) : N! N

However, these forms are usually not our first choice and we

use the “

"
©1
©2

#
” as the default version.

(4) An assignment “x := ξ” is a kind of abbreviation. It al-
lows us to use the simple “x” for the complex “ξ” in new
expressions. From a sematical point of view, this is no real
contribution and no new information.
So somehow, the assignment “x := ξ” is similar to the equa-
tion “x = ξ”. But actually, this is not so. The equation
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is a statement, thus a truth value, but the assignment —
if we want it to have any sematical meaning at all — de-
notes the entity ξ, and the fact that it also defines x, is
just a side effect on the given environment. For example,
“(7 + (x := 3)) · 2” is a well–defined expression, meaning
“20”, with the side effect that x is defined to be 3. On the
other hand, “if x = 0 then 1 else − 1” is a well–defined
expression, but “if x := 0 then − 1 else 1” is not. How-
ever, we will usually avoid to use assignments inside other
expressions, although it often makes sense (see example 4.3.3
again).

(5) When “ξ” in “ξ := ω” is not only an identifier or sym-
bol, but a more complex expression, then all the free vari-
ables in “ξ” are defined via pattern matching. For example,

“〈x, y, z〉 := 〈5, 52, 53〉” is in a certain sense just an ab-
breviation for the three subsequent assignments “x := 5”,
“y := 52”, and “z := 53”.

(6) We said that each expression can have a value and a type.
According to the previous remarks, these are as follows.

(a) The type of an assignment “ξ := ω” is the type of “ξ”,
which is identical with the type of “ω”, if “ξ” isn’t typed
yet. Its value is ω itself.

(b) The type of a type expression “ξ : τ” is τ , its value is
the value of “ξ”, if such a value is defined in the current
environment, and undefined otherwise.

5.3.7 Definition Local definitions

let ©1 in ©2 or alternatively

©2 where ©1 is our formalization of a
local definition, where the assign-
ments made in ©1 only hold for the
expression ©2 .

5.3.8 Example local definition

For every two real numbers p, q ∈ R there are two complex
numbers x1, x2 ∈ C that satisfy the equation x2 +p ·x+q = 0.
The function r with r(p, q) = 〈x1, x2〉 is defined by

r :=

2664
R× R −→ C× C

〈p, q〉 7→
˙
− p2 + w,− p2 − w

¸
where w :=

q
p2
4 − q

3775

5.3.9 Definition Two kinds of values

We distinguish two kinds of values in mathematics:

(1) classes, i.e. collections or sets (see 5.6) or

(2) operators (see 5.7), i.e. values that may take argu-
ments from some domain and return new values from
some codomain; besides they may modify the given en-
vironment.

Accordingly, every expression is a class expression or an
operator expression.

5.3.10 Remark

(1) We introduce the essential kinds of operators in 5.7:

(a) untyped mappings and typed (partial) functions,

(b) untyped predicators and typed ordinary relations, oper-
ators with the truth value codomain, which is abstracted
away in the notation, so that only the domain remains.

Other basic concepts which we are about to define can be
derived:

(i) constants as nullary functions,

(ii) truth values as particular constants,

(iii) tuples as functions with an ordinal number domain,

(iv) records (to be introduced in the main text) as general-
ized tuples,

(v) structures as tuples or records,

(vi) environments themselves as records or a pair of (par-
tial) functions that attach types and values to expressions,

etc. Other familiar concepts in mathematics depend on
their actual definition. For example, a number might be
a class (as given by the ordinal number definition 0 := ∅
and n+ 1 := n ∪ {n}) or a numeral (i.e. a tuples of digits),
but also as a member of a given class. Expressions them-
selves can be formalized as trees (i.e. recursively defined
tuples on the class of identifiers). Identifiers again may be
implemented in various ways as well (see 5.2.3(3)).
Also, there are a couple of predefined operators like the con-
ditional (5.4.3), the descriptor (5.4.4), operators on tuples,
classes, formulas etc (see below).

(2) Our operator terminology is quite uncommon. (In algebra
this usually means a binary endofunction.) But it is very
helpful in our text here and there is no standard equivalent
to denote the common features of functions, relations and
their relatives. It also allows some elegant reconstructions,
such as the introduction of “structures” as “certain opera-
tors on given classes”.

5.3.11 Definition Terms and formulas

Expressions are also divided into

(1) formulas, i.e. expressions with truth or boolean value
(see 5.5.2)

(2) terms, i.e. expressions that stand for “(real) things”
and all other values.

5.3.12 Remark

(1) For example, given the context of the usual integer struc-
ture (5.8.5), then “5”, “3+2” and “(x 7→ 9−x)(4)” are three
example terms that denote the same value five. “3 ≤ 5” and
“∃n . n ≤ 5” are two examples of formulas, both (of value)
true.

(2) We now have two classifications for expressions: The term–
formula difference and the distinction between operator ex-
pressions and class expressions.

(3) The term–formula distinction has its origin in a long philo-
sophical tradition that distinguishes two meaningful cate-
gories in every proper language: concepts and statements
(neither title is a standard). Concepts denote more or less
abstract things (“a horse”, “the tail of my horse”, “the in-
telligence of horses”, etc.) and statements are true or false
assertions (“This horse is not intelligent.”).
In mathematics this view is still dominant and in math-
ematical logic there usually is a constructive hierarchy of
first terms and formulas second. But this design is some-
what artifical and does not realy capture the real live of
mathematics. Take for example the conditional expression
“if ϕ then θ1 else θ2” (5.4.3), which is a basic ingredi-
ent of the mathematical language, but is hard to fit into
the philosophy because it is a term that has a formula as
argument, thus turns around the hierachy. Many program-
ming languages don’t suffer from this tradition anymore and
subsume formulas under terms, e.g. as boolean terms.

(4) There is a close relation between terms and formulas on
one hand and the taxonomy of operators (5.7) on the other:

(a) A mapping “x 7→ θ” is the closure of the open term “θ”,
the free variable “x” in “θ” is now bound and “x 7→ θ” can
now be applied to an argument “y”, written “(x 7→ θ)(y)”.
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A function is a typed mapping.

(b) Similarly, a predicator “x  ϕ” is the closure of the
open formula “ϕ” and a relation is a typed predicator.

5.4 Special terms and tuples

5.4.1 Definition Tuples

〈x1, . . . , xn〉 n–tuple, for n ∈ N.

〈〉 is the empty tuple

lg(x) := n is the length of a given tuple x =

〈x1, . . . , xn〉

x(i) :=xi the i–th component of a tuple x =

〈x1, . . . , xn〉 and i ∈ n

x † y := 〈x1, . . . , xn, y1, . . . , ym〉 is the
concatenation of two given tuples
x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , ym〉.

5.4.2 Remark Tuples and products

(1) 2–, 3–, 4–, etc –tuples are also called (ordered) pairs,

triples, quadruples, etc.

(2) Note the clear difference between an element x and an
unary tuple 〈x〉. Accordingly, the three expressions

〈a, b, c〉 〈a, 〈b, c〉〉 〈〈a〉, b, c〉
denote three different things. In many approaches, this dis-
tinction is blurred, but we will have to be consequent on this
matter.

(3) Many texts and programming language consider tuples
(also called sequences, lists, stacks, arrays, strings, etc,
depending on the available operations) as zero–based and
rather write 〈x0, . . . , xn−1〉 than 〈x1, . . . , xn〉. But we fol-
low the older tradition in mathematics which is to start with
1.

(4) In 9.2.1, we redefine tuples like 〈x1, . . . , xn〉 as (a special
notation for) the surjective function (see 5.7.5)

〈x1, . . . , xn〉 :=

264 n −→ {x1, . . . , xn}

i 7→ xi

375
with n := {1, 2, . . . , n}. That way, tuples can be subsumed

under the more general notion of records (see 9 ).

5.4.3 Definition Conditional terms

if ϕ then θ1 else θ2 is the usual form of a
conditional expression, where
ϕ is a formula and θ1, θ2 are
terms.

8>>>><>>>>:
θ1 if ϕ1

.

.

.
.
.
.

θn if ϕn
θn+1 else

is a more compact notation for the
nested conditional expression
(if ϕ1
then θ1
else (if ϕ2

then θ2
else (... (if ϕn

then θn
else θn+1)...)))

8>><>>:
θ1 if ϕ1

.

.

.
.
.
.

θn if ϕn

stands for

8>>>><>>>>:
θ1 if ϕ1

.

.

.
.
.
.

θn if ϕn
undefined else

But usually, the ϕ1, . . . , ϕn exhaust all
possible cases and the “undefined” sce-
nario never occurs.

5.4.4 Definition Descriptions

the xwith ϕ is the general form of an
(untyped) description, where x

is a variable and ϕ is a formula
(with x as free variable). It denotes
the allegedly unique element x that
makes ϕ true.

the x : C with ϕ or alternatively

the x ∈ C with ϕ is the typed description that re-
stricts the x to be a member of the
class C.

sing (C) stands for “the xwith x ∈ C” and
denotes the unique element of C
and is well–defined iff C is a sin-
gleton (i.e. a one–element class,
5.6.14(1))

5.4.5 Remark

(1) For example “the n : N with n · n = 27” is a description
for 9 and “the n : N with n · n = 10” is undefined, because
10 doesn’t have a square root in N.

(2) In the constitutive days of modern logic, Russell and oth-
ers used the iota symbol “ι” for descriptions, Ackermann
and Hilbert the “ε”, but most mathematical texts don’t use
an explicit formalism for descriptions at all. However it is
an essential feature in (meta)mathematics, in particular for
the function concept (5.7.4).

5.5 Formulas

5.5.1 Definition Equation

©1 = ©2 is the general form of an equation, expressing
that ©1 and ©2 are equal or identical.
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5.5.2 Definition truth values

false or 0 is the zero bit or false value

true or 1 is the unit bit or true value

B := {0, 1} is the truth or bit or
boolean value class

5.5.3 Definition Junction of formulas

Let ϕ, ϕ1, ϕ2 be given formulas.

¬ϕ “not ϕ” (negation)

ϕ1 ∧ ϕ2 “ϕ1 and ϕ2” (conjunction)

ϕ1 ∨ ϕ2 “ϕ1 or ϕ2” (conjunction)

ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2 (subjunction)

ϕ1 ↔ ϕ2 := (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ1) (equijunction)

5.5.4 Remark

(1) For every n ∈ N and formulas ϕ1, . . . , ϕn we put

ϕ1 ∧ . . . ∧ ϕ2 :=

(
true if n = 0

ϕ1 ∧ (ϕ1 ∧ . . . ∧ ϕn) else

ϕ1 ∨ . . . ∨ ϕ2 :=

(
false if n = 0

ϕ1 ∨ (ϕ1 ∨ . . . ∨ ϕn) else

(2) We also suggest an n–ary generalization for the sub– and
equijunction:

ϕ1 → . . .→ ϕn := (ϕ1 → ϕ2) ∧ . . . ∧ (ϕn−1 → ϕn)

ϕ1 ↔ . . .↔ ϕn := (ϕ1 → . . .→ ϕn) ∧ (ϕn → . . .→ ϕ1)

occasionally useful to express a chain condition or an equiv-
alence class condition, respectively.

(3) We are not consequently formalistic and often use “not”,
“and”, “or” etc. instead of the just defined “¬” etc. Also

“ ϕ1, . . . , ϕn ”

is an often used alternative notation for “ϕ1 ∧ . . . ∧ ϕn” to
express the simultaneous truth of multiple formulas. This is
often applied in class expressions “{x | ϕ1, . . . , ϕn}”.

5.5.5 Definition Quantifications

∃x . ϕ is a existentialization, where x is a vari-
able and ϕ a formula, is saying that “there
is (at least) one x such that ϕ (is true)”.

∀x . ϕ is a generalization, where x is a variable
and ϕ a formula, is saying that “for all x,
ϕ (is true)”.

∃x : C . ϕ is the explicitely typed existentialization
that restricts the x to be members of the
class C.

∀x : C . ϕ is the explicitely typed generalization that
restricts the x to be members of the class
C.

∃x ∈ C . ϕ stands for ∃x : C . ϕ and

∀x ∈ C . ϕ stands for ∀x : C . ϕ.

5.5.6 Remark

(1) Again we often use the words “for each” and “for all” in-
stead of the just defined symbols.

5.5.7 Definition Sub- and equivalence of closed formulas

ϕ1 ⇒ ϕ2 “ϕ1 entails ϕ2” or “ϕ2
follows (or derives) from ϕ1” is the

subvalence (or entailment or consequence)
relation, and

ϕ1 ⇔ ϕ2 “ϕ1 is equivalent to ϕ2” is the equivalence

relation, on closed formulas (i.e. sentences)
ϕ1, ϕ2.

5.5.8 Remark

(1) Note the difference between the subjunction →, which
takes two formulas and returns a new one, and the subva-
lence relation ⇒, which compares two closed formulas (also
called sentences) and is an either true or false statement.
The same goes for the equijunction ↔ and the equivalence
⇔.

(2) However and despite the differences we often inaccurately
use the phrases “©1 implies ©2 ” or even “if ©1 then ©2 ” to
verbalize both “©1 → ©2 ” and “©1 ⇒ ©2 ”. And similarly
we follow the common habit and use “iff” for both ↔ and
⇔.

(3) There are two different approaches to define the subvalence
relation ⇒:

(a) Semantically, ⇒ is introduced as the model–theoretical

relation |= , saying that ϕ1 |= ϕ2 iff each model of ϕ1 is

a model of ϕ2 as well.

(b) Syntactically, ⇒ is introduced as the proof–theoretical

relation ` , saying that ϕ1 ` ϕ2 iff ϕ2 can be derived
by transforming ϕ1 according to simple replacement rules
(such as 5.5.9, 5.5.10, 5.5.11)

Most of the time (i.e. in first–order predicate logic), these
two approaches are equivalent. That allows us to use our ⇒
for both |= and `.

(4) Now given the subvalence relation, the equivalence can be
properly defined as its equivalence relation in the sense that
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ϕ1 ⇔ ϕ2 iff (ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1).

5.5.9 Lemma Boolean laws

For all formulas ϕ, ψ, χ, ϕ1, . . . , ϕn with n ∈ N and every
bijective function i : {1, . . . , n} −→ {1, . . . , n} the follow-
ing statements hold:

(1) 0⇒ ϕ (least element)

(2) ϕ⇒ 1 (greatest element)

(3) 1 ∧ ϕ⇔ ϕ (neutral element of ∧)

(4) 0 ∨ ϕ⇔ ϕ (neutral element of ∨)

(5) ϕ ∧ ¬ϕ⇔ 0 (conjunctive complement)

(6) ϕ ∨ ¬ϕ⇔ 1 (disjunctive complement)

(7) ϕ1∧. . .∧ϕn ⇔ ϕi(1)∧. . .∧ϕi(n) (commutativity of ∧)

(8) ϕ1∨. . .∨ϕn ⇔ ϕi(1)∨. . .∨ϕi(n) (commutativity of ∨)

(9) ϕ ∧ ϕ⇔ ϕ (idempotency of ∧)

(10) ϕ ∨ ϕ⇔ ϕ (idempotency of ∨)

(11) ϕ ∧ (ψ ∧ χ)⇔ (ϕ ∧ ψ) ∧ χ (associativity of ∧)

(12) ϕ ∨ (ψ ∨ χ)⇔ (ϕ ∨ ψ) ∨ χ (associativity of ∨)

(13) ψ ∧ (ϕ1 ∨ . . . ∨ ϕn)⇔ (ψ ∧ ϕ1) ∨ . . . ∨ (ψ ∧ ϕn)

(∧ distributes over ∨)

(14) ψ ∨ (ϕ1 ∧ . . . ∧ ϕn)⇔ (ψ ∨ ϕ1) ∧ . . . ∧ (ψ ∨ ϕn)

(∨ distributes over ∧)

(15) ¬(ϕ1∧. . .∧ϕn)⇔ ¬ϕ1∨. . .∨¬ϕn (de Morgan’s law)

(16) ¬(ϕ1∨. . .∨ϕn)⇔ ¬ϕ1∧. . .∧¬ϕn (de Morgan’s law)

5.5.10 Lemma Laws on sub– and equijunctions

For all formulas ϕ and ψ holds:

(1) ϕ→ ψ ⇔ ¬ϕ ∨ ψ
(2) ϕ↔ ψ ⇔ (ϕ→ ψ) ∧ (ψ → ϕ)

(3) ϕ↔ ψ ⇔ (¬ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ)

(4) ϕ↔ 0⇔ ¬ϕ
(5) ϕ↔ 1⇔ ϕ

(6) ϕ→ 0⇔ ¬ϕ
(7) ϕ→ 1⇔ 1

(8) 0→ ϕ⇔ 1

(9) 1→ ϕ⇔ ϕ

(10) ϕ⇒ ψ iff ϕ→ ψ ⇔ 1

(11) ϕ⇔ ψ iff ϕ↔ ψ ⇔ 1

5.5.11 Lemma Laws on quantifications

Let v, w be variables and C,D class symbols and ϕ, ψ for-
mulas.

(1) The following statements hold in general:

(a) ¬∀v ∈ C . ϕ⇔ ∃v ∈ C . ¬ϕ
(b) ¬∃v ∈ C . ϕ⇔ ∀v ∈ C . ¬ϕ
(c) (∀v ∈ C . ϕ) ∧ (∀v ∈ C . ψ)⇔ ∀v ∈ C . (ϕ ∧ ψ)

(d) (∃v ∈ C . ϕ) ∧ (∃v ∈ C . ψ)⇒ ∃v ∈ C . (ϕ ∧ ψ)

(e) (∀v ∈ C . ϕ) ∨ (∀v ∈ C . ψ)⇐ ∀v ∈ C . (ϕ ∨ ψ)

(f) (∃v ∈ C . ϕ) ∨ (∃v ∈ C . ψ)⇔ ∃v ∈ C . (ϕ ∨ ψ)

(2) The following statements are true as well:

(a) ∀v ∈ C . ∀w ∈ D . ϕ⇔ ∀w ∈ D . ∀v ∈ C . ϕ

(b) ∃v ∈ C . ∃w ∈ D . ϕ⇔ ∃w ∈ D . ∃v ∈ C . ϕ

(c) ∃v ∈ C . ∀w ∈ D . ϕ⇒ ∀w ∈ D . ∃v ∈ C . ϕ

(d) ∀v ∈ C . ∃w ∈ D . ϕ⇐ ∃w ∈ D . ∀v ∈ C . ϕ

(3) If w does not occur in ϕ, then

(a) ∀w ∈ C . ϕ⇔ ϕ (redundant variable)

(b) ∃w ∈ C . ϕ⇔ ϕ (redundant variable)

(c) ∀v ∈ C . ϕ⇔ ∀w ∈ C . ϕ[ v/w ] (renaming)

(d) ∃v ∈ C . ϕ⇔ ∃w ∈ C . ϕ[ v/w ] (renaming)

(4) If v is not a free variable in ψ, then

(a) ∀v ∈ C . ψ ⇔ ψ

(b) ∃v ∈ C . ψ ⇔ ψ

(c) ∀v ∈ C . (ϕ ∧ ψ)⇔ (∀v ∈ C . ϕ) ∧ ψ
(d) ∃v ∈ C . (ϕ ∧ ψ)⇔ (∃v ∈ C . ϕ) ∧ ψ
(e) ∀v ∈ C . (ϕ ∨ ψ)⇔ (∀v ∈ C . ϕ) ∨ ψ
(f) ∃v ∈ C . (ϕ ∨ ψ)⇔ (∃v ∈ C . ϕ) ∨ ψ
(g) ∀v ∈ C . (ϕ→ ψ)⇔ (∃v ∈ C . ϕ)→ ψ

(h) ∀v ∈ C . (ψ → ϕ)⇔ ψ → ∀v ∈ C . ϕ

(i) ∃v ∈ C . (ϕ→ ψ)⇔ (∀v ∈ C . ϕ)→ ψ

(j) ∃v ∈ C . (ψ → ϕ)⇔ ψ → ∃v ∈ C . ϕ

(5) If C denotes a non–empty class, then

(a) ∀v ∈ C . ϕ⇒ ∃v ∈ C . ϕ

5.6 Classes and numbers

5.6.1 Introduction

(1) A class is a collection of its members (or elements). A pre-
cise definition is presented by the syntax of class expressions,
as introduced below.

(2) A set is a special kind of (“small”) class, which must be
specified according to certain constraints (e.g. specified by
the Zermelo-Fränkel axioms) that guarantee the class to be
well–defined. Most mathematics can be done with the set
concept. However, we prefer to talk about “classes”.

(2) A class family is (another name for) a class of classes.

5.6.2 Definition Class expressions

{x | ϕ} “the class of all x satisfying ϕ” is the
default form of a class expression,
where x is a variable and ϕ a formula
with no more free variables than x.

{x ∈ C | ϕ(x)} is a common version for the proper
class expression {x : C | ϕ(x)}.

{x1, . . . , xn} := {x | x = x1 ∨ . . . ∨
x = xn} is the default form of a
finite class expression

∅ := {} is the empty class

{θ | ϕ} is a generalization of the default
class expression, where θ is any term,
ϕ a formula, and θ and ϕ have the
same free variables x1, . . . , xn. This
form is equal to the proper class ex-
pression {y | (y = θ ∧ ϕ}, where y is
a variable different to the xi.

{θ | ϕ1, . . . , ϕn} stands for {θ | ϕ1 ∧ . . . ∧ ϕn}

{θ1, . . . , θn | ϕ} stands for
n
∪
i=1
{θi | ϕ}.
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5.6.3 Definition The element relation

e ∈ C “e is in or belongs to (class) C” is an instance
of the element or membership relation, where e
is a term and C a class expression. If a default
class expression for C is given by C = {x | ϕ},
the relation is defined as: e ∈ C iff ϕ[ x/e ] is
true.

e 6∈ C iff ¬(e ∈ C), “e is not in C”.

5.6.4 Definition Operations on classes

C1 ⊆ C2 iff ∀x . (x ∈ C1 → x ∈ C2) (inclusion)

C1 6⊆ C2 iff ¬(C1 ⊆ C2)

C1 ⊂ C2 iff (C1 ⊆ C2 ∧ C1 6= C2) (proper incl.)

C1 6⊂ C2 iff ¬(C1 ⊂ C2)

C1 ⊇ C2 iff (C2 ⊆ C1)

C1 ∩ C2 := {x | x ∈ C1 ∧ x ∈ C2} (intersection)

C1 ∪ C2 := {x | x ∈ C1 ∨ x ∈ C2} (union)

C1 ] C2 := C1 ∪ C2, only defined if C1 ∩ C2 = ∅

(disjunct union)T
K := {x | ∀C ∈ K . x ∈ C} (big intersection)S
K := {x | ∃C ∈ K . x ∈ C} (big union)

C1 \ C2 := {x | x ∈ C1 ∧ x 6∈ C2} (difference)

P(C) := {D | D ⊆ C} (power class)

Fin(C) := {D | D ⊆ C,D is finite }

(finite classes)

Sg(C) := {{x} | x ∈ C} (singleton class)

sing (C) (see 5.4.4) is the unique member of the given
class C, which is undefined in case C is not
a singleton (5.6.14(1)).

5.6.5 Lemma Properties of class differences

For all classes A,B,C holds

(1) A \ (B ∩ C) = (A \ B) ∪ (A \ C)

(2) A \ (B ∪ C) = (A \ B) ∩ (A \ C)

(3) (B ∩ C) \ A = (B \ A) ∩ (C \ A)

(4) (B ∪ C) \ A = (B \ A) ∪ (C \ A)

(5) (A \ B) \ C = A \ (B ∪ A)

(6) A \ (B \ C) = (A \ B) ∪ (A ∩ C)

(7) (A \ B) ∩ C = (A ∩ C) \ B
(8) (A \ B) ∪ C = (A ∪ C) \ (B \ C)

5.6.6 Definition Oppositions

For every class K of classes we define

∇K :=
S
C∈K

(C \
S

(K \ {C}))

the opposition of K

For any finite number of classes C1, . . . , Cn we put

C1 O . . . OCn := ∇ {C1, . . . , Cn}

the opposition of C1, . . . , Cn

5.6.7 Remark opposition and other class operations

(1) For three given classes A,B,C the following Venn dia-
grams (the shadowed area is the result of the operation)
visualize the basic operations on classes:
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difference A \ B opposition AOB OC

(2) The opposition AOB = (A \ B) ∪ (B \ A) is more often
called the symmetric difference, but there is no real standard
symbol.

(3) The result of the opposition is the class of all the elements
that occur in exactly one of the argument classes. In other
words, for every class family K holds:

∇K = {x ∈
S
K | x ∈ C for exactly one C ∈ K}

(4) Note, that the opposition shows some unusual behavior for
a class operation, e.g.

AOB OC 6= (AOB OC) ∪ (A ∩ B ∩ C)

= (AOB)OC

= AO (B OC)

(5) An often used (but hardly ever formalized) operation is
the inverse operation of “x 7→ {x}”, used to extract the
(unique) element x of a given class C. We use the descriptor
“sing (C)” (5.4.4) to achieve that. The result is well–defined
iff C is a singleton.
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5.6.8 Definition Operator classes

D 99K C the partial function class from D

to C (see 5.7.15)

D −→ C the function class from D to C (see
5.7.3)

D1 ! . . .! Dn the (ordinary) relation class on

D1, . . . , Dn (see 5.7.10), which is
written

Pty (D1) in case n = 1, because the unary
relation is a property on D1, and

B for n = 0, because the nullary re-
lation is a constant one of two pos-
sible truth values (5.5.2).

5.6.9 Definition Cartesian products

C1 × . . .× Cn :=

(
〈x1, . . . , xn〉
x1 ∈ C1, . . . , xn ∈ Cn

)
is the cartesian product of classes
C1, . . . , Cn

Cn :=

(
〈x1, . . . , xn〉
x1, . . . , xn ∈ C

)
the n–th (cartesian) power of a class C

and n ∈ N

C∗ :=
S
n∈N

Cn the tuple class (or

Kleene closure) of a class C

{〈〉} = C0 = ∅0 is the nullary product,
which is the same for every class C

5.6.10 Remark Cartesian products

(1) The “C1× . . .×Cn” notation is properly writable only for
n ≥ 2. If we actually need to write an unary product, we
use “C1”. (In section 12 we generalize the product notion
and provide alternative notations.)

(2) We already emphasized (5.4.2) the difference between an
element x and an unary tuple 〈x〉. Accordingly, a class C and
its first power C1 = {〈x〉 | x ∈ C} are different. As another
consequence, our strict version of the cartesian product is
not associative:

A× (B × C) (A× B)× C A× B × C
are three different tuple classes.

(3) In 12.3.2 we define, for any two tuple classes Ξ and Ξ′ the
concatenation

Ξ † Ξ′ := {ξ † ξ′ | ξ ∈ Ξ, ξ′ ∈ Ξ′}

This provides us with the means to combine cartesian prod-
ucts

(A× B) † (C ×D) = A× B × C ×D

and to attach classes to existing cartesian product

A1 † (B × C) = (A× B) † C1 = A× B × C
(4) Often used in computer science are

(a) Char , a finite class of characters, made of elements
like

‘0‘ . . . ‘9‘ ‘A‘ . . . ‘Z‘ ‘a‘ . . . ‘z‘ . . .

Often used ensembles are the 7–bit or 8–bit ASCII code

with either 128 or 256 different elements.

(b) String := Char∗, the strings, where the usual nota-

tion for these character tuples is

”Hallo!” instead of 〈‘H‘, ‘a‘, ‘l‘, ‘l‘, ‘o‘, ‘!‘〉

5.6.11 Definition Number classes

N := {0, 1, 2, . . .} the natural numbers

Z := {. . . ,−1, 0, 1, 2, . . .} the integers

Q := {n/d | n, d ∈ Z, d 6= 0} the rational numbers

R stands for the real numbers

n := {1, 2, . . . , n− 1, n} for every n ∈ N

5.6.12 Definition Operations on numbers

0 1 + − · / ≤ < min max . . .

are the usual operations on numbers

5.6.13 Definition Cardinality of classes

card(C) the cardinality of C, a (possibly transfinite)
cardinal number

5.6.14 Definition Properties of classes

A class C is called

(1) a singleton, if card(C) = 1, i.e. C = {e} for some e.

(2) finite, if card(C) ∈ N
(3) countable or enumerable, if card(C) ≤ card(N)

5.6.15 Remark Cardinal number arithmetic

A generalization of the arithmetic of natural numbers (i.e. N
together with the linear order ≤, addition +, and multiplica-
tion ·) is the arithmetic of cardinal numbers. The finite cardi-
nal numbers are exactly the natural numbers 0, 1, 2, . . .. But
there are also infinite (or transfinite) cardinals, beginning with
the cardinality ℵ0 := card(N), which is the cardinality of enu-
merable classes, and ℵ1, the cardinality of the real numbers.
The arithmetic operations can be generalized and we have,
e.g.

2 < 9 2 < ℵ0 ℵ0 < ℵ1

2 + 9 = 11 2 + ℵ0 = ℵ0 ℵ0 + ℵ0 = ℵ0

2 · 9 = 18 2 · ℵ0 = ℵ0

The addition and multiplication can also be generalized to an
arbitrary number of arguments. For any class {κi | i ∈ I} of
cardinal numbers,

P
{κi | i ∈ I} or

P
i∈I

κi denotes the sum of the κi

Q
{κi | i ∈ I} or

Q
i∈I

κi denotes the product of the κi
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where in particular

P
∅ = 0 and

Q
∅ = 1

The generalization is given by the fact that for finite cardinal
number records

P
i∈{i1,...,in}

κi = κi1 + . . .+ κin

Q
i∈{i1,...,in}

κi = κi1 · . . . · κin

5.7 Operations

5.7.1 Definition Mappings

x 7→ θ is a map(ping) (expression), where

x is a variable and θ a term.

(x 7→ θ)(σ) is the application of the map on a
given term σ. The result of this ap-
plication is the term θ′, obtained
from θ by replacing each free oc-
curence of x in θ by σ.

〈x1, . . . , xn〉 7→ θ is a n–ary or

ordinary map(ping) expression,

where n ∈ N, the x1, . . . , xn are
pairwise different variables and θ is
a term with no more free variables
than the xi.

µ (σ1, . . . , σn) is the application of the n–ary map

µ = (〈x1, . . . , xn〉 7→ θ) on a tuple
〈σ1, . . . , σn〉 of terms. The result
is θ′, obtained from θ by simultane-
ously replacing each free occurence
of an xi in θ by the according σi.2664

ξ1 7→ θ1
.
.
.

.

.

.

ξn 7→ θn

3775 stands for x 7→

8>>>><>>>>:
θ1 if x = ξ1
θ2 if x = ξ2
.
.
.

.

.

.

θn if x = ξn

5.7.2 Remark

(1) For example, “x 7→ (7 · x+ 2)” is a map expression, which,
applied to 5, returns (x 7→ (7 · x+ 2)) (5) = 7 · 5 + 2 = 37
under default interpretations of the symbols involved.

(2) There is also a tradition to write “x 7→ θ” as a so–called

lambda expression “ λx . θ ”.

5.7.3 Definition Functions

f :=

264 D −→ C

x 7→ θ

375 is our default form of a
(total) function definition,

saying that the identifier f is
defined to be a (total) function
from a class D into a class C. θ
is a term of type C with no more
free variables than x.

dom(f) := D is the domain of f

cod(f) := C is the codomain of f

f(a) or fa “f of a”, the default notation for
the application of f onto a, is the
unique value or image b ∈ C for
the given argument a ∈ D, given
by b = (x 7→ θ)(a).

©1 f©2 ©1 g h©1©2 etc., usually on the left side of a
function definition, denotes that
an application of a n–ary function
f is not written in its usual prefix
notation “f(〈x1, . . . , xn〉)”, but
in the specified way, i.e. that we
write “xfy” instead of “f(x, y)”,
“xg” instead of “g(x)”, “hxy” in-

stead of “h(x, y)”, etc.

5.7.4 Remark

(1) In set–theoretical terms a function f is usually defined
as a triple f = 〈D,C,Γ〉, where D and C are classes and
Γ ⊆ D×C is left total and right unique (i.e. for each a ∈ D
there is exactly one b ∈ C with 〈a, b〉 ∈ Γ). This definition
is easily converted to our default function form via

f =

264 D −→ C

x 7→ (the b : C with 〈x, b〉 ∈ Γ)

375
(2) Functions are usually defined as ordinary or n–ary func-

tions, which means that the domain is meant to be
an n–ary cartesian product D1 × . . . × Dn. So our
standard form of an ordinal function definition becomes264 D1 × . . .×Dn −→ C

〈x1, . . . , xn〉 7→ θ

375
And the application of such an n–ary f to and argument
〈a1, . . . , an〉 is usually written

f(a1, . . . , an) as a short form for f(〈a1, . . . , an〉)

5.7.5 Definition Properties of functions

A function f : X −→ Y is

(1) injective or an injection,

if x1 6= x2 implies f(x1) 6= f(x2), for all x1, x2 ∈ X.

(2) surjective or a surjection,

if Y = {f(x) | x ∈ X}.
(3) bijective or a bijection,

if it is both injective and surjective.
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5.7.6 Definition Operations on functions

〈〉 := (the f : ∅ −→ ∅)

is the empty function (or empty tuple, see 5.4.1)

f |Z :=

"
Z −→ C

x 7→ f(x)

#

is the (domain) restriction of a given function

f : D −→ C onto some Z ⊆ D.

g ◦ f :=

"
A −→ C

x 7→ g(f(x))

#

is the composition of two given functions f :
A −→ B and g : B −→ C.

idC :=

"
C −→ C

c 7→ c

#

is the identity function of a given class C.

5.7.7 Remark Operations on functions

(1) Let f : D −→ C be a function. The essential characteriza-
tion of a function (see 5.7.4) is the fact that for each a ∈ D
there is a unique b ∈ C defined by f . Accordingly, if D = ∅,
then f is uniquely defined for every class C. And if C = ∅,
then f : D −→ C is defined only if D = ∅, too (otherwise,
there would be a a ∈ D without a corresponding f(a) in C).
In particular, the empty function, i.e. the unique function
of type ∅ −→ ∅, is well defined.

(2) The empty function is identical with the empty tuple, both
written “〈〉”, because tuples will be redefined (see 5.6.10) as
surjective functions n −→ C, and for n = 0 = ∅ there is
just one surjective function of type n −→ C, the one with
C = ∅, and that is the empty function.

5.7.8 Definition Predicators

x ϕ is a predicator (expression), where

x is a variable and ϕ a formula.

(x ϕ)(θ) is the application of the predicator
on a given term θ. The result of
this application is the formula ϕ′,
obtained from ϕ by replacing each
free occurence of x in ϕ by θ.

〈x1, . . . , xn〉 ϕ is a n–ary or

ordinary predicator (expression),

where n ∈ N, the x1, . . . , xn are
pairwise different variables and
ϕ is a formula with no more free
variables than the xi.

π (θ1, . . . , θn) is the application of the n–ary pred-

icator π = (〈x1, . . . , xn〉 ϕ) on a
term tuple 〈θ1, . . . , θn〉. The result
is ϕ′, obtained from ϕ by simultane-
ously replacing each free occurence
of an xi in ϕ by the according θi.2664

ξ1  ϕ1

.

.

.
.
.
.

ξn  ϕn

3775 stands for x 

8>>>><>>>>:
ϕ1 if x = ξ1
ϕ2 if x = ξ2
.
.
.

.

.

.

ϕn if x = ξn

5.7.9 Remark

(1) For example, a predicator π is defined by

π := (n ∃r : N . r · r = n)

So π(9) becomes true and π(10) is false (which is why we
would rather write ¬π(10) in concrete situations).

(2) Not every predicator application is well–defined. For the
previously given example, π(〈9, 10〉) usually isn’t. A relation
now is a predicator together with a domain. Each of the do-
main members is guaranteed to be a well–defined argument
for an application. In fact, we hardly ever use predicators
as such, but only as part of a relation.

5.7.10 Definition Ordinary relations

R :=

264 D1 ! . . .! Dn

〈x1, . . . , xn〉 ϕ

375
is our default form of an ordinary or
n–ary relation definition, where the Di are
class expressions, the xi are variables and ϕ
is a formula with no more free variables than
the xi.

dom(R) := D1 × · · · ×Dn is the domain of R

gr(R) :=

(
〈x1, . . . , xn〉 ∈ D1 × · · · ×Dn
ϕ(x1, . . . , xn)

)
is the graph of R.

〈θ1, . . . , θn〉 ∈ R or R(θ1, . . . , θn)

“R holds for 〈θ1, . . . , θn〉”, are two ways of
expressing the same fact, that the applica-
tion of 〈x1, . . . , xn〉  ϕ on 〈θ1, . . . , θn〉 ∈
D1 × . . .×Dn is true.

〈θ1, . . . , θn〉 6∈ R or 6 R(θ1, . . . , θn)

“R does not hold for 〈θ1, . . . , θn〉”, on the
other hand are saying that the application
of 〈x1, . . . , xn〉  ϕ on 〈θ1, . . . , θn〉 ∈ D1 ×
. . .×Dn is false.

©1 R©2 indicates the use of the infix notation “xRy”
for the application of a binary relation
R rather than the default prefix notation
“R(x, y)”.

5.7.11 Remark

According to 5.6.8 and 5.7.8, the default form for an unary
relation is then given by

24 Pty (D)

x ϕ

35
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5.7.12 Definition Special notations

x1, . . . , xnRy is an often used abbreviation
for “x1Ry ∧ . . . ∧ xnRy”, where
©1 R©2 : A ! B is a bi-
nary relation in infix notation,
x1, . . . , xn ∈ A, and y ∈ B. For
example, “a, b, c ∈ C”.

x0R1x1R2 . . . Rnxn is an often used abbreviation
for “x0R1x1 ∧ x1R2x2 ∧ . . . ∧
xn−1Rnxn”, where the Ri are
binary relations in infix nota-
tion and the xi are defined argu-
ments. For example, “∅ 6= A ⊆
B ⊂ C”.

5.7.13 Definition image and coimage classes of binary

relations

R[Z] := {y ∈ Y | x ∈ (Z ∩X) and 〈x, y〉 ∈ R}

is the R–image class of Z, for R : X ! Y
and a class Z

R−1[Z] := {x ∈ X | y ∈ (Z ∩ Y ) and 〈x, y〉 ∈ R}

is the R–coimage class of Z, for R : X! Y
and a class Z.

5.7.14 Remark

(1) In set–theoretical terms an n–ary relation R is defined as
a subclass Γ ⊆ D1 × . . . × Dn of a cartesian product of
classes. This version is easily translated into our default
form by putting

R =

"
D1 ! . . .! Dn

〈x1, . . . , xn〉 〈x1, . . . , xn〉 ∈ Γ

#
(2) Every n–ary relation R : D1 ! . . .! Dn can be repre-

sented by an n–ary function

χR :=

264 D1 × . . .×Dn −→ B

〈x1, . . . , xn〉 7→
(

1 if R(x1, . . . , xn)

0 else

375
the characteristic function of R. On the other hand, every
function f : D −→ C can be represented by a binary rela-
tion "

D! C

〈x, y〉 f(x) = y

#
So somehow, one of the two concepts could be reduced to
the other one. But in mathematical practice, it is common
to understand them as distinct notions (see the remarks in
5.3.12).

(3) However we introduce partial functions as a generalization
of the function concept which will be convenient in certain
circumstances (see definition 5.7.15). As usual, a partial
function is a kind of function f from D in to C, where f(a)
is not necessarily defined for every a ∈ D. Let us redefine
a (total) function as a partial function f : D 99K C, which
has a unique f(a) ∈ C for each a ∈ D.

5.7.15 Definition Partial functions

f :=

264 D 99K C
x 7→ θ

375 is our default form of a
partial function definition, saying
that the identifier f is defined to
be a partial function from a class
D into a class C, such that every
x ∈ D is mapped onto θ ∈ C. θ
is a term of type C with no more
free variables than x.

f(a) or fa f of a, is the unique value or im-
age b ∈ C for the given argument
a ∈ D, given by b = (x 7→ θ)(a).

dom(f) := D is the domain of f

cod(f) := C is the codomain of f

def(f) :=

(
a ∈ D

f(a) ∈ C
is well–defined

)
is the defined domain of f

5.7.16 Remark

(1) A typical example of a partial function is the division on
rational numbers

©1 /©2 :=

"
Q× Q 99K Q

〈n, d〉 7→ the a : Q with a · d = n

#
with def(/) = Q \ {0}.

(2) The generalization of functions to partial functions is
avoided in certain mathematical traditions, where “mean-
ingless” or “undefined” expressions are tried to be excluded
apriori. On the other hand, there are also strategies to deal
with the undefined cases. A partial function f : D 99K C
can easily be translated into a total function

f ′ :=

264 D −→ C ] {⊥}

x 7→
(
f(x) if x ∈ def (f)

⊥ else

375
where ⊥ 6∈ C is a any element of the codomain. Another ap-
proach (used e.g. in Unix and C), is the introduction of two
channels for every output: a standard output and a stan-
dard error. In case of undefined arguments, a side effect is
issued to the standard error.

5.7.17 Definition Operations on partial functions

f−1 :=

"
C 99K D

b 7→ the a : D with f(a) = b

#

is the inverse of a partial function f : D 99K C

g ◦ f :=

"
A 99K C

x 7→ g(f(x))

#

is the composition of two given partial functions
f : A 99K B and g : B 99K C.
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5.7.18 Definition image and coimage classes

f [A] := {f(a) | a ∈ A ∩ def(f)}

is the f–image class of A, for every (partial or

total) f : D 99K C and each A ⊆ D.

f−1[A] := {a ∈ def(f) | f(a) ∈ A}

is the f–coimage class of A, for every (partial

or total) f : D 99K C and each A ⊆ C.

5.7.19 Definition Constants

A constant is a nullary function, i.e. a function with do-
main {〈〉}.

5.7.20 Remark Constants

We usually think of a constant as a fixed entity. In a strongly
typed design of mathematics like ours here, that is a typed
entity c : C, a particular member c of a given class C. But
this can as well be described as the nullary function

c :=

"
{〈〉} −→ C

〈〉 7→ c

#

because there is no difference between the function c and the
application c() = c. That justifies definition 5.7.19.

5.8 Structures

5.8.1 Definition Structures

A (concrete) (ordinary) structure is a pair

S = 〈K,O〉
where

(1) K is a class of classes, a collection of carrier classes,

(2) O is a class of (ordinary) operators.
Normally, each o ∈ O has one of the following three
types (5.6.8):

(a) C (constant)

(b) D1 × . . .×Dn −→ C (n–ary function)

(c) D1 ! . . .! Dn (n–ary relation)

where all the C’s and D’s are members of K.

5.8.2 Definition

Given an ordinary structure S = 〈K,O〉. In case K =
{C1, . . . , Ck} and O = {o1, . . . , on} are both finite, we
usually use

S =
˙
C1, . . . , Ck, o1, . . . , on

¸
as a default form for the given structure. And since each
each oi is either a constant, or an ordinary function, or an
ordinary relation, we can also agree on

S = 〈C1, . . . , Ck| {z }
carrier

, c1, . . . , cl| {z }
constants

, f1, . . . , fm| {z }
functions

, R1, . . . , Rn| {z }
relations

〉

as the default form for S. However in many cases, this
order of the operators is not maintained.

5.8.3 Remark

(1) We prefer to use “Euler Fraktur” for structure identi-
fiers.21

(2) Often, an structures with exactly one carrier class and no
relations is called an algebra. We use it pretty much as a

synonym for the just defined (ordinary) structures.

5.8.4 Definition The boolean value algebra

The boolean (or bit) value algebra is the structure

B :=
˙
B,≤, 0, 1, -,∧,∨

¸
where

B :=
n

0 , 1
o

©1 ≤ ©2 :=

264 B! B

〈β1, β2〉 β1 = 0 or β2 = 1

375

-©1 :=

2666664
B −→ B

β 7→

8<:0 if β = 1

1 if β = 0

3777775

©1 ∧ ©2 :=

2666664
B× B −→ B

〈β1, β2〉 7→

8<:1 if β1 = 1 and β2 = 1

0 else

3777775

©1 ∨ ©2 :=

2666664
B× B −→ B

〈β1, β2〉 7→

8<:1 if β1 = 1 or β2 = 1

0 else

3777775

21

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

a b c d e f g h i j k l m n o p q r s t u v w x y z
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5.8.5 Definition Number structures

Z :=
˙
Z, 0, 1,+,−, ·,≤

¸
is the usual (linearly or-
dered) integer ring.

Q :=
˙
Q, 0, 1,+,−, ·, /,≤

¸
is the usual (lin-
early ordered)
field of rational numbers.

5.8.6 Definition

If S =
˙
K,O

¸
and S′ =

˙
K′,O′

¸
are two structures, then

S †S′ :=
˙
K ∪ K′,O ∪O′

¸
is the combination of S and S′

5.8.7 Definition

Given two ordinary structures in the normal form of 5.8.2

S =
˙
C1, . . . , Ck, c1, . . . , cl, f1, . . . , fm, R1, . . . , Rn

¸
S′ =

˙
C′1, . . . , C

′
k′ , c

′
1, . . . , c

′
l′ , f

′
1, . . . , f

′
m′ , R

′
1, . . . , R

′
n′
¸

(1) S and S′ are called similar, iff

(a) k′ = k

(b) l′ = l and for each i ∈ {1, . . . , l} holds:

ci : Cb implies c′i : C′b

(c) m′ = m and for each i ∈ {1, . . . ,m} holds:

if fi : Ca1 × . . .× Caj −→ Cb

then f ′i : C′a1 × . . .× C
′
aj
−→ C′b

(d) n′ = n and for each i ∈ {1, . . . , n} holds:

if Ri : Ca1 ! . . .! Caj

then R′i : C′a1 ! . . .! C′aj

(2) S is a substructure of S′, iff

(a) S and S′ are similar

(b) Ci ⊆ C′i for each i ∈ {1, . . . , k}
(c) ci = c′i for each i ∈ {1, . . . , l}
(d) fi(x) = f ′i(x), for all i ∈ {1, . . . ,m} and x ∈

dom (fi)

(e) Ri(x) iff R′i(x), for all i ∈ {1, . . . , n} and x ∈
dom (Ri)

5.8.8 Example

(1) Being similar means for two structures, that they have an
equivalent signature or type system.

(2) Z and Q are not similar, Q has one more function than Z,
but

˙
Z, 0, 1,+,−, ·,≤

¸
and

˙
Q, 0, 1,+,−, ·,≤

¸
are similar.

In fact, the former is even a substructure of the latter.

(3)
˙
B, 0, 1,∧,∨

¸
and

˙
Z, 0, 1, ·,+

¸
are similar.

5.8.9 Definition

Given two similar structures, each with just one carrier,
i.e. they have the general form

S =
˙
C, c1, . . . , cl, f1, . . . , fm, R1, . . . , Rn

¸
S′ =

˙
C′, c′1, . . . , c

′
l, f

′
1, . . . , f

′
m, R

′
1, . . . , R

′
n

¸
A function

h : C −→ C′

is said to be

(a) a homomorphism from S into S′, written

h : S −→ S′

if it has the following properties:

(i) h(ci) = c′i for each i ∈ {1, . . . , l}
(ii) h (fi (x1, . . . , xj)) = f ′i (h(x1), . . . , h(xj))

for all i ∈ {1, . . . ,m} and 〈x1, . . . , xj〉 ∈ dom (fi)

(iii) Ri (x1, . . . , xj) implies R′i (h(x1), . . . , h(xj))
for all i ∈ {1, . . . , n} and 〈x1, . . . , xj〉 ∈ dom (Ri)

(b) an isomorphism from S into S′, written

h : S ∼= S′

if h is a bijective homomorphism.

S and S′ are called isomorph, written

S ∼= S′

if there is an isomorphism h : S ∼= S′.

5.8.10 Example

(1) If two structure are isomorph, then each formula holds in
one structure iff it is true in the other one two. From a logical
point of view, two isomorph structures are quasi–identical.

(2) For example, for every record η = [ηi|i ∈ I] (see 9.1.2),
Proj (η) ∼= P (I), i.e. the record projection structure
Proj (η) (see 11.9.1) is isomorph to the power class alge-
bra P (I) (see 6.2.2).

(3) In the proof of 19.5.10 we show that, for every schema
X = [Xi|i ∈ I] (see 9.3.1), Rel (X) ∼= P (⊗X), i.e. the
equi–schematic relation algebra over X (see 19.5.9) is iso-
morph to the power class algebra P (⊗X) of the cartesian
product ⊗X of X (see 12.1.2). And since P (⊗X) is a com-
plete boolean algebra, Rel (X) must be one, too.
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Part III

Quasi–hierarchies
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6 Examples of quasi–structures

6.1 Introduction

6.1.1 introduction

Order– and lattice–theoretical concepts belong to the basic
toolkit of modern mathematics. Well–known key notions are:

♣ poclasses (or posets), i.e. partially ordered classes, i.e.
classes with a transitive, reflexive and antisymmetric rela-
tion,

♣ lattices, i.e. poclasses with well–defined binary meet and
join functions,

♣ complete lattices, i.e. lattices with g.l.b and l.u.b for every
subclass,

♣ boolean lattices or boolean algebras, i.e. distributive lattices
with complement functions.

Many structures of the main text can be subsumed under
these headings as well. For example, the record class structure˙
Rec,≤

¸
turns out to be a poclass and Rel(X) is a complete

boolean lattice, for every schema X.
However, there are other structures in the main text that al-
most fit in, but not exactly. These quasi–structures behave
very much like poclasses, but instead they are based on quasi–
ordered classes: they are still transitive and reflexive, but not
necessarily antisymmetric.
Therefore, we generalize the key concepts and introduce quasi–
lattices, boolean quasi–lattices and others. For example, the
relation structure Prel(X), the most important structure of
our main text, comprises two complete boolean quasi–lattices.
Of course, quasi–ordered classes are also well–known and well–
investigated things in mathematics. But usually, these struc-
tures are are turned into proper poclasses by either using their
quotient structure (i.e. taking the equivalence classes as the
new elements) or applying a canonizer (i.e. all equivalent
representations are replaced by some unique canonic normal
form).
But we cannot do all that with our structures without losing
essential properties. In other words, if we want to integrate
our relation algebra into the framework of lattices and boolean
algebras, we need to generalize these concepts first.

6.1.2 overview of this chapter

Section 7 is a summarizing survey of this generalized order–
and lattice theory. But that is just a dense and dry succes-
sion of definitions and statements. Therefore, we try to moti-
vate the new concepts by a couple of important examples from
mathematics and computer science here in section 6 first.

For these new key terms we add the references “(n.n.n)” which
point to the paragraph that actually defines the according new
notions.

6.2 Power algebras

6.2.1 Repetition

Recall 5.6.13, that every class C defines

♣ P (C) := {A | A ⊆ C}

♣ Fin (C) := {A | A ⊆ C,A is finite}

6.2.2 Definition

Given a class C.

P (C) :=
˙
P (C) ,⊆, ∅, 1,∩,∪,

T
,
S
, {
¸

the power algebra or subclass algebra of C,
where

(a) 1 := C is the full class,

(b)
T

is defined on the entire domain P (C) by puttingT
∅ := C and

(c) {©1 := 1 \ ©1 is the complement function.

Fin (C) :=
˙
Fin (C) ,⊆, ∅,∩,∪, \

¸
is the finite power algebra or finite subclass algebra of C.

6.2.3 Remark the power class algebra˙
P (C) ,⊆

¸
, i.e. the class of all its subclasses, ordered by the

usual set inclusion, is the standard example of a poclass (7.2.2).
In other words, ⊆ is a (partial) order (7.1.3) on P (C).

We generalize these notions: our basic concept is the quasi–
order (7.1.3) (i.e. a transitive and reflexive binary endore-
lation), that may or may not be antisymmetric (also called
canonic). A (partial) order is then a canonic quasi–relation.

The particular quasi–ordered class
˙
P (C) ,⊆

¸
has also the fol-

lowing features:
♣ A bottom element (7.4.1) ∅ ∈ P (C), which is less that any

other member.

♣ A top element (7.4.1) 1 := C, which is greater than any
other member.

♣ A meet function (7.4.3) ©1 ∩ ©2 : P (C)×P (C) −→ P (C)
that returns the greatest lower bound for each pair of classes.

♣ A join function (7.4.3) ©1 ∪ ©2 : P (C)× P (C) −→ P (C)
that returns the least upper bound for each pair of classes.

♣ A infimum function (7.4.7)
T

: P(P (C)) −→ P (C) that
returns the greatest lower bound for every class of classes.

♣ A supremum function (7.4.7)
S

: P(P (C)) −→ P (C) that
returns the least upper bound for every class of classes.

♣ It has a complement function (7.5.2) { : P (C) −→ P (C)
that returns the complement {A of every class A ∈ P (C).

For canonic quasi–ordered classes, all these things are uniquely
defined, if they exists at all. But when a quasi–ordered class is
not canonic, there is usually more than one possible definition
(as we will soon demonstrate).

A quasi–ordered class with all these features, which is
also distributive (7.5.1), is a complete quasi–boolean lattice.
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˙
P (C) ,⊆

¸
is a standard example of a complete quasi–boolean

lattice. Canonic ones like this one are more often called com-
plete boolean lattices.

6.2.4 Remark the finite power class algebra

In case C is a finite class, every member of P (C) is a finite
class, so P (C) = Fin (C). If C is as small as {0, 1, 2, 3}, the
structure

˙
Fin (C) ,⊆

¸
can be represented by its order dia-

gram or Hasse diagram (7.3.4):

{}

{0} {1} {2} {3}

{0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3}

{0, 1, 2} {0, 1, 3} {0, 2, 3} {1, 2, 3}

{0, 1, 2, 3}

c
c

c
cc

A
A
AA

�
�

��

#
#

#
##

A
A
AA

Q
Q

Q
Q

Q

�
�
��

�
�

��

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q

�
�

��

�
�

�
�

�

C
C
CC

#
#

#
##

�
�

��

�
�
��

#
#

#
##

C
C
CC

Q
Q

Q
Q

Q

�
�

�
�

�

�
�

��

Q
Q

Q
Q

Q

�
�

��

c
c

c
cc

�
�
��

A
A

AA

#
#

#
##

�
�
��

A
A

AA

c
c

c
cc

But if C is an infinite class, Fin (C) 6= P (C), and˙
Fin (C) ,⊆

¸
is not a complete boolean lattice anymore: There

still is the bottom element ∅, and ∩ and ∪ are the meet and
join function. But there is no top element anymore, thus no
complement function. However, there still is

♣ a relative complement function (7.5.5) ©1 \ ©2 : Fin (C)×
Fin (C) −→ Fin (C) that returns the relative complement
A \ B of B in A in the sense that always

(A \ B) ∩ B = ∅ and (A \ B) ∪ B = A

Distributive lattices with these properties are sometimes called
generalized boolean algebras (7.5.6) and

˙
Fin (C) ,⊆

¸
is the

typical standard example of such a structure. 22

6.3 A generalized quasi–boolean al-
gebra on tuples

6.3.1 Example

For every class C we defined the tuple class on C by

C∗ := {〈x1, . . . , xn〉 | n ∈ N and x1, . . . , xn ∈ C}

Such a tuple 〈x1, . . . , xn〉 can be used to represent the finite
class {x1, . . . , xn}. All the class operations on Fin (C) can be
defined for C∗ in a similar fashion as follows. For each e ∈ C
and all all a = 〈a1, . . . , an〉 and b = 〈b1, . . . , bm〉 we put

♣ e ∈∗ a iff e ∈ {a1, . . . , an}

♣ a ⊆∗ b iff {a1, . . . , an} ⊆ {b1, . . . , bm}

♣ a ≡∗ b iff {a1, . . . , an} = {b1, . . . , bm}

♣ a \∗ b is a, but every component in b is deleted

♣ a ∪∗ b := 〈a1, . . . , an, b1, . . . , bm〉

♣ a ∩∗ b := a \∗ (a \∗ b)

For example, for C = N we obtain

7 ∈∗ 〈1, 5, 2, 7, 4, 6, 32〉

〈2, 4, 6〉 ⊆∗ 〈2, 2, 3, 3, 4, 4, 5, 5, 6, 6〉

〈2, 4, 6〉 ≡∗ 〈2, 2, 4, 4, 6, 6〉 ≡∗ 〈6, 4, 2〉

〈2, 2, 3, 3, 4, 4, 5, 5, 6, 6〉 \∗ 〈2, 4, 6, 8〉 = 〈3, 3, 5, 5〉

〈2, 4, 4, 6〉 ∪∗ 〈2, 2, 3, 3, 4〉 = 〈2, 4, 4, 6, 2, 2, 3, 3, 4〉

〈2, 4, 4, 6〉 ∩∗ 〈2, 2, 3, 3, 4〉 = 〈2, 4, 4, 6〉 \∗ 〈6〉 = 〈2, 4, 4〉

〈2, 2, 3, 3, 4〉 ∩∗ 〈2, 4, 4, 6〉 = 〈2, 2, 3, 3, 4〉 \∗ 〈3, 3〉 = 〈2, 2, 4〉

The structure on C∗ is very similar to the structure on Fin (C).
More precisely, the codomain function

cod :=

264 C∗ −→ Fin (C)

〈a1, . . . , an〉 7→ {a1, . . . , an}

375
is a quasi–isomorphism in the sense that

e ∈∗ a iff a ∈ cod(a)

a ⊆∗ b iff cod(a) ⊆ cod(b)

a ≡∗ b iff cod(a) = cod(b)

cod(a \∗ b) = cod(a) \ cod(b)

cod(a ∩∗ b) = cod(a) ∩ cod(b)

cod(a ∪∗ b) = cod(a) ∪ cod(b)

for each e ∈ C and all a, b ∈ C∗.

But unlike
˙
Fin (C) ,⊆

¸
, the structure

˙
C∗,⊆∗

¸
is not a

poclass (transitive, reflexive, and antisymmetric), but only a
quasi–ordered class (7.2.2) (i.e. transitive and reflexive), that
is just not canonic or antisymmetric (7.1.2).

The general criterion (7.3.3) for canonicity tells us that the
quasi–ordered class

˙
C∗,⊆∗

¸
is a poclass iff the equivalence

relation ≡∗ is the identity relation. And this is obviously not
the case here: 〈1, 2〉 ≡∗ 〈2, 1〉, but 〈1, 2〉 6= 〈2, 1〉.

This non–canonicity makes that many notions uniquely defined
on
˙
Fin (C) ,⊆

¸
are defined on

˙
C∗,⊆∗

¸
only up to equiva-

lence.

For example, two finite classes, say {1, 2, 3} and {2, 3, 4} do
have a unique greatest lower bound (7.4.3) {2, 3}. So the meet
function (7.4.3) on

˙
Fin (C) ,⊆

¸
, that takes any two finite

classes and returns their greatest lower bound, is uniquely de-
fined, namely as ∩. The two tuples 〈1, 2, 3〉 and 〈2, 3, 4〉 on
the other hand have many greatest lower bounds 〈2, 3〉, 〈3, 2〉,
〈2, 2, 3〉 etc. which are all equivalent, i.e. 〈2, 3〉 ≡∗ 〈3, 2〉 etc.
Accordingly, a meet function does exist on

˙
C∗,⊆∗

¸
too, in

our case ∩∗. But this meet function is not unique. We could
have defined another meet function ∩′∗ by a∩′∗ b := b\∗ (b\∗a).
Then

22According to Garrett Birkhoff: Lattice Theory, the definition of a generalized boolean algebra goes back to M.H. Stone: The theory

of representations for Boolean algebras, Trans. AMS 40 (1936),p 35-52.
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〈2, 4, 4, 6〉 ∩′∗ 〈2, 2, 3, 3, 4〉 = 〈2, 2, 4〉

〈2, 4, 4, 6〉 ∩∗ 〈2, 2, 3, 3, 4〉 = 〈2, 4, 4〉

The results of the two meet functions are always equivalent,
here 〈2, 2, 4〉 ≡∗ 〈2, 4, 4〉, but they are not equal in general.

If a quasi–ordered class like
˙
C∗,⊆∗

¸
, also written together

with the equivalence relation as
˙
C∗,⊆∗,≡∗

¸
, has a bottom

element (here: 〈〉), a meet and a join function (like ∩∗ and
∪∗), and a relative complement function (here \∗), we call it
a generalized boolean quasi–lattice (7.5.4), and the concrete
instance ˙

C∗,⊆∗,≡∗, 〈〉,∩∗,∪∗, \∗
¸

is a generalized quasi–boolean algebra (7.6.2).

6.4 The theory algebra of proposi-
tional formulas

6.4.1 propositional formulas

Given a class A of so–called atoms (usually a countable set of
identifiers or symbols). The class

Form(A)

of all propositional formulas on A is inductively defined to
comprise the following expressions:

α for every α ∈ A (atomic formulas)

f (false value)

t (true value)

-ϕ for every ϕ ∈ Form(A) (negation)

[ϕ1 ∧ . . . ∧ ϕn ] ϕ1, . . . , ϕn ∈ Form(A) (conjunction)

[ϕ1 ∨ . . . ∨ ϕn ] ϕ1, . . . , ϕn ∈ Form(A) (disjunction)

For example, if a, b, c, . . . ∈ A, then

[ a ∨ b ∨ a ∨ -c ]

[ -a ∧ -[ b ∨ a ] ∧ c ∧ t ∧ -a ]

-[∨ ]

[ a ∨ f ]

[ f ∨ -t ∨ [∧ ] ∨ t ]

are example formulas (on A).

Note that Form(A) is an infinite class, even if A = ∅.

6.4.2 boolean relations on propositional formulas

For two formulas ϕ and ψ we write

♣ ϕ⇒ ψ iff ϕ entails ψ, where this entailment or subvalence

relation ⇒ on the class of formulas is defined as usual.

♣ ϕ⇔ ψ iff ϕ and ϕ are equivalent, i.e. iff ϕ ⇒ ψ and

ψ ⇒ ϕ.

For example

[ a ∧ -a ] ⇔ f

[ a ∧ -b ] ⇒ [ a ∨ -b ]

[ a ∧ -b ] ⇔ -[ -a ∨ b ]

[ a ∧ b ] ⇒ b

[ a ∧ f ] ⇒ a

[ a ∧ f ] ⇔ -t

[∧ ] ⇔ t

The relation ⇒ is transitive and reflexive, but it is not an-
tisymmetric (7.1.2). For example f ⇒ -t and -t ⇒ f , i.e.
f ⇔ -t, but f 6= -t. So there are equivalent formulas which are
not equal. In other words,

˙
Form(A),⇒

¸
is a quasi–ordered

class, but it is not canonic, i.e. not a poclass (7.2.2).

6.4.3 the standard quasi–boolean algebra on propositional

formulas

For a given atom class A we define the

Form (A) :=
˙
Form(A),⇒,⇔, f , t,u,t,¬

¸
the standard quasi–boolean algebra on Form(A), where

©1 u ©2 :=

264 Form(A)× Form(A) −→ Form(A)

〈ϕ, ψ〉 7→ [ϕ ∧ ψ ]

375

©1 t ©2 :=

264 Form(A)× Form(A) −→ Form(A)

〈ϕ, ψ〉 7→ [ϕ ∨ ψ ]

375

¬©1 :=

24 Form(A) −→ Form(A)

ϕ 7→ -ϕ

35
Such a quasi–boolean algebra is “quasi the same” as a proper
boolean algebra, except that things are not “canonic”, i.e.
identity is replaced by equivalence.

For example, de Morgans law (7.6.10) ¬(xu y) = (¬x)t (¬y)
only holds in a weaker, more general version ¬(x u y) ⇔
(¬x) t (¬y).

Our standard quasi–boolean algebra on Form(A) is indeed a
quasi–boolean algebra (7.6.2), because in particular

♣ f is a bottom element (7.4.1) in the sense that it is a lower
bound of every ϕ ∈ Form(A), i.e. f ⇒ ϕ.

♣ t is a top element (7.4.1), accordingly.

♣ u is a meet function (7.4.3) in the sense that ϕ u ψ is a
(quasi–)greatest lower bound for every two formulas ϕ and
ψ. Again, note that next to ϕuψ := [ϕ∧ψ ] there are more
greatest lower bounds, e.g. [ψ ∧ ψ ], ¬[¬ϕ ∨ ¬ψ ], etc. But
they are all equivalent.

♣ t is a join function (7.4.3) that always returns a least upper
bound accordingly.

♣ ¬ is a complement function, because ¬ϕ := -ϕ is indeed a
complement of ϕ. But again, ϕ has more equivalent com-
plements like -[ϕ ∧ t ], ---ϕ, etc.

The fact that it is indeed possible to construct such a
quasi–boolean algebra on top of the quasi–ordered class˙
Form(A),⇒

¸
is emphasized by saying that

˙
Form(A),⇒

¸
is a quasi–boolean lattice (7.4.9).
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For proper poclasses
˙
C,v

¸
there is no difference here: if they

exist at all, the bottom and top element and the three functions
are uniquely defined, the boolean algebra is uniquely deter-
mined, so the boolean lattice

˙
C,v

¸
“is“ the boolean algebra.

But if
˙
C,v

¸
is only a quasi–ordered class, then it either is or

is not a quasi–boolean lattice. If it is, then there are usually
more than one boolean algebras that can be defined on

˙
C,v

¸
.

In our example, we could have defined another version of a
quasi–boolean algebra, say˙

Form(A),⇒,⇔, [∨ ], -[∨ ],u′,t′,¬′
¸

where, for all ϕ, ψ ∈ Form (A),

ϕ u′ ψ := [ψ ∧ t ∧ ϕ ∧ ψ ]

ϕ t′ ψ := [ϕ ∨ ψ ∨ f ]

¬′ϕ := -[ϕ ∧ ϕ ]

6.4.4 Exercise

Is the quasi–boolean lattice
˙
Form(A),⇒

¸
complete (7.4.9),

i.e. does it have an infimum and supremum function (7.4.7)?

6.4.5 atomic relations on propositional formulas

The atom class function

@ : Form(A) −→ P(A)

returns all the atoms that occur in a formula. For example

@([ a ∨ b ∨ a ∨ -c ]) = {a, b, c}

@([ -a ∧ -[ b ∨ a ] ∧ c ∧ t ∧ -a ]) = {a, b, c}

@(-[∨ ]) = ∅

We define the subatomic and equiatomic relation on formulas
by putting

ϕ E ψ iff @(ϕ) ⊆ @(ψ)

ϕ , ψ iff @(ϕ) = @(ψ)

For example,

t E [ a ∨ -b ]

[ a ∨ b ∨ c ∨ -a ] , [ a ∧ b ∧ c ]

Similar to the subvalence relation, the subatomic rela-
tion is transitive and reflexive, but not antisymmetric.˙
Form(A),E

¸
is a quasi–ordered class, but not a canonic one,

i.e. not a poclass.

6.4.6 Exercise

Does
˙
Form(A),E

¸
have a top and bottom elements, a meet

and join function, or even a complement function? Is it a
quasi–lattice or even a boolean one?

6.4.7 atom expansion and reduction

Consider Form (A) =
˙
Form(A),⇒,⇔, f , t,u,t,¬

¸
again,

for some arbitrary A, our standard quasi–boolean algebra on
Form(A).

We observe that the operations u,t,¬ accumulate the atoms
of their arguments in the sense that

@(ϕ u ψ) = @(ϕ) ∪@(ψ)

@(ϕ t ψ) = @(ϕ) ∪@(ψ)

@(¬ϕ) = @(ϕ)

Operating on formulas increases the atom classes of the in-
volved formulas. It is easy to define an operation that only
expands the atoms of its argument and return an equiva-
lent formula. On the other hand, we can also try to con-
struct an operation that decreases the atom class. But this
equivalent reduction is not that easy to generate. It often
doesn’t even exist at all.

An (atomic) expander is an operation

©1 ‖ ©2 : Form(A)× A∗ −→ Form(A)

That takes a formula ϕ and atoms 〈α1, . . . , αn〉 ∈ A∗ and
returns a formula ϕ′ := ϕ ‖ 〈α1 . . . , αn〉 such that
♣ @ϕ′ = @ϕ ∪ {α1, . . . , αn} and

♣ ϕ′ ⇔ ϕ.

One instance of such an atom expander is obviously given by
the definition

ϕ ‖ 〈α1, . . . , αn〉 := [ϕ ∨ [ f ∧ α1 ∧ . . . ∧ αn ] ]

We call the result the expansion of ϕ by α1, . . . , αn.

An equivalent reduction on the other hand should take a for-

mula ϕ and atoms α1, . . . , αn and return a formula ϕ′, called
an equivalent reduction of ϕ onto α1, . . . , αn, such that

♣ @ϕ′ = {α1, . . . , αn} and

♣ ϕ′ ⇔ ϕ

For example, if we put ϕ := [ b∨c∨ [ a∧¬a ] ] and ϕ′ := [ b∨c ]
then ϕ′ is indeed an equivalent reduction of ϕ onto b, c.

But if we put ϕ := [ b ∨ c ∨ ¬a ], no equivalent reduction of ϕ
onto b, c does exist.

6.4.8 infimum and supremum reduction

Thus an equivalent reduction is not a well–defined notion in
general. However, there are two other reduction concepts:

♣ An infimum reductor is a function

©1 ⇑ ©2 : Form(A)× A∗ −→ Form(A)

such that, for all formulas ϕ and atoms αi

♣ @(ϕ ⇑ 〈α1, . . . , αn〉) = {α1, . . . , αn}
♣ ϕ ⇑ 〈α1, . . . , αn〉 is a greatest lower bound of ϕ in

Form({α1, . . . , αn})

♣ Similarly, a supremum reductor is a function

©1 ⇓ ©2 : Form(A)× A∗ −→ Form(A)

such that

♣ @(ϕ ⇓ 〈α1, . . . , αn〉) = {α1, . . . , αn}
♣ ϕ ⇓ 〈α1, . . . , αn〉 is a least upper bound of ϕ in

Form({α1, . . . , αn})
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Different to the implementation of an expander, a method to
generate these two reductions is quite a complicated process
and we will not discuss the matter here.23

6.5 Quasi–ordered classes on num-
bers

6.5.1 linearly ordered number classes

Recall, that N := {0, 1, 2, . . .} is the natural number class,

Z := {. . . ,−2,−1, 0, 1, 2, . . .}, the class of integers, Q the

rational number class, and ≤ , < , + , − , · , / are the

usual arithmetic operations.

≤ is a linear order (7.1.3) and < is a strict linear order (7.1.3)
on N, Z, and Q. In other words

˙
N,≤

¸
,
˙
Z,≤

¸
, and

˙
Q,≤

¸
are

examples of linearly ordered classes or chains (7.2.2).

6.5.2 number structures as lattices

A linearly ordered class is a special case of a (partially) ordered
class or poclass (7.2.2). Poclasses can have certain properties
(7.4), such as being a lattice (7.4.9) or even a boolean lattice
(7.5.4). Let us find out, in how far these properties hold for
the given number structures.˙
N,≤

¸
has a bottom element (7.4.1), namely 0, because 0 ≤ n,

for all n ∈ N. But it has no top element, because for each nat-
ural number there is an even bigger one.˙
Z,≤

¸
has neither a bottom nor a top element. But we can

add two new elements ∞ and −∞ , put

Z∞ := Z ∪ {−∞,∞}

and redefine the arithmetic operations on the extended class
Z∞ as usual. For example, −∞ ≤ n,∞+9 =∞, −∞·7 = −∞,
5/∞ = 0. That way

˙
Z∞,≤

¸
has a bottom and a top element,

what makes it a so–called bounded (7.4.9) chain.

A lower bound for two given natural numbers n and m is any
number k with k ≤ n and k ≤ m. For example, 1, 2, and 3
are lower bounds of n = 23 and m = 3. In this case, 3 is the
greatest lower bound. Now, any binary function that always
returns the greatest lower bound for each pair of arguments is
called a meet function (7.4.3) (or conjunctor). In

˙
N,≤

¸
, each

number pair has a unique greatest lower bound, so there is a

unique meet function, namely min : N × N −→ N, the usual
minimum function.

Similarly, the binary function max always returns the least
upper bound of two given numbers and such a function is a
join function (7.4.3) on

˙
N,≤

¸
.

Now a poclass with a meet as well as a join function, such
as
˙
N,≤,min,max

¸
, is called a lattice (7.4.9). Obviously,˙

Z,≤,min,max
¸

and
˙
Z∞,≤,min,max

¸
are also lattices.˙

Z∞,≤,−∞,∞,min,max
¸

is even a bounded lattice (7.4.9).

The meet function takes two arguments, its generalization for
any — even an infinite — class of arguments is called an in-
fimum function (7.4.7) (or big conjunctor).

˙
N,≤

¸
has an

infimum function, because for every N ⊆ N, there is a unique

greatest lower bound of N , namely the minimum of N . But˙
Z,≤

¸
doesn’t have an infimum function. For example, the

infinite class {−2,−4,−6,−8, . . .} does not have a (greatest)
lower bound in Z. And for similar reasons,

˙
N,≤

¸
doesn’t have

a supremum function which would return the greatest upper
bound of every given subclass of N.˙
Z∞,≤

¸
actually has both, an infimum and a supremum func-

tion. Therfore,
˙
Z∞,≤

¸
(together with these implicitely de-

fined functions) is an example of a complete lattice (??).

6.5.3 Exercise

Which of the three lattices (on N, Z, or Z∞) is a distributed
(7.5.1), complemented (7.5.2), or even boolean (7.5.4) lattice?

6.5.4 integers and the division relation

An often mentioned example of a poclass (7.2.2) is
˙
N, |

¸
,

where N ⊆ N and the binary relation is defined by

©1 | ©2 :=

264 N! N

〈m,n〉 (m · d = n for some d > 0)

375
where m | n reads “m divides n”. For example, 7|63, because
7 · 9 = 63.

If say N = {1, 2, . . . , 10}, the poclass
˙
N, |

¸
is represented by

the following order or Hasse diagram (7.3.4)

8

10 4 6 9

5 2 3 7

1

J
J











@
@

B
B

�
�
�

�

6.5.5 Exercise

Does
˙
N, |
¸

have a bottom element (7.4.1), a top element
(7.4.1), a meet function (7.4.3), a join function (7.4.3)? Is
it a lattice (7.4.9)?

6.6 The quasi–field of fractions

6.6.1 fractions

We define the clas of fractions as

F := Z× (Z \ {0})

and we write
n/d for 〈n, d〉 ∈ F

23 More material can be found on www.bucephalus.org, along with software system that compute the results of all these operations on

propositional formulas.



Theory algebras on relations www.bucephalus.org 37

i.e. for the fraction with nominator n and denominator d.
Furthermore, we define a couple of relations and arithmetic
operations on F:

©1 - ©2 :=

264 F! F

〈n/d, n
′
/d′ 〉 n · d′ ≤ n′ · d

375

©1 ' ©2 :=

264 F! F

〈n/d, n
′
/d′ 〉 n · d′ = n′ · d

375
0 := 0/1

1 := 1/1

©1 + ©2 :=

264 F× F −→ F

〈n/d, n
′
/d′ 〉 7→

n·d′+n′·d/d·d′

375

©1 − ©2 :=

264 F× F −→ F

〈n/d, n
′
/d′ 〉 7→

n·d′−n′·d/d·d′

375

©1 · ©2 :=

264 F× F −→ F

〈n/d, n
′
/d′ 〉 7→

n·n′/d·d′

375

©1 ÷ ©2 :=

266664
F× F 99K F

〈n/d, n
′
/d′ 〉 7→

(
n·d′/d·n′ if d 6= 0

undefined if d = 0

377775
The overall structure˙

F,-,', 0, 1,+,−, ·,÷
¸

is the quasi–ordered field of fractions.

6.6.2 the quasi–field

The title quasi–field indicates that this structure behaves like
a proper field, when the identity = in the defining axioms is
replaced by the equivalence relation. Our more general term
for these kind of algebras is quasi–algebra.

- is a quasi–linear order (7.1.3) (transitive, reflexive, and to-
tal), but not a proper linear order (7.1.3), because it is not

antisymmetric (7.1.2). In other words, the equivalence re-
lation (7.3.1) ' of - is not the equality, there are cases of

equivalent, but still different fractions, such as 5/2 and 10/4.

Accordingly, we could have defined the constants 0, 1 and
the other operations on F differently, and still obtain a quasi–
ordered field. For example, if we would have defined

O := 0/57 1 := 13/13
n/d · n

′
/d′ := 7·n·n′/7·d·d′ . . .

then 1 still is the neutral element of the multiplication etc.

6.6.3 the quasi–lattice

The quasi–linearly ordered class
˙
F,-

¸
is a quasi–lattice.

Again (7.4.5), the minimum function (7.4.4) min is one ex-
ample of a possible meet function, and max is a join function
for the construction of such a quasi–lattice.

6.6.4 Exercise

Is this lattice on fractions bounded or even complete (hint: real
numbers)?

6.6.5 rational numbers

As usual, the rational numbers can be introduced as equiva-
lence classes of fractions together with a generalization of the
arithmetic operations on Z. We put

n
d := {n

′
/d′ |

n′/d′ '
n/d}

Q := {nd | n ∈ Z, d ∈ (Z \ {0})}

0 := 0
1

1 := 1
1

©1 + ©2 :=

2664 F× F −→ F

〈nd ,
n′
d′ 〉 7→

n·d′+n′·d
d·d′

3775
.
.
.

.

.

.

The overall structure on Q is the linearly ordered field of
rational numbers.



Theory algebras on relations www.bucephalus.org 38

7 Quasi–structures and quasi–algebras

7.1 Special binary endorelations

7.1.1 Definition

A (binary) (endo–)relation on C is a relation ρ : C! C.

We agree to write these kind of relations in infix notation
by default, i.e. we write

©1 ρ©2 rather than ρ(©1 ,©2 )

A structured class
˙
C, ρ

¸
is a class C with a relation on

C (or more general, on a superclass of C).

7.1.2 Definition Properties of binary endorelations

A binary endorelation ρ : Q! Q on a given class Q is
said to be

(1) transitive,
if xρy and yρz implies xρz, for all x, y, z ∈ Q

(2) reflexive,
if xρx, for all x ∈ Q

(3) irreflexive,
if xρx doesn’t hold for any x ∈ Q

(4) symmetric,
if xρy implies yρx, for all x, y ∈ Q

(5) asymmetric,
if xρy implies, that yρx doesn’t hold, for all x ∈ Q

(6) antisymmetric,
if xρy and yρx implies x = y, for all x, y ∈ Q

(7) total,
if xρy or yρx, for all x, y ∈ Q

(8) connex,
if either xρy, or yρx, or x = y, for all x, y ∈ Q

7.1.3 Definition Special transitive relations

A binary endorelation ρ on Q, i.e. ρ : Q! Q is called

(1) an equivalence relation (on Q),
if ρ is transitive, reflexive, and symmetric

(2) an equality or identity relation (on Q),
if ρ is transitive, reflexive, symmetric, and antisymmet-
ric

(3) a quasi–order (on Q),
if ρ is transitive and reflexive

(4) a (partial) order (on Q),

if ρ is transitive, reflexive, and antisymmetric

(5) a quasi–linear order (or linar quasi–order) (on Q),
if ρ is transitive, reflexive, and total

(6) a linear order (on Q),
if ρ is transitive, reflexive, total, and antisymmetric

7.2 Quasi–Hierarchies

7.2.1 Definition restriction of binary endorelation

If ρ : D! D is a binary endorelation on a class D and
C ⊆ D, we define

ρ |C :=

264 C! C

〈c1, c2〉 c1ρc2

375
the restriction of ρ onto C.

7.2.2 Definition quasi–hierarchies

Let ρ : D! D and C ⊆ D. We say that

(1)
˙
C, ρ

¸
is a quasi–hierarchy, if ρ |C is a transitive rela-

tion on C

(2)
˙
C, ρ

¸
is a hierarchy, if ρ |C is a transitive and anti-

symmetric relation on C

(3)
˙
C, ρ

¸
is a quasi–class or a partition, if ρ |C is an

equivalence relation on C

(4)
˙
C, ρ

¸
is a canonic class or a anti–chain, if ρ |C is a

equality relation on C

(5)
˙
C, ρ

¸
is a quasi–ordered class, if ρ |C is a quasi–order

on C

(6)
˙
C, ρ

¸
is a canonic quasi–ordered class or

(partially) ordered class or poclass, if ρ |C is a

(partial) order on C

(7)
˙
C, ρ

¸
is a quasi–linearly ordered class or quasi–chain,

if ρ |C is quasi–linear order on C

(8)
˙
C, ρ

¸
is a linearly ordered class or chain, if ρ |C is a

linear order on C

7.2.3 Lemma

Let ρ : D! D and C′ ⊆ C ⊆ D.

(1) If
˙
C, ρ

¸
is a quasi–hierarchy, then

˙
C′, ρ

¸
is a quasi–

hierarchy.

(2) If
˙
C, ρ

¸
is a hierarchy, then

˙
C′, ρ

¸
is a hierarchy.

(3) If
˙
C, ρ

¸
is a quasi–class, then

˙
C′, ρ

¸
is a quasi–class.

(4) If
˙
C, ρ

¸
is a canonic class, then

˙
C′, ρ

¸
is a canonical

class.

(5) If
˙
C, ρ

¸
is a quasi–ordered class, then

˙
C′, ρ

¸
is a

quasi–ordered class.

(6) If
˙
C, ρ

¸
is a poclass, then

˙
C′, ρ

¸
is a poclass.

(7) If
˙
C, ρ

¸
is a quasi–chain, then

˙
C′, ρ

¸
is a quasi–chain.

(8) If
˙
C, ρ

¸
is a chain, then

˙
C′, ρ

¸
is a chain.

7.3 Quasi–ordered classes and
poclasses
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7.3.1 Definition derived equivalence

If v is a quasi–order on a given class Q, then264 Q! Q

〈x, y〉 x v y and y v x

375
is its equivalence relation.

7.3.2 Remark notation

We often write˙
C,v,≡

¸
instead of

˙
C,v

¸
to denote a quasi–ordered class, where ≡ is the equivalence
relation of v.

On the other hand, the graphic symbol of the derived equiva-
lence relation is often designed similar to the quasi–order sym-
bol, and then we often use the pair notation again. The fol-
lowing table lists some common examples.

the relation its equivalence relation

v ≡
- ≈
≤ =

⊆ =

⇒ ⇔
` a`

7.3.3 Lemma

If v is a quasi–order and ≡ its equivalence relation, then

(1) ≡ is indeed a well–defined equivalence relation (see
7.1.3)

(2) v is canonic iff ≡ is the identity relation.

In other words, a quasi–ordered class is canonic (i.e. a
poclass) iff the equivalence relation is the equality.

7.3.4 Remark Order or Hasse diagrams

Finite poclasses can be represented by so–called
order diagrams or Hasse diagrams:

The fact, that xρy holds for two elements x and y is expressed
by the feature that x stands below y in the diagram and there
is an upwards path from x to y.

x

y

The transitivity reduces the number of lines that have to be
drawn. For example, the diagram

x

y

z

says that xρy and yρz, and also that xρz.

The reflexivity, i.e. that xρx for all x, is not explicitly repre-
sented in the diagram. It is just always assumed.

For examples see: the order diagram of a finite power class
algebra in 6.2.4 or the diagram of integers with the division
relation in 6.5.4.

7.3.5 Remark Quasi–order diagrams

For finite quasi–ordered classes we generalize the idea of or-
der diagrams to quasi–order diagrams: To limit the number
of edges in the diagram we first put all equivalent elements in
a circle and then we draw the order diagram of these equiva-
lence classes. In other words, the quasi–order diagram is the
diagram of the quotient structure (see 7.7.3).

7.4 Quasi–lattices

7.4.1 Definition

Let
˙
Q,v

¸
be a quasi–ordered class.

(1) ⊥ ∈ Q is a bottom or zero or least element in
˙
Q,v

¸
,

if ⊥ v x, for all x ∈ Q.

(2) > ∈ Q is a top or unit or greatest element in
˙
Q,v

¸
,

if x v >, for all x ∈ Q.

7.4.2 Lemma quasi–uniqueness of bottom and top

Let
˙
Q,v

¸
be a quasi–ordered class.

(1) If ⊥1 and ⊥2 are two bottom elements in
˙
Q,v

¸
, then

⊥1 ≡ ⊥2.

(2) If >1 and >2 are two top elements in
˙
Q,v

¸
, then

>1 ≡ >2.

7.4.3 Definition

Let
˙
Q,v

¸
be a quasi–ordered class.

(1) A meet function or conjunctor on
˙
Q,v

¸
is a function

©1 u ©2 : Q×Q −→ Q

that always returns a greatest lower bound in the sense
that for all x, y ∈ Q holds:

(a) x u y v x and x u y v y
(b) If z ∈ Q with z v x and z v y and x u y v z, then
z ≡ x u y.

(2) A join function or disjunctor on
˙
Q,v

¸
is a function

©1 t ©2 : Q×Q −→ Q

that always returns a least upper bound in the sense
that for all x, y ∈ Q holds:

(a) x v x t y and y v x t y
(b) If z ∈ Q with x v z and x v z and z v x t y, then
z ≡ x t y.
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7.4.4 Definition

If
˙
Q,-

¸
is a quasi–linearly ordered class, then

min :=

266664
Q×Q

〈x, y〉 7→
(
x if x ' y
y else

377775
is its minimum function

min :=

266664
Q×Q

〈x, y〉 7→
(
y if x ' y
x else

377775
is its maximum function

7.4.5 Lemma

Every quasi–linearly ordered class
˙
Q,-

¸
is a quasi–

lattice. A meet and join function is given by min and
max, respectively.

7.4.6 Lemma quasi–uniqueness of meet and join

Let
˙
Q,v

¸
be a quasi–ordered class.

(1) If u1 and u2 are two meet functions in
˙
Q,v

¸
, then

x u1 y ≡ x u2 y, for all x, y ∈ Q.

(2) If t1 and t2 are two join functions in
˙
Q,v

¸
, then

x t1 y ≡ x t2 y, for all x, y ∈ Q.

7.4.7 Definition

Let
˙
Q,v

¸
be a quasi–ordered class.

(1) A infimum function or big conjunctor on
˙
Q,v

¸
is a

function Q
©1 : P(Q) −→ Q

that always returns a greatest lower bound in the sense
that for all S ⊆ Q holds:

(a)
Q
S ⊆ y, for all y ∈ S

(b) If z ∈ Q with z v y for all y ∈ S and
Q
S v z, then

z ≡
Q
S.

(2) A supremum function or big disjunctor on
˙
Q,v

¸
is a

function ‘
©1 : P(Q) −→ Q

that always returns a least upper bound in the sense
that for all S ⊆ Q holds:

(a) y v
‘
S, for all y ∈ S

(b) If z ∈ Q with y v z for all y ∈ S and z v
‘
S, then

z ≡
‘
S.

7.4.8 Lemma quasi–uniqueness of infimum and supremum

Let
˙
Q,v

¸
be a quasi–ordered class.

(1) If
Q

1 and
Q

2 are two infimum functions in
˙
Q,v

¸
,

thenQ
1S ≡

Q
2S, for all S ⊆ Q.

(2) If
‘

1 and
‘

2 are two supremum functions in
˙
Q,v

¸
,

then‘
1S ≡

‘
2S, for all S ⊆ Q.

7.4.9 Definition

A quasi–ordered class
˙
Q,v

¸
is called

(1) bounded, if both a bottom and top element exist

(2) a quasi–lattice, if a meet and join function exist

(3) a lattice, if it is a canonic quasi–lattice, in other words
a quasi–lattice on a poclass

(4) a complete quasi–lattice, if an infimum and supremum
function exist

(5) a complete lattice, accordingly, i.e. if it is a complete
canonic quasi–lattice

7.4.10 Lemma canonicity theorem

On a given quasi–ordered class, bottom and top elements,
small and big con– and disjunctors may or may not exist.
But in case of a poclass, each of these items is unique if it
exists at all.

7.5 Distributivity and complemen-
tation

7.5.1 Definition

Let
˙
Q,v

¸
be a quasi–lattice. Let u and t be a meet and

join function on it. We say that
˙
Q,v

¸
is distributive, if

(x u y) t z ≡ (x t z) u (y t z)

(x t y) u z ≡ (x u z) t (y u z)
for all x, y, z ∈ Q.

7.5.2 Definition complement

Let
˙
Q,v

¸
be a bounded quasi–lattice. Let ⊥,>,u, and t

be a bottom, top, meet, and join on
˙
Q,v

¸
, respectively.

A negator or complement function on
˙
Q,v

¸
is a function

¬©1 : Q −→ Q

such that for all x ∈ Q holds:

¬x u x ≡ ⊥ and ¬x t x ≡ >˙
Q,v

¸
itself is a complemented quasi–lattice, if such a

complement function exists.
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7.5.3 Lemma quasi–uniqueness of complementations

Let
˙
Q,v

¸
be a complemented quasi–lattice and let ¬1

and ¬2 be two complement functions on it. If
˙
Q,v

¸
is

distributive, then ¬1x ≡ ¬2x, for all x ∈ Q.

7.5.4 Definition

A boolean quasi–lattice (or quasi–boolean lattice) is a
complemented distributive quasi–lattice.
A boolean lattice is a canonic boolean quasi–lattice, i.e. a
complemented distributive lattice.

7.5.5 Definition relative complement

Let
˙
Q,v

¸
be a quasi–lattice with bottom element and

let ⊥,u,t be a bottom, meet and join, respectively. A
relative complement function on

˙
Q,v

¸
is a function

©1 − ©2 : Q×Q −→ Q

such that for all x, y ∈ Q holds:

(x− y) u y ≡ ⊥ and (x− y) t y ≡ x
x − y is the relative complement of y in x, or simply x
without or minus y.

7.5.6 Definition generalized boolean quasi–lattice

A generalized boolean quasi–lattice is a distributive quasi–
lattice that has a bottom element and a relative comple-
ment function.
A generalized boolean lattice is a canonic generalized
boolean quasi-lattice, i.e. a distributive lattice with a bot-
tom element and a relative complement function.

7.5.7 Lemma

(1) If a bounded quasi–lattice has a relative complement
function ©1 − ©2 , it also has a complement function,
namely ¬©1 := >− ©1 .

(2) A generalized boolean quasi–lattice is a boolean quasi–
lattice iff it has a top element.

7.5.8 Remark

(1) Note, that due to 7.4.2 and 7.4.6, the concrete choice of
⊥,>,u, and t is not relevant in the definitions 7.5.1, 7.5.2
and 7.5.5, respectively.

(2) There are non–distributive complemented quasi–lattices,
where two complement functions do not always produce
equivalent results. However, these structures are not rele-
vant for us.

(3) Unfortunately, the definition of “generalized boolean” no-
tion is less common than the very established and stan-
dardized “boolean” structures and “lattices”. A simplified
slogan to memorize the concept is the definition of gener-
ized boolean quasi–lattices as “boolean quasi–lattices with
or without top element”.

7.6 Quasi–algebras

7.6.1 Remark Introduction

A quasi–ordered class
˙
Q,v

¸
together with a couple of junc-

tions (e.g. >,u,
Q

etc. as defined earlier) are called
quasi–algebras. “Quasi” is a generalization of the usual “non–
quasi” or “canonical” notion in the sense that the equivalence
relation ≡ is a generalization of the identity relation =.

If
˙
Q,v

¸
is a poclass, then a junctor like a meet function u is

uniquely defined if it exists at all. So, if
˙
Q,v

¸
is say a lattice,

then the algebra
˙
Q,v,u,t

¸
is given by

˙
Q,v

¸
only. In other

words, a “lattice” is a “lattice algebra”. That makes the term
“lattice algebra” a pleonasm and superfluous.

However, if
˙
Q,v

¸
is a quasi–lattice, then there may be more

than one way to define a “quasi–lattice algebra”
˙
Q,v,u,t

¸
.

In other words, a “quasi–lattice” is not yet a whole “quasi–
lattice algebra”.

So, when the traditional order and lattice theory, which is
based on poclasses, is generalized for quasi–ordered classes, it
makes sense to distinguish “quasi–structures” from their con-
crete “quasi–structure algebras” instances.

We define the following particular quasi–algebras:

7.6.2 Definition quasi–algebras

(1) A (distributive) quasi–lattice algebra is a structure˙
Q,v,≡,u,t

¸
where

˙
Q,v

¸
is a (distributive) quasi–lattice, ≡ is the

equivalence relation of v and u is a meet and t is a join
function.

(2) A (distributive) bounded quasi–lattice algebra is a
structure ˙

Q,v,≡,⊥,>,u,t
¸

where
˙
Q,v,≡,u,t

¸
is a (distributive) quasi–lattice al-

gebra and ⊥ is a bottom and > is a top element.

(3) A (distributive) complete quasi–lattice algebra is a
structure ˙

Q,v,≡,⊥,>,u,t,
Q
,
‘¸

where
˙
Q,v,≡,⊥,>,u,t

¸
is a (distributive) bounded

quasi–lattice algebra and
Q

is an infimum and
‘

is a
supremum function.

(4) A quasi–boolean algebra is a structure˙
Q,v,≡,⊥,>,u,t,¬

¸
where

˙
Q,v

¸
is a boolean quasi–lattice, ¬ is a comple-

ment function, and
˙
Q,v,≡,⊥,>,u,t

¸
is a bounded

quasi–lattice algebra (which is distributive).

(5) A complete quasi–boolean algebra is a structure˙
Q,v,≡,⊥,>,u,t,

Q
,
‘
,¬
¸

which is both, a quasi–boolean algebra and a complete
quasi–lattice algebra (which is distributive).
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(6) A generalized quasi–boolean algebra is a structure˙
Q,v,≡,⊥,u,t,−

¸
where

˙
Q,v,≡,u,t

¸
is a distributive quasi–lattice al-

gebra, ⊥ is a bottom element and − is a relative com-
plement function on Q.

7.6.3 Remark

Q
and

‘
in the previous definitions both have P (Q) as their

domain, not just Q. According to the structure notation 5.8.2,
we should therefore include P (Q) among the list of carrier
classes and write e.g.˙

Q,P (Q) ,v,≡,⊥,>,u,t,
Q
,
‘
,¬
¸

for complete quasi–boolean algebras. But it is custom to omit
the “P (Q)” and we will usually share this habit.

7.6.4 Lemma

If
˙
Q v

¸
is a quasi–ordered class, there is

(1) x v y (reflexivity of v)

(2) x v y and y v z implies x v z (transitivity of v)

(3) x ≡ y (reflexivity of ≡)

(4) x ≡ y and y ≡ z implies x ≡ z (transitivity of ≡)

(5) x ≡ y implies y ≡ x (symmetry of ≡)

(6) x ≡ y iff (x v y and y v x) (≡ is equivalence of v)

for all x, y, z ∈ Q.

7.6.5 Lemma

If Q =
˙
Q v,≡,u,t

¸
is a quasi–lattice algebra, there is

(1) x v y iff x u y ≡ x (order as meet)

(2) x v y iff x t y ≡ y (order as join)

(3) x u y v x (meet is lower bound)

(4) x v x t y (join is upper bound)

(5) (x u y) u z ≡ x u (y u z) (quasi–assosiativity of meet)

(6) (x t y) t z ≡ x t (y t z) (quasi–assosiativity of join)

(7) x u y ≡ y u x (quasi–commutativity of meet)

(8) x t y ≡ y t x (quasi–commutativity of join)

(9) x u x ≡ x (quasi–idempotency of meet)

(10) x t x ≡ x (quasi–idempotency of join)

(11) x u (x t y) ≡ x (quasi–absoption)

(12) x t (x u y) ≡ x (quasi–absorption)

And in case Q is distributive, we also have

(13) x u (y t z) ≡ (x u y) t (x u z) (distr. of u over t)

(14) x t (y u z) ≡ (x t y) u (x t z) (distr. of t over u)

for all x, y, z ∈ Q:

7.6.6 Lemma

If
˙
Q v,≡,⊥,>,u,t

¸
is a bounded quasi–lattice algebra,

there is

(1) ⊥ v x (bottom is least element)

(2) x v > (top is greatest element)

(3) x u ⊥ ≡ ⊥ (bottom cancels meet)

(4) x t > ≡ > (top cancels join)

(5) x t ⊥ ≡ x (bottom is quasi–neutral element of join)

(6) x u > ≡ x (top is quasi–neutral element of meet)

for all x ∈ Q.

7.6.7 Definition

If
˙
Q v,≡,⊥,>,u,t

¸
is a bounded quasi–lattice algebra,

we define the following notation for every n ≥ 0:

©1 u . . . u ©n :=

(
> if n = 0

©1 u (©2 u . . . u ©n ) if n > 0

©1 t . . . t ©n :=

(
> if n = 0

©1 t (©2 t . . . t ©n ) if n > 0

And for all n,m ∈ N we also put:
m
u
i=n

xi := xn u xn+1 u . . . u xm

m
t
i=n

xi := xn t xn+1 t . . . t xm

7.6.8 Lemma

Let
˙
Q v,≡,⊥,>,u,t

¸
be a bounded distributive quasi–

lattice algebra.
For all n,m ∈ N and x, yn, . . . , ym ∈ Q holds

(1) x u
m
t
i=n

yi ≡
m
t
i=n

(x u yi)

(2) x t
m
u
i=n

yi ≡
m
u
i=n

(x t yi)

More general, for all n1,m1, n2,m2 ∈ N and
xn1 , . . . , xm1 , yn2 , . . . , ym2 ∈ Q holds

(3)

„
m1t
i=n1

xi

«
u
„
m2t
j=n2

yj

«
≡

m1t
i=n1

m2t
j=n2

(xi u yj)

(4)

„
m1u
i=n1

xi

«
t
„
m2u
j=n2

yj

«
≡

m1u
i=n1

m2u
j=n2

(xi t yj)

7.6.9 Lemma

If
˙
Q v,≡,⊥,>,u,t,

Q
,
‘¸

is a complete quasi–lattice
algebra then

(1) > ≡
Q
∅ (empty infimum)

(2) ⊥ ≡
‘
∅ (empty supremum)

(3) x u y ≡
Q
{x, y} (small as big conjunction)

(4) x t y ≡
‘
{x, y} (small as big disjunction)

and in case of distributivity, there also is

(5) x u
‘
S ≡

‘
{x u y | y ∈ S} (distr. of u over

‘
)

(6) x t
Q
S ≡

Q
{x t y | y ∈ S} (distr. of t over

Q
)

for all x, y ∈ Q and S ⊆ Q.
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7.6.10 Lemma

If
˙
Q v,≡,⊥,>,u,t,¬

¸
is a quasi–boolean algebra, there

is

(1) ⊥ ≡ ¬> (negated top)

(2) > ≡ ¬⊥ (negated bottom)

(3) ¬x u x ≡ ⊥ (meet of complements)

(4) ¬x t x ≡ > (join of comlements)

(5) ¬
n
u
i=1

xi ≡
n
t
i=1
¬xi (de Morgan’s law)

(6) ¬
n
t
i=1

xi ≡
n
u
i=1
¬xi (de Morgan’s law)

(7) ¬¬x ≡ x (double negation)

(8) x v y iff ¬y v ¬x (order inversion)

(9) x v y iff ¬x t y ≡ > (top criterion of order)

(10) x v y iff x u ¬y ≡ ⊥ (bottom criterion of order)

for all x, x1, . . . , xn, y ∈ Q with n ∈ N.

7.6.11 Lemma

If
˙
Q v,≡,⊥,>,u,t,

Q
,
‘
,¬
¸

is a complete quasi–
boolean algebra, there is

(1) ¬
Q
S ≡

‘
{¬y | y ∈ S} (de Morgan’s law)

(2) ¬
‘
S ≡

Q
{¬y | y ∈ S} (de Morgan’s law)

for all S ⊆ Q.

7.6.12 Lemma

(1) If
˙
Q,v,≡,u,t

¸
is a quasi–lattice algebra, then the

following statements are equivalent for all x, y ∈ Q:

(a) x v y
(b) x t y ≡ y
(c) x u y ≡ x

(2) If
˙
Q,v,≡,⊥,>,u,t,¬

¸
is a quasi–boolean algebra,

then the following statements are equivalent for all
x, y ∈ Q:

(a) x v y
(b) ¬y v ¬x
(c) x u ¬y ≡ ⊥
(d) ¬x t y ≡ >

7.6.13 Lemma

If
˙
Q,v,≡,⊥,>,u,t

¸
is a bounded quasi–lattice algebra

and x, y ∈ Q, then

(1) (x ≡ > and y ≡ >) iff x u y ≡ >
(2) (x ≡ ⊥ and y ≡ ⊥) iff x t y ≡ ⊥
(3) (x ≡ > or y ≡ >) implies x t y ≡ >
(4) (x ≡ ⊥ or y ≡ ⊥) implies x u y ≡ ⊥
If
˙
Q,v,≡,⊥,>,u,t,

Q
,
‘¸

is a complete quasi–lattice
algebra and S ⊆ Q, then

(5) (∀y ∈ S . y ≡ >) iff
Q
S ≡ >

(6) (∀y ∈ S . y ≡ ⊥) iff
‘
S ≡ ⊥

(7) (∃y ∈ S . y ≡ ⊥) implies
Q
S ≡ ⊥

(8) (∃y ∈ S . y ≡ >) implies
‘
S ≡ >

If
˙
Q,v,≡,⊥,>,u,t,¬

¸
is a quasi–boolean algebra and

x ∈ Q, then

(9) ¬x ≡ > iff x ≡ ⊥
(10) ¬x ≡ ⊥ iff x ≡ >

7.6.14 Lemma

If
˙
Q v,≡,⊥,>,u,t,

Q
,
‘¸

is a complete quasi–lattice
algebra, there is

(1) (y v x for all y ∈ S) iff
‘
S v x

(2) (y v x for one y ∈ S) implies
Q
S v x

(3) (x v y for all y ∈ S) iff x v
Q
S

(4) (x v y for one y ∈ S) implies x v
‘
S

for all x, y, z ∈ Q and S ⊆ Q.

7.6.15 Lemma

If
˙
Q,v,≡,⊥,u,t,−

¸
is a generalized quasi–boolean al-

gebra, there is

(1) ⊥− x ≡ ⊥
(2) x−⊥ ≡ x
(3) x− (y u z) ≡ (x− y) t (x− z)
(4) x− (y t z) ≡ (x− y) u (x− z)
(5) (y u z)− x ≡ (y − x) u (z − x)
(6) (y t z)− x ≡ (y − x) t (z − x)
(7) (x− y)− z ≡ x− (y t z)
(8) x− (y − z) ≡ (x− y) t (x u z)
(9) (x− y) u z ≡ (x u z)− y
(10) (x− y) t z ≡ (x t z)− (y − z)
for all x, y, z ∈ Q.

7.6.16 Lemma

If
˙
Q,v,≡,⊥,>,u,t,¬

¸
is a quasi–boolean algebra, then

©1 − ©2 :=

264 Q×Q −→ Q

〈x, y〉 7→ x u ¬y

375
is a relative complement function with

(1) x−> ≡ >
(2) >− x ≡ ¬x
for all x ∈ Q.

7.7 Quotient structures

7.7.1 Definition

Let ∼ be an equivalence relation on a given class Q.

(1) For every x ∈ Q we define

x/∼ := {y ∈ Q | y ∼ x}

the equivalence class of x modulo ∼

(2) We define

Q/∼ := { x/∼ | x ∈ Q}

the quotient class of Q modulo ∼
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7.7.2 Definition

Given an equivalence relation ∼ on a class Q.

(1) Let f be an n–ary function on Q, i.e. f : Qn −→ Q.

We say that f is ∼–compatible, if x1 ∼ y1, . . . , xn ∼
yn implies f(x1, . . . , xn) ∼ f(y1, . . . , yn), for all
x1, . . . , xn, y1, . . . , yn ∈ Q.

And in that case the following function is well–defined

f/∼ :=

264 (Q/∼ )n −→ (Q/∼ )

〈 x1/∼ , . . . , xn/∼〉 7→ f(x1, . . . , xn)/∼

375

the quotient function of f modulo ∼

(2) Let R be a n–ary relation on Q, i.e. R : Rel(〈Q | n〉).
We say that R is ∼–compatible, if x1 ∼ y1, . . . , xn ∼
yn implies R(x1, . . . , xn) ⇔ R(y1, . . . , yn), for all
x1, . . . , xn, y1, . . . , yn ∈ Q.

And in that case the following n–ary relation is well-
defined

R/∼ :=

264 (Q/∼)! . . .! (Q/∼)

〈 x1/∼ , . . . , xn/∼〉 R(x1, . . . , xn)

375

the quotient relation of R modulo ∼

7.7.3 Definition

Given an ordinary structure

C =
˙
C, c1, . . . , f1, . . . , R1, . . .

¸
i.e. C is a class, the ci are constants from C, the fi are
ordinary functions on C and the Ri are ordinary relations
on C.
If ∼ is an equivalence relation on C, we say that C is
∼–compatible or ∼ is a congruence relation on C, if each
fi is ∼–compatible and each Ri is ∼–compatible.
And in that case, we define

C/∼ :=
˙
C/∼ , c1/∼ , . . . , f1/∼ , . . . , R1/∼

¸
the quotient structure of C modulo ∼

7.7.4 Lemma

For every quasi–ordered class Q =
˙
Q,v,≡

¸
holds:

(1) Q/≡ is a (well–defined) poclass.

(2) Q is a quasi–lattice iff Q/≡ is a lattice.

And if that is the case, then

(a) Q is bounded iff Q/≡ is bounded

(b) Q is distributive iff Q/≡ distributive

(c) Q is complemented iff Q/≡ complemented

(d) Q is boolean iff Q/≡ is boolean

(e) Q is complete iff Q/≡ is complete

(f) Q is generalized boolean iff Q/≡ is generalized
boolean
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8 Additional junctors for quasi–boolean structures

8.0.5 Remark

We introduce two additional junctors that can be derived from
every quasi–boolean algebra: the subjunctor “→” and the
equijunctor “↔”, both not in their common binary version,
but more general as multiary functions.

This whole section 8 is not an essential part of the overall text.
It can and probably should be skipped on a first reading.

8.1 Junctor sets

8.1.1 Remark

Given a quasi–boolean lattice
˙
Q,v,≡

¸
. We can add the usual

operations ⊥,>,u,t,¬ to turn it into a quasi–boolean alge-
bra, as described before. This set of operations is (quasi-)
complete in the sense that we can define any (v–related) n–
ary junction j : Qn −→ Q in terms of these five.24 But this
set is not minimal, because we can remove some of them and
the remaining ones are still complete. For example, we can
remove ⊥ and u, because they are given in terms of >,t,¬
via ⊥ ≡ ¬> and x u y ≡ ¬(¬x t ¬y).

There are plenty of alternative definitions for alternative junc-
tor set, in particular in the logic tradition, and there are also
more general investigations that compare these systems. For
our part here we concentrate on two additional derived junc-
tors that are useful for our purposes, such as logic.

8.2 Multiary sub– and equijunction

8.2.1 introduction

In particular in logic, two other junctions are often used:25 the
subjunction → and the equijunction ↔. Their usual idea is
the resemblence with the sub– and equivalence, respectively,
in the sense that

x→ y ≡ > iff x v y

x↔ y ≡ > iff x ≡ y

The following definition is accordingly (see 8.2.18), but is gen-
eralized to arbitrary numbers of arguments.

This multi–ary generalization is not very common, maybe a
novelty, but for us it has two advantages: For (propositional)
logic (6.4.1) the restrictions to binary forms like [©1 ∧ ©2 ] do
not really make a modern calculus, because they make (dis-

junctive or conjunctive) normal forms very nested and awk-
ward. And since we use multiary forms like [©1 ∧ . . .∧ ©n ] in
our formula syntax anyway, it seems more elegant to remove
binary restrictions altogether and have the [©1 → . . . → ©n ]
and [©1 ↔ . . . ↔ ©n ] available, as well. Secondly, these
two multiary junction are direct representions of two impor-
tant notions: “©1 , . . . ,©n are in order (or a chain)” and “the
©1 , . . . ,©n are an equivalence class”, respectively.

8.2.2 Definition

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

We define

(→ ©1 ) :=

26664
Q∗ −→ Q

〈x1, . . . , xn〉 7→
n−1
u
i=1

(¬xi t xi+1)

37775
the subjunctor

(↔ ©1 ) :=

26664
Q∗ −→ Q

〈x1, . . . , xn〉 7→
„

n
u
i=1
¬xi

«
t
„

n
u
i=1

xi

«
37775

the equijunctor

8.2.3 Definition notation

We usually write

x1 → . . .→ xn instead of (→ 〈x1, . . . , xn〉)

x1 ↔ . . .↔ xn instead of (↔ 〈x1, . . . , xn〉)
and if these expressions have to be written explicitely for
n ≤ 1, we write

(→) for (→ 〈〉) (↔) for (↔ 〈〉)

(→ x) for (→ 〈x〉) (↔ x) for (↔ 〈x〉)
Furthermore, we also use yet another version and write

m→
i=n

xi for xm → xm+1 → . . .→ xn

m↔
i=n

xi for xm ↔ xm+1 ↔ . . .↔ xn

for arbitrary m,n ∈ N.

8.2.4 Remark

Of course, if n > m then

m→
i=n

xi = (→) =
m
u
i=n

(¬xi t xi+1) = >

24In terms of propositional logic, this completeness of opertions means that every truth table can be represented by a formula.
25There is no real standard for their names. Our “subjunction” and “equijunction” here is not very common, but it fits nicely into the

overall terminology, in particular due to their familiarity with the “subvalence” (“⇒” or “v”) and “equivalence” (“⇔” or “≡”), respectively.

The symbols “→” and “↔” have become more or less standard in mathematics now, although there is another tradition in logic that often

uses “⊂” for “→”.
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and

m↔
i=n

xi = (↔) =

„
m
u
i=n
¬xi

«
t
„
m
u
i=n

xi

«
= > t > ≡ >

according to the definition of nullary conjunctions (in 7.6.7).

And if n = m then

m→
i=n

xi = (→ xn) =
n−1
u
i=n

(¬xi t xi+1) = >

and

m↔
i=n

xi = (↔ xn) =

„
n−1
u
i=n
¬xi

«
t
„
n−1
u
i=n

xi

«
= > t > ≡ >

8.2.5 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all x, y, z ∈ Q and x1, . . . , xn, y1, . . . , ym ∈ Q with
n,m ∈ N holds:

(1) Nullary and unary cases:

(a) (→) ≡ >
(b) (↔) ≡ >
(c) (→ x) ≡ >
(d) (↔ x) ≡ >

(2) The common binary case:

(a) x→ y ≡ ¬x t y
(b) x↔ y ≡ (x→ y) u (y → x)

But also:

(c) x↔ y ≡ (¬x u ¬y) t (x u y)
(d) x↔ y ≡ x→ y → x ≡ y → x→ y

(3) Unipotency:

(a) x→ x ≡ >
(b) x↔ x ≡ >

(4) For the combinations with ⊥ and > holds:

(a) ⊥ → x ≡ >
(b) > → x ≡ x
(c) x→ ⊥ ≡ ¬x
(d) x→ > ≡ >
(e) ⊥ ↔ x ≡ ¬x
(f) > ↔ x ≡ x
(g) x↔ ⊥ ≡ ¬x
(h) x↔ > ≡ x

See also 8.2.16 for more general laws.

8.2.6 Proof of 8.2.5

(1) Immediate consequences of definition 8.2.2; see 8.2.4.

(2) (a) is an application of definition 8.2.2. For (b) holds:

(x→ y) u (y → x)

≡ (¬x t y) u (¬y t x) due to (a)

≡ (¬x u ¬y) t (¬x u ¬x) t (y u ¬y) t (y u x) distributivity

≡ (¬x u ¬y) t ⊥ t ⊥ t (y u x) complement

≡ (¬x u ¬y) t (y u x) because ⊥ is neural for t

≡ (¬x u ¬y) t (x u y) commutativity of t

≡ x↔ y def. of ↔

(c) is definition 8.2.2 for two arguments, and (d) is true be-
cause

x↔ y

≡ (¬x u ¬y) t (x u y)
≡ (¬x t x) u (¬x t y) u (¬y t x) u (¬y t y)

due to the distributivity

≡ > u (¬x t y) u (¬y t x) u >
≡ (¬x t y) u (¬y t x)
≡ x→ y → x definition 8.2.2

and similarly for x↔ y ≡ y → x→ y.

(3) A proof for (a) is

x→ x

≡ ¬x t x due to (2)(a)

≡ > complement

A proof of (b) is

x↔ x

≡ (¬x u ¬x) t (x u x) def. 8.2.2

≡ ¬x t x idempotency of u

≡ > complement

(4) For the combination with ⊥ and > we use (2)(a) and the
common laws for ⊥ and > (7.6.6 and 7.6.10) and obtain:

(a) ⊥ → x ≡ ¬⊥ t x ≡ > t x ≡ >
(b) > → x ≡ ¬> t x ≡ ⊥ t x ≡ x
(c) x→ ⊥ ≡ ¬x t ⊥ ≡ ¬x
(d) x→ > ≡ ¬x t > ≡ >
(e) ⊥ ↔ x ≡ (¬⊥ u ¬x) t (⊥ u x) ≡ ¬x t ⊥ ≡ ¬x
(f) > ↔ x ≡ (¬> u ¬x) t (> u x) ≡ ⊥ t x ≡ x
(g) x↔ ⊥ ≡ (¬x u ¬⊥) t (x u ⊥) ≡ ¬x t ⊥ ≡ ¬x
(h) x↔ > ≡ (¬x u ¬>) t (x u >) ≡ ⊥ t x ≡ x

8.2.7 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all x1, . . . , xn ∈ Q with n ∈ N holds:

(1) ¬(x1 → . . .→ xn) ≡ (x1 u ¬x2) t . . . t (xn−1 u ¬xn)

(2) ¬(x1 ↔ . . .↔ xn) ≡ (x1t . . .txn)u(¬x1t . . .t¬xn)

8.2.8 Proof of 8.2.7

In both cases, de Morgans law is applied to definition 8.2.2:

¬(x1 → . . .→ xn)

≡ ¬ ((¬x1 t x2) u . . . u (¬xn−1 t xn))

≡ ¬(¬x1 t x2) t . . . t ¬(¬xn−1 t xn)

≡ (¬¬x1 u ¬x2) t . . . t (¬¬xn−1 t ¬xn)

≡ (x1 u ¬x2) t . . . t (xn−1 u ¬xn)

and

¬(x1 ↔ . . .↔ xn)

≡ ¬ ((¬x1 u . . . u ¬xn) t (x1 u . . . u xn))

≡ ¬(¬x1 u . . . u ¬xn) u ¬(x1 u . . . u xn)

≡ (¬¬x1 t . . . t ¬¬xn) u (¬x1 t . . . t ¬xn)

≡ (x1 t . . . t xn) u (¬x1 t . . . t ¬xn)
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8.2.9 Remark

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra. For

the commutativity and associativity of→ and← holds:
(1) → is not commutative.

Even binary subjunctions like x → y and y → x are not
equivalent in general. For example, > → ⊥ ≡ ⊥ 6≡ > ≡
⊥ → >.

(2) ↔ is commutative in general, i.e.

(a) xν(1) ↔ . . .↔ xν(n) ≡ x1 ↔ . . .↔ xn

for every n ∈ N, all x1, . . . , xn ∈ Q and every bijection
ν : {1, . . . , n} → {1, . . . , n}.

This derives from the commutativity of both u and t, be-
cause

xν(1) ↔ . . .↔ xν(n)

≡
`
¬xν(1) u . . . u ¬xν(n)

´
t
`
xν(1) u . . . u xν(n)

´
≡ (¬x1 u . . . u ¬xn) t (x1 u . . . u xn)

≡ x1 ↔ . . .↔ xn

(3) → is not associative.

For example, x → y → z and (x → y) → z are often not
equivalent:

⊥ → ⊥ → ⊥ ≡ > 6≡ ⊥ ≡ (⊥ → ⊥)→ ⊥

> → ⊥ → ⊥ ≡ ⊥ 6≡ > ≡ (> → ⊥)→ ⊥

However, we have a law saying that

(a) (x→ y)→ z v x→ (y → z) for all x, y, z ∈ Q

because

(x→ y)→ z ≡ ¬(¬x t y) t z

≡ (x u ¬y) t z

v ¬y t z

v ¬x t ¬y t z

≡ ¬x t (¬y t z)

≡ x→ (y → z)

(4) ↔ is not associative.

For example, x ↔ y ↔ z and (x ↔ y) ↔ z are often not
equivalent:

⊥ ↔ ⊥ ↔ ⊥ ≡ > 6≡ ⊥ ≡ (⊥ ↔ ⊥)↔ ⊥

> ↔ ⊥ ↔ ⊥ ≡ ⊥ 6≡ > ≡ (> ↔ ⊥)↔ ⊥

However, we have a law saying that

(a) (x↔ y)↔ z ≡ x↔ (y ↔ z) for all x, y, z ∈ Q

because

(x↔ y)↔ z

≡ (¬(x↔ y) u ¬z) t ((x↔ y) u z)

≡ (((¬x u y) t (x u ¬y)) u ¬z) t (((¬x u ¬y) t (x u y)) u z)

≡ (¬x u y u ¬z) t (x u ¬y u ¬z) t (¬x u ¬y u z) t (x u y u z)

≡ (¬x u ¬y u z) t (¬x u y u ¬z) t (x u ¬y u ¬z) t (x u y u z)

≡ (¬x u ((¬y u z) t (y u ¬z))) t (x u ((¬y u ¬z) t (y u z)))

≡ (¬x u ¬(y ↔ z)) t (x u (y ↔ z))

≡ x↔ (y ↔ z)

8.2.10 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra

and y ∈ Q and x1, . . . , xn ∈ Q with n ∈ N.

(1) → distributes over u and t as follows:

(a)
n
u
i=1

(y → xi) ≡ y →
„

n
u
i=1

xi

«
(b)

n
u
i=1

(xi → y) ≡
„

n
t
i=1

xi

«
→ y

(c)
n
t
i=1

(y → xi) ≡ y →
„

n
t
i=1

xi

«
(d)

n
t
i=1

(xi → y) ≡
„

n
u
i=1

xi

«
→ y

(2) For similar constructions with ↔ holds:

(a)
n
u
i=1

(y ↔ xi) ≡ (y ↔ x1 ↔ . . .↔ xn)

(b)
n
u
i=1

(y ↔ xi) ≡
„

n
t
i=1

xi

«
→ y →

„
n
u
i=1

xi

«

8.2.11 Proof of 8.2.10

(1) We have:
n
u
i=1

(y → xi)

≡
n
u
i=1

(¬y t xi) due to 8.2.5(2)(a)

≡ ¬y t
„

n
u
i=1

xi

«
due to 7.6.5(14)

≡ y →
„

n
u
i=1

xi

«
again, 8.2.5(2)(a)

n
u
i=1

(xi → y)

≡
n
u
i=1

(¬xi t y) due to 8.2.5(2)(a)

≡ (¬x1 u . . . u ¬xn) t y due to 7.6.5(14)

≡ ¬ (x1 t . . . t xn) t y due to 7.6.10(5)

≡
„

n
t
i=1

xi

«
→ y due to 8.2.5(2)(a)

n
t
i=1

(y → xi)

≡
n
t
i=1

(¬y t xi) due to 8.2.5(2)(a)

≡ ¬y t
„

n
t
i=1

xi

«
because t is associative, commutative and idempotent

≡ y →
„

n
t
i=1

xi

«
again, 8.2.5(2)(a)

n
t
i=1

(xi → y)

≡
n
t
i=1

(¬xi t y) due to 8.2.5(2)(a)

≡ (¬x1 t . . . u ¬xn) t y
because t is associative, commutative and idempotent

≡ ¬ (x1 u . . . t xn) t y due to 7.6.10(6)

≡
„

n
u
i=1

xi

«
→ y due to 8.2.5(2)(a)

(2)(a) We proof by induction on n:

♣ For n = 0 holds:
n
u
i=1

(y ↔ xi) ≡ > ≡ (↔ y) ≡ (y ↔ x1 ↔ . . .↔ xn)

♣ For n = 1 holds:
n
u
i=1

(y ↔ xi) ≡ (y ↔ x1) ≡ (y ↔ x1 ↔ . . .↔ xn)

♣ For n 7→ n+ 1 holds:
n+1
u
i=1

(y ↔ xi)
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≡
„

n
u
i=1

(y ↔ xi)

«
u (y ↔ xn+1)

≡ (y ↔ x1 ↔ . . .↔ xn) u (y ↔ xn+1) induction step

≡

0BB@
(¬y u ¬x1 u . . . u ¬xn)

t

(y u x1 u . . . u xn)

1CCA u
0BB@

(¬y u ¬xn+1)

t

(y u xn+1)

1CCA
definition 8.2.2

≡

0BBBBB@
((¬y u ¬x1 u . . . u ¬xn) u (¬y u ¬xn+1))t

((¬y u ¬x1 u . . . u ¬xn) u (y u xn+1))t

((y u x1 u . . . u xn) u (¬y u ¬xn+1))t

((y u x1 u . . . u xn) u (y u xn+1))

1CCCCCA
distributivity 7.6.8(3)

≡

0BBBBB@
(¬y u ¬y u ¬x1 u . . . u ¬xn u ¬xn+1)t

(¬y u y u ¬x1 u . . . u ¬xn u xn+1)t

(y u ¬y u x1 u . . . u xn u ¬xn+1)t

(y u y u x1 u . . . u xn u xn+1)

1CCCCCA
associativity and commutativity of u

≡

0BBBBB@
(¬y u ¬x1 u . . . u ¬xn u ¬xn+1)t

⊥t

⊥t

(y u x1 u . . . u xn u xn+1)

1CCCCCA
≡

0@(¬y u ¬x1 u . . . u ¬xn u ¬xn+1)t

(y u x1 u . . . u xn u xn+1)

1A
≡ y ↔ x1 ↔ . . .↔ xn def. 8.2.2, again

(2)(b) We obtain
n
u
i=1

(y ↔ xi)

≡
n
u
i=1

((xi → y) u (y → xi))

due to 8.2.5(2)(b)

≡
„

n
u
i=1

(xi → y)

«
u
„

n
u
i=1

(y → xi)

«
because u is associative and commutative

≡
„„

n
t
i=1

xi

«
→ y

«
u
„
y →

„
n
u
i=0

xi

««
due to (1)(a) and (1)(b)

≡
„

n
t
i=1

xi

«
→ y →

„
n
u
i=1

xi

«
def. 8.2.2 of →

8.2.12 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all x, y, z ∈ Q and x1, . . . , xn, y1, . . . , ym ∈ Q with
n,m ∈ N holds:

(1) Some alternative characterizations of → are

(a)
n→
i=1

xi ≡
n−1
u
i=1

(xi → xi+1)

(b)
n→
i=1

xi ≡
„

j→
i=1

xi

«
u
„
n→
i=j

xi

«
for 1 ≤ j ≤ n

(2) Other characterizations of ↔ are

(a)
n↔
i=1

xi ≡
n−1
u
i=1

(xi ↔ xi+1)

(b)
n↔
i=1

xi ≡
„

j↔
i=1

xi

«
u
„
n↔
i=j

xi

«
for 1 ≤ j ≤ n

(c)
n↔
i=1

xi ≡
n
u
i=1

n
u
j=1

(xi → xj)

(d)
n↔
i=1

xi ≡
n
u
i=1

n
u
j=1

(xi ↔ xj)

(e)
n↔
i=1

xi ≡
„

n→
i=1

xi

«
u
„
n−1→
i=0

xn−i

«
(f)

n↔
i=1

xi ≡
„

n
t
i=1

xi

«
→
„

n
u
i=1

xi

«

8.2.13 Proof of 8.2.12

(1)(a) We derive
n→
i=1

xi

≡ x1 → . . .→ xn

≡ (¬x1 t x2) u . . . u (¬xn−1 t xn)
def. 8.2.2

≡ (x1 → x2) u . . . u (xn−1 → xn)
due to 8.2.5(2)(a)

≡
n−1
u
i=1

(xi → xi+1)

(1)(b) We choose some j ∈ {1, . . . , n} and obtain
n→
i=1

xi

≡ (x1 → x2) u . . . u (xn−1 → xn) due to (1)(a)

≡

0@(x1 → x2) u . . . u (xi−1 → xi)u

(xi → xi+1) u . . . u (xn−1 → xn)

1A
≡

0@((x1 → x2) u . . . u (xi−1 → xi))u

((xi → xi+1) u . . . u (xn−1 → xn))

1A
associativity of u

≡ (x1 → . . .→ xi) u (xi → . . .→ xn)
again, (1)(a)

≡
„

j→
i=1

xi

«
u
„
n→
i=j

xi

«
(2)(a) We proof by induction on n.

♣ If n = 0 then
−1
u
i=1

(xi ↔ xi+1) ≡ > ≡ (↔) ≡ 0↔
i=1

xi

♣ If n = 1 then
0
u
i=1

(xi ↔ xi+1) ≡ > ≡ (↔ x1) ≡
1↔
i=1

xi

♣ If n 7→ n+ 1 then
n
u
i=1

(xi ↔ xi+1)

≡
„
n−1
u
i=1

(xi ↔ xi+1)

«
u (xn ↔ xn+1)

≡
„
n−1
u
i=1

xi

«
u (xn ↔ xn+1) induction step
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≡

0B@
„„

n
u
i=1
¬xi

«
t
„

n
u
i=1

xi

««
u ((¬xn u ¬xn+1) t (xn u xn+1))

1CA
def. 8.2.2

≡

0BB@
„

n
u
i=1
¬xi u ¬xn u ¬xn+1

«
t
„

n
u
i=1
¬xi u xn u xn+1

«
t
„

n
u
i=1

xi u ¬xn u ¬xn+1

«
t
„

n
u
i=1

xi u xn u xn+1

«
1CCA

distributivity 7.6.8(3)

≡
„
n+1
u
i=1
¬xi

«
t ⊥ t ⊥ t

„
n+1
u
i=1

xi

«
because ¬xn u xn ≡ ⊥

≡
„
n+1
u
i=1
¬xi

«
t
„
n+1
u
i=1

xi

«
≡ n+1↔
i=1

xi def. 8.2.2, again

(2)(b) We select an arbitrary j ∈ {1, . . . , n}.
If j = n then

n↔
i=1

xi ≡
„

n↔
i=1

xi

«
u
„

n↔
i=n

xi

«
≡
„

j↔
i=1

xi

«
u
„
n↔
i=j

xi

«
because

n↔
i=n

xi ≡ (↔ xn) ≡ >.

Otherwise, j < n and we obtain
n↔
i=1

xi

≡
n−1
u
i=1

(xi ↔ xi+1) due to (2)(a)

≡
„
j−1
u
i=1

(xi ↔ xi+1)

«
u
„
n−1
u
i=j

(xi ↔ xi+1)

«
associativity of u

≡
„

j↔
i=1

xi

«
u
„
n↔
i=j

xi

«
due to (2)(a), again

(2)(c) We obtain
n↔
i=1

xi

≡
„

n
u
i=1
¬xi

«
t
„

n
t
j=1

xj

«
def. 8.2.2

≡
n
u
i=1

n
u
j=1

(¬xi t xj) due to 7.6.8(4)

≡
n
u
i=1

n
u
j=1

(xi → xj) due to 8.2.5(2)(a)

(2)(d) We have
n↔
i=1

xi

≡
n
u
i=1

n
u
j=1

(xi → xj) according to (c)

≡
„

n
u
i=1

n
u
j=1

(xi → xj)

«
u
„

n
u
i=1

n
u
j=1

(xi → xj)

«
idempotency of u

≡
„

n
u
i=1

n
u
j=1

(xi → xj)

«
u
„

n
u
i=1

n
u
j=1

(xj → xi)

«
≡

n
u
i=1

n
u
j=1

((xi → xj) u (xj → xi))

due to the associativity and commutativity of u

≡
n
u
i=1

n
u
j=1

(xi ↔ xj) due to 8.2.5(2)(b)

(2)(e) First of all, let us note that

n−1→
i=0

xn−i

≡
n−1
u
i=0

`
xn−i → xn−(i+1)

´
due to (1)(a)

≡ (xn → xn−1) u . . . u (x3 → x2) u (x2 → x1)

≡ (x2 → x1) u u(x3 → x2) u . . . u (xn → xn−1)

≡
n−1
u
i=1

(xi+1 → xi)

We apply this in
n↔
i=1

xi

≡
n−1
u
i=1

(xi ↔ xi+1) due to (a)

≡
n−1
u
i=1

((xi → xi+1) u (xi+1 → xi))

due to 8.2.5(2)(b)

≡
„
n−1
u
i=1

(xi → xi+1)

«
u
„
n−1
u
i=1

(xi+1 → xi)

«
≡
„
n−1→
i=1

xi

«
u
„
n−1→
i=0

xn−i

«
due to (1)(a) and the above statement

(2)(f) We derive
n↔
i=1

xi

≡
„

n
u
i=1
¬xi

«
t
„

n
u
j=1

xj

«
def. 8.2.2

≡ ¬
„

n
t
i=1

xi

«
t
„

n
u
j=1

xj

«
due to 7.6.10(5)

≡
„

n
t
i=1

xi

«
→
„

n
t
j=1

xj

«
due to 8.2.5(2)(a)

8.2.14 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all x1, . . . , xn ∈ Q with n ∈ N holds:

(1) x1 → . . .→ xn → ⊥ ≡ ¬x1 u . . . u ¬xn
(2) x1 → . . .→ xn → > ≡ x1 → . . .→ xn

(3) ⊥ → x1 → . . .→ xn ≡ x1 → . . .→ xn

(4) > → x1 → . . .→ xn ≡ x1 u . . . u xn

8.2.15 Proof of 8.2.14

First of all, let us establish two auxiliary laws:
(a) (x→ y) u ¬y ≡ ¬x u ¬y

because (x→ y)u¬y ≡ (¬xty)u¬y ≡ (¬xu¬y)t(yu¬y) ≡
(¬x u ¬y) t ⊥ ≡ ¬x u ¬y

(b) x u (x→ y) ≡ x u y
because x u (x→ y) ≡ x u (¬x t y) ≡ (x u ¬x) t (x u y) ≡
⊥ t (x u y) ≡ x u y

are true for all x, y ∈ Q.

(1) If n = 0 we use 8.2.5(1)(a) to derive

x1 → . . .→ xn → ⊥ ≡ (→ ⊥) ≡ > ≡ ¬x1 u . . . u ¬xn
If n = 1 we use 8.2.5(4)(c) to derive

x1 → . . .→ xn → ⊥ ≡ (x1 → ⊥) ≡ ¬x1 ≡ ¬x1 u . . . u ¬xn

If n ≥ 1 we apply (a) to derive

x1 → . . .→ xn → ⊥
≡ (x1 → x2) u · · · u (xn−1 → xn) u (xn → ⊥)

≡ (x1 → x2) u · · · u (xn−1 → xn) u ¬xn| {z }
≡¬xn−1u¬xn

≡ (x1 → x2) u · · · u (xn−2 → xn−1) u ¬xn−1| {z }
≡¬xn−2u¬xn−1

u¬xn

.

.

.
.
.
.

≡ (x1 → x2) u ¬x2| {z }
≡¬x1u¬x2

u¬x3 u . . . u ¬xn

≡ ¬x1 u ¬x2 u ¬x3 u . . . u ¬xn

(2) We derive

x1 → . . .→ xn → >
≡ (x1 → x2) u . . . u (xn−1 → xn) u (xn → >)

≡ (x1 → x2) u . . . u (xn−1 → xn) u > due to 8.2.5(4)(d)

≡ (x1 → x2) u . . . u (xn−1 → xn)

≡ x1 → . . .→ xn

(3) We derive

⊥ → x1 → . . .→ xn
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≡ (⊥ → x1) u (x1 → x2) u . . . u (xn−1 → xn)

≡ > u (x1 → x2) u . . . u (xn−1 → xn) due to 8.2.5(4)(a)

≡ (x1 → x2) u . . . u (xn−1 → xn)

≡ x1 → . . .→ xn

(4) If n = 0 we use 8.2.5(1)(a) to derive

> → x1 → . . .→ xn ≡ (→ >) ≡ > ≡ x1 u . . . u xn
If n = 1 we use 8.2.5(4)(d) to derive

> → x1 → . . .→ xn ≡ (> ↔ x1) ≡ x1 ≡ > ≡ x1 u . . . u xn

If n ≥ 1 we apply (b) to derive

> → x1 → . . .→ xn

≡ (> → x1) u (x1 → x2) u . . . u (xn−1 → xn)

≡ x1 u (x1 → x2)| {z }
≡x1ux2

u . . . u (xn−1 → xn)

≡ x1 u x2 u (x2 → x3)| {z }
≡x2ux3

u . . . u (xn−1 → xn)

.

.

.
.
.
.

≡ x1 u . . . u xn−2 u xn−1 u (xn−1 → xn)| {z }
≡xn−1uxn

≡ x1 u . . . u xn−2 u xn−1 u xn

8.2.16 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all x1, . . . , xn, y1, . . . , ym ∈ Q with n,m ∈ N holds:

(1) x1 → . . .→ xn → ⊥ → y1 → . . .→ ym
≡ (¬x1 u . . . u ¬xn) u (y1 → . . .→ ym)

(2) x1 → . . .→ xn → > → y1 → . . .→ ym
≡ (x1 → . . .→ xn) u (y1 u . . . u ym)

(3) x1 ↔ . . .↔ xn ↔ ⊥ ↔ y1 ↔ . . .↔ ym
≡ ¬x1 u . . . u ¬xn u ¬y1 u . . . u ¬ym

(4) x1 ↔ . . .↔ xn ↔ > ↔ y1 ↔ . . .↔ ym
≡ x1 u . . . u xn u y1 u . . . u ym

8.2.17 Proof of 8.2.16

(1) There is

x1 → . . .→ xn → ⊥ → y1 → . . .→ ym

≡ (x1 → . . .→ xn → ⊥) u (⊥ → y1 → . . .→ ym)
due to 8.2.12(1)(b)

≡ (¬x1 u . . . u ¬xn) u (y1 → . . .→ ym)
due to 8.2.14(1) and (3)

(2) Similar to (1) we obtain

x1 → . . .→ xn → > → y1 → . . .→ ym

≡ (x1 → . . .→ xn → >) u (> → y1 → . . .→ ym)

≡ (sx1 → . . .→ xn) u (y1 u . . . u ym)
due to 8.2.14(2) and (4)

(3) We first apply definition 8.2.2 and obtain

x1 ↔ . . .↔ xn ↔ ⊥ ↔ y1 ↔ . . .↔ ym

≡

0@(¬x1 u . . . u ¬xn u ¬⊥ u ¬y1 u . . . u ¬ym)

t (x1 u . . . u xn u ⊥ u y1 u . . . u ym)

1A
≡ (¬x1 u . . . u ¬xn u > u ¬y1 u . . . u ¬ym) t ⊥
≡ ¬x1 u . . . u ¬xn u ¬y1 u . . . u ¬ym

(4) Again, we start with definition 8.2.2 and obtain

x1 ↔ . . .↔ xn ↔ > ↔ y1 ↔ . . .↔ ym

≡

0@(¬x1 u . . . u ¬xn u ¬> u ¬y1 u . . . u ¬ym)

t (x1 u . . . u xn u > u y1 u . . . u ym)

1A
≡

0@(¬x1 u . . . u ¬xn u ⊥ u ¬y1 u . . . u ¬ym)

t (x1 u . . . u xn u y1 u . . . u ym)

1A
≡ ⊥ t (x1 u . . . u xn u y1 u . . . u ym)

≡ x1 u . . . u xn u y1 u . . . u ym

8.2.18 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all x1, . . . , xn ∈ Q with n ∈ N holds:

(a) x1 → . . .→ xn ≡ > iff x1 v . . . v xn
(b) x1 ↔ . . .↔ xn ≡ > iff x1 ≡ . . . ≡ xn

8.2.19 Proof of 8.2.18

(a) We derive

x1 → . . .→ xn ≡ >
iff (x1 → x2) u . . . u (xn−1 → xn) ≡ >

due to 8.2.12(1)(a)

iff x1 → x2 ≡ > and . . . and xn−1 → xn ≡ >
due to 7.6.13(1)

iff ¬x1 t x2 ≡ > and . . . and ¬xn−1 t xn ≡ >
due to 8.2.5(2)(a)

iff x1 v x2 and . . . and xn−1 v xn
due to 7.6.12(2)

iff x1 v . . . v xn

(b) We derive

x1 ↔ . . .↔ xn ≡ >
iff (x1 → . . .→ xn) u (xn → . . .→ x1) ≡ >

due to 8.2.12(2)(e)

iff x1 → . . .→ xn ≡ > and xn → . . .→ x1 ≡ >
due to 7.6.13(1)

iff

0@(x1 v x2 and . . . and xn−1 v xn) and

(xn v xn−1 and . . . and x2 v x1)

1A
due to (a)

iff

0@(x1 v x2 and x2 v x1) and . . . and

(xn−1 v xn and xn v xn−1)

1A
iff x1 ≡ x2 and . . . and xn−1 ≡ xn

due to 7.6.4(6)

iff x1 ≡ . . . ≡ xn

8.2.20 Lemma

Let
˙
Q,v,≡,⊥,>,u,t,¬

¸
be a quasi–boolean algebra.

For all w, x1, . . . , xn, y1, . . . , ym, z1, . . . , zk ∈ Q holds:

(a) x1 → . . . → x2 → w → y1 → . . . → ym → w → z1 →
. . . → zk ≡ (x1 → . . .→ x2 → w → z1 → . . .→ zk) u
(w ↔ y1 ↔ . . .↔ ym)

(a) x1 ↔ . . . ↔ x2 ↔ w ↔ y1 ↔ . . . ↔ ym ↔ w ↔ z1 ↔
. . . ↔ zk ≡ w ↔ x1 ↔ . . . ↔ x2 ↔ y1 ↔ . . . ↔ ym ↔
z1 ↔ . . .↔ zk
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8.2.21 Proof of 8.2.20

Left as exercise.



52

Part IV

Records
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9 Records, including tuples and schemas

9.1 Records

9.1.1 Remark Introduction

A record assigns values26to certain indices or attributes.

Mathematically, we introduce records as surjective functions.
The indices are always identifiers, i.e. primitive entities like
short character strings. (We will talk about identifiers in this
sense, but we won’t need a formal definition of the identifier
concept.) The values on the other hand might be quite com-
plex.

We will agree that a “P–record” is a record, where all values
are P. For example, a “function record” is a record, where
each value is a function, in an “integer record” every value is
an integer etc. Accordingly, we will even use the (awkward)
term “record–record” to denote higher–order records, where
each value is a record itself.

There are two important kinds of record that will be given an
own name: class records will be called schemas. And records
with the indices 1, 2, . . . , n are the usual tuples. Often tuples
are also called vectors or arrays, but we will only use the tuple
notion.

9.1.2 Definition record

A record is a surjective function ξ : I −→ Ξ.

The usual representation of such a record is

[i 7→ ξi|i ∈ I] or [ξi|i ∈ I]

where ξi := ξ(i), for each i ∈ I. Since ξ is surjective, Ξ is
implicitely given with Ξ = {ξi | i ∈ I} and both notations
contain all the information.

Given such a record ξ = [ξi|i ∈ I] then

(1) I = dom(ξ) , the domain of ξ, is also called the index

or attribute class.

(2) The cardinality of I is the dimension of ξ.

(3) The ξi are called values.

(4) The value class Ξ of ξ is reconstructed from ξ via
Ξ = {ξ(i) | i ∈ dom(ξ)}. Taking ξ as a surjective
function, Ξ is also called the codomain of ξ and given

by Ξ = cod(ξ) .

9.1.3 Remark notation

Recall 5.6.2, that the general class expression “{i ∈ I | ϕ}” is
the common version of the more correct “{i : I | ϕ}”, since
“i ∈ I” is in fact not an element of I as intended, but a true

or false statement. Similarly, “[ξi|i : I]” would be the formally
more appropriate version of our actual definition “[ξi|i ∈ I]”.
However, having mentioned this convention, we may follow the
usual habits.

According to our convention (4.1.3 and 5.2.7) to use more com-
pact two–dimensional versions for (long) linear expressions, we
occasionally write

24 i 7→ ξi

i ∈ I

35 instead of [i 7→ ξi|i ∈ I]

24 ξi

i ∈ I

35 instead of [ξi|i ∈ I]

9.1.4 Definition record class

REC denotes the class of all records.

9.1.5 Definition finite records

A record ξ : I −→ Ξ is finite iff it is of finite dimension, i.e.
I is finite (and thus Ξ is finite, too, since ξ is a surjective
function).
If I = {i1, . . . , in} is the domain of such a finite record,
we often represent ξ by2664

i1 7→ ξ(i1)

.

.

.
.
.
.

.

.

.

in 7→ ξ(in)

3775
n is called the arity and ξ is said to be n–ary. As usual,
0–ary, 1–ary, 2–ary, etc records are called nullary, unary,
binary, etc. Unary records are also called singular or
literal.

9.1.6 Example record

Let us define a finite record by

today :=

26664
year 7→ 2003

month 7→ 1

day 7→ 17

title 7→ friday

37775
We can apply today as a function and get

today(year) = 2003 today(month) = 1

today(day) = 17 today(title) = friday

Writing today in our standard function form would result in a
rather awkward expression like

26 In 5 we introduced the title value as the general name for mathematical entities, the semantical counterpart of the syntactical ex-

pression. This metamathematical preliminaries will not be used explicitely in the sequel and values will be be associated with values of

records for the remainder of the text.
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2666666664

{year, month, day, title} −→ {1, 17, 2003, friday}

i 7→

8>>><>>>:
2003 if i = year

1 if i = month

17 if i = day

friday if i = title

3777777775
So obviously, we usually prefer the initial version to represent
finite records.

9.1.7 Remark

The order in which we list the single maps in a finite record
expression doesn’t matter. For example, there is"

a 7→ ξa
b 7→ ξb

#
=

"
b 7→ ξb
a 7→ ξa

#

But if there is some default order on the index class, we will
usually list them accordingly.

9.1.8 Remark Classes as records

From a certain point of view, records are very similar to classes.
An arbitrary class C is often represented as C = {ci | i ∈ I}
or C = {ci | i ∈ I}. I is an index class and each element
of C is addressed by its own unique index which is a kind of
name. Often, such a C = {ci | i ∈ I} is called a family, in par-
ticular if the ci are classes themselves. The resemblence with
the record [ci|i ∈ I] is obvious, however classes and records
are different things with different operations defined on them.
But occasionally, we will take one for the other.

Note, that for every class C there is at least one appropriate
index class, namely C itself. The identity function (5.7.6)

idC =

"
C −→ C

c 7→ c

#

is a surjective function and thus a record with

idC = [c 7→ c|c ∈ C]

9.2 Tuples and other special
records

9.2.1 Definition tuples as records

For each n ∈ N, every n–tuple 〈ξ1, . . . , ξn〉 (with

components ξ1, . . . , ξn) can be (re–)defined as a record ξ

with I = {1, . . . , n} = n as its index class or domain. In
other words,

〈ξ1, . . . , ξn〉 :=

2664
1 7→ ξ1
.
.
.

.

.

.

n 7→ ξn

3775

9.2.2 Definition the empty record / function / tuple

〈〉 is the nullary or empty record.

9.2.3 Remark

〈〉 was already introduced as the empty tuple (5.4.1) and the

empty function (5.7.6). This unique function of type ∅ −→ ∅
is a well–defined function, and it is surjective in a trivial sense.
So it is indeed a record and all the titles empty tuple, empty
function, and empty record turn out to be different names for
the same thing.

9.2.4 Definition univalent record

A record ξ : I −→ Ξ is univalent, if

ξ(i) = ξ(j) for all i, j ∈ I
So if ξ is not empty, its codomain Ξ is a singleton Ξ = {c},
for some value c.
When we write such a nonempty univalent record in the
“[ξi|i ∈ I]” notation, we could as well omit the index i,
since it all ξi are the same c anyway. Therefore, we often
write it as

[c|I]

9.2.5 Example univalent record

A boring menu for an entire week in record form is given by

[soup| {monday, . . . , sunday}] =

2664
monday 7→ soup

.

.

.
.
.
.

sunday 7→ soup

3775

9.2.6 Definition univalent tuple

For every c and all n ∈ N we define an additional simpli-
fied notation for the univalent n–tuple with component c,
namely

〈c | n〉 := [c|n] = 〈c, c, . . . , c| {z }
n times

〉 =

2664
1 7→ c

.

.

.
.
.
.

n 7→ c

3775

9.2.7 Example univalent tuple

〈−2 | 5〉 = 〈−2,−2,−2,−2,−2〉

9.3 Schemas

9.3.1 Definition schema

A record X = [Xi|i ∈ I] is called a schema, if all the
Xi are classes. For each i ∈ I, the class Xi is the i– or
i-th domain of X.

9.3.2 Remark

We use “schemas” rather than “schemata” as the plural for
“schema”.
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9.3.3 Definition properties

A schema X = [Xi|i ∈ I] is called

(1) proper, if

Xi 6= ∅, for all i ∈ I
(2) finite, if

it is a finite record, i.e. if I is finite

(3) locally finite or singular finite, if

Xi is finite, for every i ∈ I
(4) completely finite, if

it is both finite and locally finite.

9.3.4 Example schema

A proper finite schema is given by

Dates :=

26664
year 7→ Z

month 7→ {1, . . . , 12}
day 7→ {1, . . . , 31}

title 7→ {monday, . . . , sunday}

37775
For example, the month–domain is {1, . . . , 12}. In other words,
Dates(month) = {1, . . . , 12}. Dates is not completely finite, be-
cause the year–domain Z is infinite.
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10 Operations on records

10.1 Values, domains and codomains

10.1.1 Definition the usual function operations on records

Let ξ = [ξi|i ∈ I] be a record. Since a record is a function,
the following notions are well–defined (as in 5.7.3):

ξ(i) := ξi the value of ξ at i ∈ I or the
i–th component of ξ,

dom(ξ) := I the domain of ξ, also called
the index or attribute class of
ξ,

cod(ξ) := {ξi | i ∈ I} the codomain or value class of
ξ.

10.2 Projections

10.2.1 Definition projection

For every record ξ = [ξi|i ∈ I] and every class J ⊆ I we
define

pr (ξ, J) := [ξi|i ∈ J] the projection of ξ onto J.

10.2.2 Example projection

For

ξ = 〈a, b, c, d〉 =

26664
1 7→ a

2 7→ b

3 7→ c

4 7→ d

37775
we have

pr (ξ, {2, 4}) =

"
2 7→ b

4 7→ d

#
and pr (ξ, ∅) = 〈〉

10.2.3 Remark

Note the difference between the projection pr (ξ, J) and the
domain restriction ξ |J (see 5.7.6). ξ |J is a well–defined func-
tion again, but it might not be surjective anymore, i.e. not
a record. The projection is a domain as well as a codomain
restriction and its result is a record.

10.2.4 Lemma projection

For every record ξ = [ξi|i ∈ I] and every class J ⊆ I
(1) pr (pr (ξ, J) , J) = pr (ξ, J) (idempotency)

(2) pr (ξ, J) = ξ iff J = I (neutral projection)

10.2.5 Proof of 10.2.4

Both properties are immediate consequences of definition
10.2.1.

10.2.6 Definition projection class

For every record ξ we define

Proj(ξ) := {pr (ξ, J) | J ⊆ dom(ξ)}

the projection class of ξ.

10.2.7 Example projection class

For ξ = 〈a, b〉 we obtain

Proj(ξ) =

(
〈〉,
h

1 7→ a
i
,
h

2 7→ b
i
,

"
1 7→ a

2 7→ b

#)
=
n
〈〉, 〈a〉,

h
2 7→ b

i
, 〈a, b〉

o

10.3 Relations between records

10.3.1 Remark introduction

Suppose we have two records ξ and υ. We introduce the fol-
lowing notions to compare the two: ξ and υ are distinct iff
they have no index in common. They are compatible iff there
is no common index with a different value. And ξ is smaller or
a subrecord of υ iff we obtain ξ by deleting some indices (and
their corresponding values) from υ, i.e. iff ξ is a projection of
υ onto the domain of ξ.
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10.3.2 Definition

We define

©1 G ©2 :=

264 REC! REC

〈[ξi|i ∈ I], [υ|j ∈ J]〉 I ∩ J = ∅

375
the distinctness relation

©1 ^ ©2 :=

26664
REC! REC

〈[ξi|i ∈ I], [υ|j ∈ J]〉 
ξk = υk for all k ∈ I ∩ J

37775
the compatibility relation

©1 ≤ ©2 :=

26664
REC! REC

〈[ξi|i ∈ I], [υ|j ∈ J]〉 
I ⊆ J and ξi = υi for all i ∈ I

37775
the subrecord or smaller relation

©1 < ©2 :=

26664
REC! REC

〈[ξi|i ∈ I], [υ|j ∈ J]〉 
I ⊂ J and ξi = υi for all i ∈ I

37775
the proper subrecord or strict smaller relation

10.3.3 Definition notation

For two relations ξ and υ we write (see also 19.4.1)

ξ 6G υ ξ 6^ υ ξ � υ ξ ≮ υ

And for two or more records ξ1, . . . , ξn we write

ξ1 G . . . G ξn iff ξi G ξj for all i and j with i 6= j

ξ1 ^ . . . ^ ξn iff ξi ^ ξj for all i and j

ξ1 ≤ . . . ≤ ξn iff ξ1 ≤ ξ2 and . . . and ξn−1 ≤ ξn

ξ1 < . . . < ξn iff ξ1 < ξ2 and . . . and ξn−1 < ξn

10.3.4 Definition

A class Ξ of records is called

(1) (pairwise) distinct

iff ξ 6= υ implies ξ G υ, for all ξ, υ ∈ Ξ

(2) (pairwise) compatible

iff ξ ^ υ, for all ξ, υ ∈ Ξ

A record–record ρ = [ρk|k ∈ K] is called

(1) (pairwise) distinct

iff {ρk | k ∈ K} is (pairwise) distinct.

(2) (pairwise) compatible

iff {ρk | k ∈ K} is (pairwise) compatible.

10.3.5 Remark

Note, that the definition of ξ1 G . . . G ξn and ξ1 ^ . . . ^ ξn
in 10.3.3 diverges from definition 5.7.12, where

x1Rx2R . . . Rxn means x1Rx2 ∧ x2Rx3 ∧ . . . ∧ xn−1Rxn

Here, the we have another motivation for the n–ary sequence
notation: if Ξ = {ξ1, . . . , ξn} is a finite record class, then

ξ1 G . . . G ξn iff {ξ1, . . . , ξn} is (pairwise) distinct

ξ1 ^ . . . ^ ξn iff {ξ1, . . . , ξn} is (pairwise) compatible

10.3.6 Example

Suppose a 6= b and given six records

ξ =

26664
1 7→ a

3 7→ a

5 7→ a

7 7→ a

37775 υ =

26664
2 7→ b

4 7→ b

6 7→ b

8 7→ b

37775 ζ =

26664
1 7→ a

2 7→ b

3 7→ b

4 7→ b

37775

ξ′ = 〈〉 ξ′′ =

"
1 7→ a

5 7→ a

#
ξ′′′ =

"
3 7→ a

7 7→ a

#

We can see that:
(1) ξ G υ, because dom(ξ) ∩ dom(υ) = ∅. Thus ξ ^ υ. In

other words, ξ and υ are distinct and compatible.

(2) ξ and ζ are not distinct, because dom(ξ) ∩ dom(ζ) =
{1, 4}. And they are not compatible either, because they
disagree in their common index 3, i.e. ξ(3) = a 6= b = ζ(3).

(3) υ and ζ are not distinct, because dom(υ) ∩ dom(ζ) =
{2, 4}. But they are compatible, because υ(2) = b = ζ(2)
and υ(4) = b = ζ(4).

(4) ξ′ is the empty tuple, and as such it is distinct to and
compatible with every other record.

(5) The class
˘
ξ, ξ′, ξ′′, ξ′′′

¯
is not distinct (because e.g. ξ 6G

ξ′′), but it is compatible. The ≤–order on this class is rep-
resented in the following order diagram:

ξ′

ξ′′ ξ′′′

ξ

��

��@@

@@

i.e. ξ′ ≤ ξ′′, ξ′ ≤ ξ, etc.

(6) ξ′ G ξ G υ

10.3.7 Remark compatibility notation

The symbol ^ is the so-called “smile”. Records “smile” iff
they “agree”. Accordingly, we could have used the “frown”
symbol _ for the opposite case. But we use the 6^ instead,
according to a general convention that denotes the complement
of a relation R by 6 R.

10.3.8 Remark

We state some obvious facts about the new relations:
(1) The compatibility relation ^ is reflexive, symmetric, but

not transitive (see the following counterexample 10.3.9). So
^ is not an equivalence relation.

(2) Distinctness implies compatibility, i.e. ξ G υ implies
ξ ^ υ, but not vice versa in general.

(3) If ξ and υ are ≤–comparable, i.e. ξ ≤ υ or υ ≤ ξ, then

(a) ξ ^ υ, and

(b) ξ G υ iff (ξ = 〈〉 or υ = 〈〉).

(4) For two tuples ξ = 〈ξ1, . . . , ξn〉 and υ = 〈υ1, . . . , υm〉,
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there is

ξ ≤ υ iff (n ≤ m and 〈ξ1, . . . , ξn〉 = 〈υ1, . . . , υn〉)

In other words, ξ ≤ υ iff ξ is an initial section of υ.

10.3.9 Example compatibility

The following three records demonstrate, that the compatibil-
ity is not transitive in general. For

ξ =

"
1 7→ a

2 7→ b

#
υ =

"
2 7→ b

3 7→ c

#
ζ =

"
1 7→ d

2 7→ b

#

there is

ξ ^ υ and υ ^ ζ but ξ 6^ ζ

10.3.10 Lemma

Proj(ξ) is compatible, for every record ξ.

10.3.11 Proof of 10.3.10

Let ξ = [ξi|i ∈ I] be a given record, υ = [υj |j ∈ J] ∈ Proj(ξ),
and ζ = [ζk|k ∈ K] ∈ Proj(ξ). For every l ∈ J ∩ K holds:
υl = ζl = ξl. So υ ^ ζ, each two members of Proj(ξ) are
compatible, thus Proj(ξ) is compatible.

10.3.12 Lemma the new relations in terms of projections

Let ξ = [ξi|i ∈ I] and υ = [υj |j ∈ J] be two records. Then

(1) ξ G υ ⇔ pr (ξ, I ∩ J) = 〈〉 ⇔ pr (υ, I ∩ J) = 〈〉
(2) ξ ^ υ ⇔ pr (ξ, I ∩ J) = pr (υ, I ∩ J)

(3) ξ ≤ υ ⇔ ξ = pr (υ, I ∩ J)⇔ ξ ∈ Proj(υ)

10.3.13 Proof of 10.3.12

Direct consequences of definitions 10.2.1 and 10.3.2.

10.4 Distinct joins

10.4.1 Definition

For each two distinct records ξ = [ξi|i ∈ I] and υ = [υj |j ∈
J] we define

ξ ∨̇ υ :=

"
k 7→

(
ξk if k ∈ I
υk if k ∈ J

k ∈ (I ∪ J)

#
the distinct join of ξ and υ.

A generalization for n ≥ 0 (pairwise) distinct records is
defined by

ξ1 ∨̇ . . . ∨̇ ξn :=

8>><>>:
〈〉 if n = 0

ξ1 if n = 1

(ξ1 ∨̇ ξ2) ∨̇ ξ3 ∨̇ . . . ∨̇ ξn if n > 1

And for every (pairwise) distinct record class Ξ we define

Ẇ
Ξ :=

24 k 7→ the ξk with ξ ∈ Ξ and k ∈ dom(ξ)

k ∈
S
{dom(ξ) | ξ ∈ Ξ}

35
the distinct join of Ξ

10.4.2 Remark

(1) In case the arguments are finite records, the result of a dis-
tinct join is intuitive, simply a merge or combination: For
example, given

ξ =

"
p 7→ ξp
q 7→ ξq

#
υ =

"
r 7→ υr
s 7→ υs

#
then ξ G υ and

ξ ∨̇ υ =

26664
p 7→ ξp
q 7→ ξq
r 7→ υr
s 7→ υs

37775
(2) Later on (11.4.3) we define another generalization: the join
∨, that is defined for every two records, not just for distinct
ones. But it is very useful to have the distinct version and
notation ∨̇ available, because it allows us to emphasize the
distinctness of the arguments. We often apply it in distinct
decompositions of a given record or record partitions (see
16 in particular). Besides, ∨̇ has some properties that do
not hold anymore for ∨, e.g. the associativity (see 11.5.3).

(3) The distinct join is associative, commutative, and 〈〉 is its
neutral element. That makes the n–ary definition in 10.4.1
natural and obvious.

(4) The big version
Ẇ

is just a generalization of ∨̇ for an
arbitrary number of records in the obvious sense that

ξ ∨̇ υ =
Ẇ
{ξ, υ}

10.5 Concatenation of tuples
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10.5.1 Definition concatenation

For all tuples ξ = 〈ξ1, . . . , ξn〉 and υ = 〈ξ1, . . . , ξm〉 we
define

ξ † υ := 〈ξ1, . . . , ξn, υ1, . . . , υn〉

the concatenation of ξ and υ.
More general, we define for n ≤ 0 tuples ξ1, . . . , ξn their
concatenation

ξ1 † . . . † ξn :=

n

†
i=1

ξi :=

(
〈〉 if n = 0

ξ1 † (ξ2 † . . . † ξn) else

10.5.2 Example concatenation

〈1, 3, 5〉 † 〈2, 4, 6〉 = 〈1, 3, 5, 2, 4, 6〉

〈1, 2, 3〉 † 〈〉 = 〈1, 2, 3〉

〈1, 3, 5〉 † 〈〉 † 〈2, 4, 6〉 † 〈1, 3, 5〉 = 〈1, 3, 5, 2, 4, 6, 1, 3, 5〉

10.5.3 Lemma properties of the concatenation˙
X∗, †, 〈〉

¸
is a monoid, for every class X.

10.5.4 Proof of 10.5.3

By definition,
˙
X∗, †, 〈〉

¸
is a monoid, if the following two

properties are satisfied:
(1) † is associative:

(ξ † υ) † ζ = ξ † (υ † ζ) for all ξ, υ, ζ ∈ X∗

(2) 〈〉 is the neutral element:

〈〉 † ξ = ξ † 〈〉 for all ξ ∈ X∗

And these are quite obvious facts.

10.5.5 Remark

The concatenation looks similar to the distinct join of finite
distinct records in 10.4.2. But the concatenation is not sim-
ply the distinct join of two tuples. Two tuples are distinct
only, if at least one of them is empty. To actually define the
concatenation formally as a distinct join, we need an attribute
translation of the second argument. For example

〈a, b, c〉 † 〈b, b, d〉 =

264 1 7→ a

2 7→ b

3 7→ c

375 †
264 1 7→ b

2 7→ b

3 7→ d

375

=

264 1 7→ a

2 7→ b

3 7→ c

375 ∨̇
264 4 7→ b

5 7→ b

6 7→ d

375 = 〈a, b, c, b, b, d〉

Attribute translations are also operations on records, but we
will postpone their proper introduction until 22.2.3.
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11 Order structures and junctions on records

11.1 Poclasses of records

11.1.1 Lemma

(1)
˙
REC,≤

¸
is a poclass.

(2)
˙
Ξ,≤

¸
is a poclass, for every record class Ξ.

11.1.2 Proof of 11.1.1

(1)
˙
REC,≤

¸
satisfies the following three defining properties

of a poclass (7.1.3 and 7.2.2):

♣ ≤ is transitive on REC: If ξ = [ξi|i ∈ I], υ = [υj |j ∈ J],
and ζ = [ζk|k ∈ K] are three records with ξ ≤ υ and
υ ≤ ζ, then I ⊆ J and J ⊆ K, ξi = υi for all i ∈ I and
υj = ζj for all j ∈ J, and thus I ⊆ K and ξi = ζi for all
i ∈ I, which means ξ ≤ ζ.

♣ ≤ is reflexive on REC: ξ ≤ ξ for every record ξ, which is
obvious.

♣ ≤ is antisymmetric on REC: ξ ≤ υ and υ ≤ ξ implies
ξ = υ for all records ξ and υ, and that is correct, too.

(2) Recall from 7.2.3: If
˙
D, ρ

¸
is any given poclass and

C ⊆ D, then (C, ρ) is a poclass, too. So if Ξ is a record
class, then

˙
Ξ,≤

¸
is a poclass.

11.2 Lattices on records

11.2.1 Remark overview

We will now investigate, in how far these poclasses
˙
Ξ,≤

¸
are

lattice–like structures. In other words, we try to define the
according operations (called junctions) such as the meet ξ ∧ υ
and join ξ ∨ υ. We define Rec (I, C), which is a more spe-
cific type than the general REC, but has the same structural
properties and is useful for illustrations (see example 11.2.3
below).

We will see soon, that neither
˙
REC,≤

¸
nor

˙
Rec (I, C) ,≤

¸
is a lattice.27 A key concept here is compatibility: For exam-
ple, ξ ∨ υ is the least upper bound of ξ and υ iff ξ ^ υ, i.e.
iff ξ and υ are compatible. So in order to have the full range
of lattice operations available, we later concentrate on record
classes Ξ, which are compatible and operationally closed. Such
classes are the projection classes Proj(ξ). For every record ξ,
the poclass

˙
Proj(ξ),≤

¸
is indeed a lattice, even a complete

boolean one.

11.2.2 Definition

For every two class I and C we define

Rec (I, C) := {ξ ∈ REC | dom(ξ) ⊆ I, cod(ξ) ⊆ C}

the record class on I and C.

11.2.3 Example

Let us take I = {i, j} and C = {a, b}. The whole structure of
Rec (I, C) is represented by the following order diagram:

"
i 7→ a

j 7→ a

# "
i 7→ a

j 7→ b

# "
i 7→ b

j 7→ a

# "
i 7→ b

j 7→ b

#

h
i 7→ a

i h
i 7→ b

i h
j 7→ a

i h
j 7→ b

i

〈〉

�
�

�
�

��

�
�

�
�

��

�
�

�
�

�
�

��

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

QQ

A
A

A
A

�
�
�
�

�
�

�
�

��

The diagram of this simple example class is typical for all
classes Rec (I, C) and REC itself:

(1) There is no greatest or top element.

(2) But there is a least or bottom element, namely 〈〉.
(3) Every two records ξ and υ do have common lower bounds,

i.e. there are records ζ such with ζ ≤ ξ and ζ ≤ υ. And
of all these lower bounds ζ, there is a unique greatest lower
bound or meet, which is written ξ ∧ υ. For example,"

i 7→ a

j 7→ a

#
∧
"
i 7→ a

j 7→ b

#
=

h
i 7→ a

i
"
i 7→ a

j 7→ a

#
∧
"
i 7→ b

j 7→ b

#
= 〈〉

(4) Not every two records ξ and υ have common upper bounds,
let alone a least upper bound. For example, take [i 7→ a] and
[i 7→ b]. But they have a least upper bound or join ξ ∨ υ iff
they are compatible. For example

h
i 7→ a

i
∨
h
j 7→ b

i
=

"
i 7→ a

j 7→ b

#
"
i 7→ a

j 7→ a

#
∨
h
i 7→ a

i
=

"
i 7→ a

j 7→ a

#

27 ˙
REC,≤

¸
is a so–called complete partial order or cpo (i.e. has bottom element and each chain has a supremum) and a

meet semi–lattice (i.e. the greatest lower bound is always defined). But we will not use this or any other terminology for this kind of

poclass.
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So the join operator or disjunctor is just a partial function,
in our notation ©1 ∨ ©2 : REC×REC 99K REC.

However, we enforce a join ξ∨υ for every two records: if they
are incompatible, we simply delete the incompatible indices
first. For example:

[i 7→ a] ∨ [i 7→ b] := 〈〉"
i 7→ a

j 7→ a

#
∨
"
i 7→ a

j 7→ b

#
:= [i 7→ a]

But these joins of incompatible arguments are not (least)
upper bounds of their arguments.

So the structure
˙
Rec (I, C) ,≤, 〈〉,∧,∨

¸
is well–defined, with

∧ and ∨ defined for all its record pairs. But it is just not a
proper lattice.

11.3 Various domains of record
classes

11.3.1 Definition

For every record class Ξ we define

DΞ :=
S
ξ∈Ξ

dom(ξ) the (total) domain,

D 6^
Ξ :=

8><>:
k ∈ DΞ

∃υ, ζ ∈ Ξ .

υ(k) 6= ζ(k)

9>=>; the incompatible domain,

D^
Ξ := DΞ \D 6^

Ξ the compatible domain of Ξ.

11.3.2 Remark notation

In the sequel and when there is only one record class Ξ in-
volved in the given context, we sometimes leave the subscript

for the new domain symbols and simply write D , D 6^ , and

D^ instead.

11.3.3 Example

Given two records

ξ =

264 i 7→ 1

j 7→ 2

k 7→ 3

375 and υ =

264 j 7→ 5

k 7→ 3

l 7→ 4

375
so

dom(ξ) = {i, j, k} and dom(υ) = {j, k, l}

We obtain

D = {i, j, k, l} D 6^ = {j} D^ = {i, k, l}

(So here D is an abbreviation for D{ξ,υ} etc.)

11.3.4 Lemma

Let Ξ be a record class. Then

(1) DΞ = D 6^
Ξ ∪D^

Ξ and D 6^
Ξ ∩D^

Ξ = ∅

(2) Ξ is (pairwise) compatible iff D 6^
Ξ = ∅

(3) D 6^
Ξ =

S
ξ,υ∈Ξ

D 6^
{ξ,υ}

(4) D 6^
Ξ =

S
Ψ⊆Ξ

D 6^
Ψ

(5) If Ψ ⊆ Ξ then DΨ ⊆ DΞ and D 6^
Ψ ⊆ D 6^

Ξ .
But D^

Ψ ⊆ D^
Ξ is not true in general.

And if ξ, υ, ζ are records, then:

(6) D∅ = D 6^
∅ = D^

∅ = ∅

(7) D{ξ} = D^
{ξ} = dom(ξ) and D 6^

{ξ} = ∅

(8) D^
{ξ,υ} = dom(ξ ∨ υ)

(9) D 6^
{ξ,υ,ζ} = D 6^

{ξ,υ} ∪D 6^
{ξ∨υ,ζ}

11.3.5 Proof of 11.3.4

All statements are more or less trivial consequences of defini-
tion 11.3.2.
On the remark in (5) about the truth of “Ψ ⊆ Ξ implies
D^

Ψ ⊆ D^
Ξ ” consider the following counterexample: For

Ψ = {〈7, 8, 9〉, 〈7, 8, 6〉} ⊆ {〈7, 8, 9〉, 〈7, 8, 6〉, 〈9, 8, 7〉} = Ξ
holds D^

Ψ = {1, 2} 6⊆ {2} = D^
Ξ .

11.4 Record junctions

11.4.1 Remark introduction of the new junctors

The example 11.3.3 of two simple incompatible records is worth
investigating, because it motivates the following binary junctor
definitions.

Let ξ = [ξi|i ∈ I] and υ = [υj |j ∈ J] be two records. Their
(total) domain D = I ∪ J partitions into the following parts:

I

J

I \ J

J \ I

I ∩ J

But I ∩ J itself partitions into D 6^ and the remaining class

H := (I ∩ J) \D 6^ = I ∩ J ∩D^. The situation is illustrated
by

I

J

I \ J

J \ I

D 6^

H

This partition of the total domain induces the following parti-
tion of records, induced by the two given ones:
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ξ

υ

pr (ξ, I \ J)

pr (υ, J \ I)

pr
“
ξ,D 6^

”
6= pr

“
υ,D 6^

”
pr (ξ,H)

= pr (υ,H)

The first three new junctors \, n and ∧ are just new notations
for these projections; we put

ξ \ υ := pr (ξ, I \ J)

ξ n υ := pr
“
ξ,D 6^

”
ξ ∧ υ := pr (ξ,H)

The corresponding diagram with the new notation is

ξ

υ

ξ \ υ

υ \ ξ

ξ n υ

6= υ n ξ

ξ ∧ υ
= υ ∧ ξ

The other three junctors O , ∨ and
√

are different distinct
joins of the previous ones:

ξO υ := (ξ \ υ) ∨̇ (υ \ ξ)

ξ ∨ υ := (ξ \ υ) ∨̇ (υ \ ξ) ∨̇ (ξ ∧ υ)

ξ
√
υ := (ξ \ υ) ∨̇ (υ \ ξ) ∨̇ (ξ ∧ υ) ∨̇ (υ n ξ)

so that

υO ξ = ξO υ

υ ∨ ξ = ξ ∨ υ

υ
√
ξ = (ξ ∨ υ) ∨̇ (υ n ξ) 6= (ξ ∨ υ) ∨̇ (ξ n υ) = ξ

√
υ

The closure of ξ and υ, i.e. the class of all the results produced
by these new junctions is displayed by the following diagram

〈〉

ξ \ υ ξ n υ ξ ∧ υ υ n υ υ \ ξ

ξ ξO υ υ

ξ ∨ υ

υ
√
ξ ξ

√
υ

Q
Q

Q
Q

S
S

S

�
�
�

�
�

�
�

�
�
��

�
�

��

D
D
DD

\
\

\\

�
�

��

�
�
��

L
L

LL

�
�
�
�
��

�
�

C
C
C
C
CC

@
@

�
�

The diagram shows the most general situation. In special
cases, e.g. ξ ^ υ or ξ ≤ υ, certain members of the diagram
collapse into one (see 11.4.5).

This closure of ξ and υ is their closure indeed in the usual
sense:

♣ The three records ξ, υ, 〈〉 are junction results as well be-
cause

ξ = ξ ∧ ξ = ξ ∨ ξ = ξ
√
ξ

〈〉 = ξ n ξ = ξO ξ

♣ Applying the junctions again (and again) does not produce
new results.

11.4.2 Example

As an example, let us take the incompatible two records

ξ =

264 i 7→ 1

j 7→ 2

k 7→ 3

375 and υ =

264 j 7→ 5

k 7→ 3

l 7→ 4

375
from example 11.3.3 again. Their closure (where each record
position in the picture corresponds to the record positions of
the diagram in 11.4.1) is given by

〈〉

[i 7→ 1] [j 7→ 2] [k 7→ 3] [j 7→ 5] [l 7→ 4]

264 i 7→ 1
j 7→ 2
k 7→ 3

375 " i 7→ 1
l 7→ 4

# 264 j 7→ 5
k 7→ 3
l 7→ 4

375

264 i 7→ 1
k 7→ 3
l 7→ 4

375

26664
i 7→ 1
j 7→ 2
k 7→ 3
l 7→ 4

37775
26664
i 7→ 1
j 7→ 2
k 7→ 3
l 7→ 4

37775

Q
Q

Q
QQ

S
S

S

�
�
�

�
�

�
��

�
�
�
�

�
�

�
�

D
D
D
D

\
\

\
\

�
�

�
�

�
�
�
�

L
L

L
L

�
�
�
��

��
C
C
C
CC

HH
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11.4.3 Definition

We define

©1 \ ©2 :=

264 REC×REC −→ REC

〈ξ, υ〉 7→ pr (ξ,dom(ξ) \ dom(υ))

375
the subtraction, reading “©1 without ©2 ”

©1 ∧ ©2 :=

26664
REC×REC −→ REC

〈ξ, υ〉 7→
pr
“
ξ, (dom(ξ) ∩ dom(υ)) \D 6^

{ξ,υ}

”
37775

the meet, reading “©1 and ©2 ”

©1 n ©2 :=

2664
REC×REC −→ REC

〈ξ, υ〉 7→ pr
“
ξ,D 6^

{ξ,υ}

”
3775

the rejector, reading “(the part of) ©1 rejected by ©2 ”

©1 O©2 :=

264 REC×REC −→ REC

〈ξ, υ〉 7→ (ξ \ υ) ∨̇ (υ \ ξ)

375
the opposition, reading “©1 opposed to ©2 ”

©1 ∨ ©2 :=

264 REC×REC −→ REC

〈ξ, υ〉 7→ (ξ ∧ υ) ∨̇ (ξO υ)

375
the join, reading “©1 or ©2 ”

©1
√
©2 :=

264 REC×REC −→ REC

〈ξ, υ〉 7→ (ξ ∨ υ) ∨ υ

375
the updater, reading “©1 updated with ©2 ”

11.4.4 Remark

This definition of six junctors is a lot of notation and sym-
bolism to digest. There doesn’t seem to be a standard notion
of an algebra of records or these kind of operations and our
suggestions here don’t pretend to be a final solution. But they
should become plausible and easy to memorize if one under-
stands the following phenomena:
(1) Our idiosyncratic creations of the updater

√
and rejector

n are motivated by the most common circumstances where
records are involved in mathematics and computer science.
An environment (or context) ξ is a record that holds all the
current bindings, i.e. values for identifiers. And if at that
point some new (local or global) definitions υ are made, then
the update ξ

√
υ is the new environment, while the rejection

ξ n υ holds all the deleted bindings.

For example, let ξ =

"
c 7→ 23

x 7→ 5

#
be the current environment.

When the command sequence “x:=7; y:= c+2;” is called, ξ

needs to be updated by υ =

"
x 7→ 7

y 7→ 25

#
, the new environ-

ment is ξ
√
υ =

264 c 7→ 23

x 7→ 7

y 7→ 25

375 and the lost bindings are given

by ξ n υ =
h
x 7→ 5

i
.

(2) The other four junctors ∧,∨, \, O resemble the class op-
erations with the corresponding symbol, respectively. Each
of these junctions is produced by the same method: Given
two records ξ = [ξi|i ∈ I] and υ = [υj |j ∈ J], then first

determine their incompatible indices D 6^ and second take

D 6^ off the new domain. In detail that is

junction its domain

ξ ∨ υ (I ∪ J) \D 6^

ξ ∧ υ (I ∩ J) \D 6^

ξ \ υ (I \ J) \D 6^ = I \ J

ξO υ (I O J) \D 6^ = I O J

This resemblence between the record junction and the class
operation becomes even more apparent in case ξ ^ υ, that
is D 6^ = ∅.

(3) If ξ ^ υ, then
√

and n become superfluous in the sense
that ξ

√
υ = ξ ∨ υ and ξ n υ = 〈〉. The closure then is a

proper boolean lattice (see 11.4.5 below), a fact that holds
more general for every compatible record class Ξ.

(4) The six chosen symbols reflect another property: the three
symmetric symbols “∧”, “∨” and “O ” denote commutative
junctions. The remaining asymmetric symbols “\”, “

√
”

and “n” represent non–commutative junctions.

11.4.5 Remark closure of compatible records

Let ξ and υ be two records which are compatible. In that case,
certain elements of the diagram in 11.4.1 reduce to a single one,
namely

υ
√
ξ = ξ

√
υ = ξ ∨ υ

and

ξ n υ = υ n ξ = 〈〉

That makes the junctors
√

and n superfluous, the remaining
closure is entirely given by the diagram

〈〉

ξ − υ ξ ∧ υ υ − ξ

ξ ξ � υ υ

ξ ∨ υ

�
��

�
��

�
��

�
��

@
@@

@
@@

@
@@

@
@@

11.4.6 Example

Two compatible records ξ and υ are given by

ξ =

264 i 7→ 1

j 7→ 2

k 7→ 3

375 and υ =

264 j 7→ 2

k 7→ 3

l 7→ 4

375
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D 6^ = ∅ and thus

ξ
√
υ = υ

√
ξ = ξ ∨ υ =

26664
i 7→ 1

j 7→ 2

k 7→ 3

l 7→ 4

37775
ξO υ =

"
i 7→ 1

l 7→ 4

#

ξ ∧ υ =

"
j 7→ 2

k 7→ 3

#

ξ \ υ =

"
i 7→ 1

j 7→ 2

#

υ \ ξ =

"
k 7→ 3

l 7→ 4

#
ξ n υ = υ n ξ = 〈〉

The diagram (where the nodes in the picture correspond to
the nodes in the picture of 11.4.5) is

〈〉

h
i 7→ 1

i "
j 7→ 2
k 7→ 3

# h
l 7→ 4

i

264 i 7→ 1
j 7→ 2
k 7→ 3

375 "
i 7→ 1
l 7→ 4

# 264 j 7→ 2
k 7→ 3
l 7→ 4

375

26664
i 7→ 1
j 7→ 2
k 7→ 3
l 7→ 4

37775

�
�

�

�
�

�

�
�

�

�
�

�

@
@

@

@
@

@

@
@

@

@
@

@

11.4.7 Remark

Again, the diagram in 11.4.5 shows the most general situation
for ξ ^ υ. In more special cases, certain elements become
equal and the structure becomes a less complex one. However,
in all cases the closure is a (complete) boolean lattice:
(a) If ξ G υ the closure is given by

〈〉 = ξ ∧ υ

ξ = ξ \ υ υ = υ \ ξ

ξ ∨ υ = ξO υ

@
@@

�
��

�
��

@
@@

(b) If ξ ≤ υ the diagram is given by

〈〉 = ξ \ υ

ξ = ξ ∧ υ υ \ ξ = υO ξ

υ = ξ ∨ υ

@
@@

�
��

�
��

@
@@

(c) Finally if ξ = 〈〉, only the trivial two–elementary boolean
algebra remains, which is

〈〉 = ξ = ξ \ υ = ξ ∧ υ

ξ ∨ υ = υ = ξO υ = υ \ ξ

11.5 Properties of the junctions

11.5.1 Lemma

The following statements hold for all records ξ, υ, ζ.

(1) Distinct decomposition:

(a) (ξ \ υ) G (ξ n υ) G (ξ ∧ υ) G (υ n ξ) G (υ \ ξ)
(b) ξ = (ξ \ υ) ∨̇ (ξ n υ) ∨̇ (ξ ∧ υ)
(c) ξO υ = (ξ \ υ) ∨̇ (υ \ ξ)
(d) ξ ∨ υ = (ξ \ υ) ∨̇ (ξ ∧ υ) ∨̇ (υ \ ξ)
(e) ξ

√
υ = (ξ \ υ) ∨̇ (ξ n υ) ∨̇ (ξ ∧ υ) ∨̇ (υ \ ξ)

(2) Distinct join:

If υ G ζ then

(a) υ ∨̇ ζ = υO ζ (O generalizes ∨̇ )

(b) υ ∨̇ ζ = υ ∨ ζ (∨ generalizes ∨̇ )

(c) υ ∨̇ ζ = ζ ∨̇ υ ( ∨̇ is commutative)

(d) ξ∧ (υ ∨̇ ζ) = (ξ∧υ) ∨̇ (ξ∧ ζ) (∧ distributes over ∨̇ )

(e) (υ ∨̇ ζ) \ ξ = (υ \ ξ) ∨̇ (ζ \ ξ)
(f) υ ≤ υ ∨̇ ζ (monotony)

And if ξ G υ G ζ then

(g) (ξ ∨̇ υ) ∨̇ ζ = ξ ∨̇ (υ ∨̇ ζ) ( ∨̇ is associative)

(h) (ξ ∨̇ υ ≤ ξ ∨̇ ζ)⇔ (υ ≤ ζ) (additivity)

(3) Commutativity:

(a) ξ ∧ υ = υ ∧ ξ (commutativity of meet)

(b) ξ ∨ υ = υ ∨ ξ (commutativity of join)

(c) ξO υ = υO ξ (commutativity of opposition)

(\,n,
√

are not commutative in general.)

(4) Argument duplication:

(a) ξ \ ξ = 〈〉 (nilpotency of subtraction)

(b) ξ ∧ ξ = ξ (idempotency of meet)

(c) ξ n ξ = 〈〉 (nilpotency of rejector)

(d) ξO ξ = 〈〉 (nilpotency of opposition)

(e) ξ ∨ ξ = ξ (idempotency of join)

(f) ξ
√
ξ = ξ (idempotency of updater)
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(5) Empty argument:

(a) ξ \ 〈〉 = ξ (〈〉 is right neutral for subtraction)

(b) 〈〉 \ ξ = 〈〉 (〈〉 left–cancels subtraction)

(c) ξ ∧ 〈〉 = 〈〉 ∧ ξ = 〈〉 (〈〉 cancels meet)

(d) ξ ∨ 〈〉 = 〈〉 ∨ ξ = ξ (〈〉 is neutral for join)

(e) ξ n 〈〉 = ξ (〈〉 is right neutral for rejection)

(f) 〈〉n ξ = 〈〉 (〈〉 left–cancels rejection)

(g) ξO 〈〉 = 〈〉O ξ = ξ (〈〉 is neutral for opposition)

(h) ξ
√
〈〉 = 〈〉

√
ξ = ξ (〈〉 is neutral for updater)

(6) Compatibility: Equivalent are:

(i) ξ ^ υ

(ii) ξ ≤ ξ ∨ υ
(iii) ξ and υ have an upper bound

(iv) ξ n υ = 〈〉
(v) ξ

√
υ = ξ ∨ υ

(vi) D 6^
{ξ,υ} = ∅

(vii) ξ, υ ∈ Proj(ξ ∨ υ)
(viii) ξ, υ ∈ Proj(η) for some record η

(7) Order properties:

(a) ξ ∧ υ ≤ ξ
(b) ξ \ υ ≤ ξ
(c) ξ n υ ≤ ξ
(d) ξ ≤ υ

√
ξ

(e) ξO υ ≤ ξ ∨ υ
(f) ξ ∨ υ ≤ ξ

√
υ

(8) Extrema:

(a) 〈〉 is the least or bottom element, i.e. 〈〉 ≤ ξ
(b) ξ ∧ υ is the greatest lower bound of ξ and υ

(c) Equivalent are:

(i) ξ ∨ υ is the least upper bound of ξ and υ

(ii) ξ ^ υ

(See also (6) for more equivalent statements.)

(9) Associativity:

(a) (ξ ∧ υ) ∧ ζ = ξ ∧ (υ ∧ ζ)
(b) If ξ ^ υ ^ ζ then

(ξ ∨ υ) ∨ ζ = ξ ∨ (υ ∨ ζ)
(c) If ξ ^ υ ^ ζ then

(ξO υ)O ζ = ξO (υO ζ)

(∨ and O are not associative in general, see 11.5.3(1)

and (2). And \,n,
√

are not associative anyway.)

(10) Distributivity:

(a) If υ ^ ζ then
ξ ∧ (υ ∨ ζ) = (ξ ∧ υ) ∨ (ξ ∧ ζ)
(See 11.5.3(3) for an example with υ 6^ ζ.)

(b) If ξ ^ υ ^ ζ then
ξ ∨ (υ ∧ ζ) = (ξ ∨ υ) ∧ (ξ ∨ ζ)

11.5.2 Proof of 11.5.1

Let ξ = [ξi|i ∈ I], υ = [υj |j ∈ J] and ζ = [ζk|k ∈ K].
(1) Distinct decomposition: These statements are an immedi-

ate consequence of the definitions in 11.4.3 and they have
been discussed in already.

(2) Distinct join: υ G ζ means J ∩ K = ∅, υ \ ζ = υ and
ζ \ υ = ζ. And it implies υ ∧ ζ = 〈〉, so that applying the

definitions in 11.4.3 gives us

(a) υO ζ = (υ \ ζ) ∨̇ (ζ \ υ) = υ ∨̇ ζ
(b) υ ∨ ζ = (υO ζ) ∨̇ (υ ∧ ζ) = (υ ∨̇ ζ) ∨̇ 〈〉 = υ ∨̇ ζ
(c) Simply applying definition 10.4.1 gives us υ ∨̇ ζ ="

i 7→
(
υi if i ∈ J
ζi if i ∈ K

i ∈ J ∪K
#

= ζ ∨̇ υ

(d) We obtain

ξ ∧ (υ ∨̇ ζ)
= pr (ξ, (I ∩ (J ∪K)) \D 6^

{ξ,υ ∨̇ ζ}
definition 11.4.3 of ∧ and
because dom(υ ∨̇ ζ) = J ∪K

= pr

 
ξ, ((I ∩ J) ∪ (I ∩K)) \

 
D 6^
{ξ,υ}∪D

6^
{ξ,ζ}

!!
because J and K are disjunct, and that entails

D
6^
{ξ,υ ∨̇ ζ} = D

6^
ξ,υ

∪D
6^
ξ,ζ

= pr
“
ξ,
“
(I ∩ J) \D 6^

{ξ,υ}

”
∪
“
(I ∩K) \D 6^

{ξ,ζ}

””
because D

6^
{ξ,υ} ⊆ I ∩ J and D

6^
{ξ,υ} ∩K = ∅,

D
6^
{ξ,ζ} ⊆ I ∩K and D

6^
{ξ,ζ} ∩ J = ∅

= pr
“
ξ, (I ∩ J) \D 6^

{ξ,υ}

”
∨̇ pr

“
ξ, (I ∩K) \D 6^

{ξ,ζ}

”
again, because J and K are disjunct

= (ξ ∧ υ) ∨̇ (ξ ∧ ζ) definition 11.4.3 of ∧

(e) Note, that υ\ξ ≤ υ and ζ\ξ ≤ ζ (see (7)(b) for a proof),
so that υ G ζ implies (υ \ ξ) G (ζ \ ξ). Therefore

(υ \ ξ) ∨̇ (ζ \ ξ)
= pr (υ, J \ J) ∨̇ pr (ζ,K \ I)
= pr (υ ∨̇ ζ, J \ J) ∨̇ pr (υ ∨̇ ζ,K \ I)
= pr (υ ∨̇ ζ, (J \ I) ∪ (K \ I))
= pr (υ ∨̇ ζ, (J ∪K) \ I)

due to 5.6.5(4)

= (υ ∨̇ ζ) \ ξ

(f) υ = pr (υ ∨̇ ζ, J) ≤ υ ∨̇ ζ
(g) We have

(ξ ∨̇ υ) ∨̇ ζ

=

264 l 7→

8><>:
ξl if l ∈ I
υl if l ∈ J
ζl if l ∈ K

l ∈
“
I ∪ J ∪K

” 375
= ξ ∨̇ (υ ∨̇ ζ)

(h) By using 10.3.2 the definition of ≤, we derive

ξ ∨̇ υ ≤ ξ ∨̇ ζ ⇔ (I ∪ J ⊆ I ∪K) and

(ξ ∨̇ υ)(l) = (ξ ∨̇ ζ)(l) for each l ∈ I ∪ J

⇔ J ⊆ K and υl = ζl for each l ∈ J

⇔ υ ≤ ζ

(3) The commutativity of ∧, ∨ and O is a consequence of their
definition 11.4.3 and the commutativity 11.5.1(2)(c) of ∨̇ .
(And it is easy to construct examples that demonstrate the
non–commutativity of \, n and

√
.)

(4) The statements about the result of two identical arguments
should be clear by now.

(5) If one of the arguments is the empty tuple, the accord-
ing result is an immediate consequence of the definitions in
11.4.3.

(6) Compatibility: To proof the mutual equivalence of all six
statements, we use the following roadmap

(viii) − (vii) − (ii)

|
(i) − (vi) − (iv) − (v)

|
(iii)

The singular connections are justified in detail as follows:
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(i)⇔(vi) is true according to 11.3.4(2).

(vi)⇔(iv) is true because ξ n υ = pr
“
ξ,D 6^

{ξ,υ}

”
according

to definition 11.4.3, so that ξ n υ = 〈〉 iff D 6^
{ξ,υ} = ∅.

(iv)⇔(v) is true because ξ
√
υ = (ξ ∨ υ) ∨̇ (ξ n υ) due to

(1)(e) and (1)(d). Thus ξ
√
υ = ξ ∨ υ iff ξ n υ = 〈〉.

(ii)⇔(iv) is true because we have the distinct decomposi-
tions (1)(b) and (d)

ξ = (ξ \ υ) ∨̇ (ξ ∧ υ) ∨̇ (ξ n υ)

ξ ∨ υ = (ξ \ υ) ∨̇ (ξ ∧ υ) ∨̇ (υ \ ξ)

so that ξ ≤ ξ ∨ υ iff ξ n υ ≤ υ \ ξ, due to (2) and (2)(h)

in particular. But dom(ξ n υ) ∩ dom(υ \ ξ) = ∅, so that
ξ n υ ≤ υ \ ξ iff ξ n υ = 〈〉.

(iii)⇔(vi) Assume that (iii) ξ and υ have an upper bound,
i.e. there is a record β = [βl|l ∈ L] with ξ ≤ β and
υ ≤ β. According to 10.3.12 that means ξ = pr (β, I) and
υ = pr (β, J). That entails pr (ξ, I ∩ J) = pr (β, I ∩ J) =

pr (υ, I ∩ J) and (vi) D 6^
{ξ,υ} = ∅.

On the other hand, if (vi) D 6^
{ξ,υ} = ∅ is the case, then

ξ n υ = υ n ξ = 〈〉 and so we have the distinct decompo-
sitions

ξ = (ξ \ υ) ∨̇ (ξ ∧ υ)

υ = (υ \ ξ) ∨̇ (ξ ∧ υ)

ξ ∨ υ = (ξ \ υ) ∨̇ (υ \ ξ) ∨̇ (ξ ∧ υ)

so that ξ ≤ ξ ∨ υ and υ ≤ ξ ∨ υ according to (2)(h). And
that is precisely statement (iii).

(ii)⇔(vii) ξ ≤ ξ ∨ υ ⇔ ξ = pr (ξ ∨ υ, I) ⇔ ξ ∈ Proj(ξ ∨ υ)
and the same holds for υ.

(vii)⇔(viii) That (vii) entails (viii) is a trivial truth; simply
put η := ξ ∨ υ. On the other hand, ξ, υ ∈ Proj(η) ⇒
ξ ∨ υ ∈ Proj(η) ⇒ ξ ∨ υ = pr (η, I ∪ J) and so ξ, υ ∈
Proj(ξ ∨ υ).

(7) Order properties: Each of the statements (a) to (f) can be
prove by applying the additivity rule (2)(h) to the distinct
decompositions of each side of the ≤–expression.
For example, for (e) this is

ξO υ

= (ξ \ υ) ∨̇ (υ \ ξ) due to (1)(c)

≤ (ξ \ υ) ∨̇ (υ \ ξ) ∨̇ (ξ ∧ υ) due to (2)(h)

= ξ ∨ υ due to (1)(d)

Proving the other statements with the same method is just
a trivial exercise.

(8) Extrema:

(a) According to definition 10.3.2, 〈〉 ≤ ξ ⇔
(∅ ⊆ I and 〈〉(i) = ξi for all i ∈ ∅). And that is always
true in a trivial sense.

(b) According to (7)(a), ξ ∧ υ ≤ ξ and ξ ∧ υ ≤ υ, i.e. ξ ∧ υ
is a lower bound of both ξ and υ.
Suppose, there is another lower bound β = [βl|l ∈ L] of
ξ and υ with ξ ∧ υ ≤ β. β ≤ ξ and β ≤ υ implies L ⊆ I
and L ⊆ J, in other words L ⊆ I ∩ J. ξ ∧ υ ≤ β implies

(I ∩ J) \ D 6^
{ξ,υ}. But if there would be an k ∈ D 6^

{ξ,υ}
with k ∈ L, then either β � ξ or β � υ would be the case
and β couldn’t be the lower bound. Therefore L has to
be I ∩ J and β is ξ ∧ υ. ξ ∧ υ is indeed the greatest of all
lower bounds.

(c) From (6)(1) and (6)(3) we know that ξ ^ υ iff ξ and υ
do have an upper bound at all. So if (1)ξ ∨ υ is the least
upper bound, it is certainly an upper bound and (2) ξ ^ υ
must hold.
On the other hand, suppose that (2) ξ ^ υ is true. Then
ξ ≤ ξ∨υ and υ ≤ ξ∨υ due to (6), ξ∨υ is an upper bound.
And it is the least of all upper bounds, because if we as-
sume that there is another upper bound β = [βl|l ∈ L]
with β ≤ ξ ∨ υ, then

♣ ξ ≤ β implies I ⊆ L, υ ≤ β implies J ⊆ L, and thus

I ∪ J ⊆ L.

♣ β ≤ ξ ∨ υ implies L ⊆ dom(ξ ∨ υ) = I ∪ J

Both properties together demand that L = dom(ξ ∨ υ),
and that means β = ξ ∨ υ in the end. ξ ∨ υ is indeed the
least of all upper bounds.

(9) Associativity

(a) We first concentrate on the domains of the generated
records and obtain

dom((ξ ∧ υ) ∧ ζ)
= (dom(ξ ∧ υ) ∩K) \D 6^

{ξ∧υ,ζ}
def. 11.4.3 of ∧

=
““

(I ∩ J) \D 6^
{ξ,υ}

”
∩K

”
\D 6^

{ξ∧υ,ζ}
again due to 11.4.3

=
“
(I ∩ J ∩K) \D 6^

{ξ,υ}

”
\D 6^

{ξ∧υ,ζ}
due to 5.6.5(7), i.e. (A \ B) ∩ C = (A ∩ C) \ B

= {j ∈ (I ∩ J ∩K) | ξj = υj} \D 6^
{ξ∧υ,ζ}

= {j ∈ (I ∩ J ∩K) | ξj = υj and (ξ ∧ υ)(j) = ζj}

= {j ∈ (I ∩ J ∩K) | ξj = υj = ζj}

= (I ∩ J ∩K) \D 6^
{ξ,υ,ζ}

Similar reasoning gives us

dom(ξ ∧ (υ ∧ ζ)) = (I ∩ J ∩K) \D 6^
{ξ,υ,ζ}

so that

dom((ξ ∧ υ) ∧ ζ) = dom(ξ ∧ (υ ∧ ζ))

Making use of (3)(a) the commutativity of ∧ and 11.4.3
the definition of ∧, we can now derive the original state-
ment

(ξ ∧ υ) ∧ ζ = [υj |j ∈ dom(υ ∧ ξ)] ∧ ζ

= [υj |j ∈ dom((υ ∧ ξ) ∧ ζ)]

= [υj |j ∈ dom((υ ∧ ζ) ∧ ξ)]

= [υj |j ∈ dom(υ ∧ ζ)] ∧ ξ

= (υ ∧ ζ) ∧ ξ

= ξ ∧ (υ ∧ ζ)

(b) See the proof of 11.6.1(4)(b).

(c) See the proof of 11.6.1(4)(c).

(10) Distributivity:

(a) If υ ^ ζ then

ξ ∧ (υ ∨ ζ)
= ξ ∧ ((υ \ ζ) ∨̇ (υ ∧ ζ) ∨̇ (ζ ∧ υ)) due to (1)(d)

= (ξ ∧ (υ \ ζ)) ∨̇ (ξ ∧ (υ ∧ ζ)) ∨̇ (ξ ∧ (ζ \ υ))
due to (2)(d)and (2)(g)

= (ξ ∧ (υ \ ζ)) ∨ (ξ ∧ (υ ∧ ζ)) ∨ (ξ ∧ (ζ \ υ))
due to (2)(b)and (9)(b)

= (ξ ∧ (υ \ ζ)) ∨

0BB@
(ξ ∧ (υ ∧ ζ))

∨

(ξ ∧ (υ ∧ ζ))

1CCA ∨ (ξ ∧ (ζ \ υ))

due to (4)(e)

=

0BB@
(ξ ∧ (υ \ ζ))

∨

(ξ ∧ (υ ∧ ζ))

1CCA ∨
0BB@

(ξ ∧ (υ ∧ ζ))

∨

(ξ ∧ (ζ \ υ))

1CCA
due to (9)(b)

=

0BB@
(ξ ∧ (υ \ ζ))

∨̇

(ξ ∧ (υ ∧ ζ))

1CCA ∨
0BB@

(ξ ∧ (υ ∧ ζ))

∨̇

(ξ ∧ (ζ \ υ))

1CCA
due to (2)(b)

= (ξ ∧ ((υ \ ζ) ∨̇ (υ ∧ ζ))) ∨ (ξ ∧ ((υ ∧ ζ) ∨̇ (ζ \ υ)))
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due to (2)(d)

= (ξ ∧ υ) ∨ (ξ ∧ ζ)
because υ ^ ζ makes υ n ζ = ζ n υ = 〈〉 so that
υ = (υ \ ζ) ∨̇ (υ ∧ ζ) and ζ = (υ ∧ ζ) ∨̇ (ζ \ υ)
according to (1)(b)

(b) See the proof of 11.6.1(5)(b).

11.5.3 Remark

Note the following phenomena that differ from the common
properties of lattice-like operations:
(1) ∨ is associative for compatible arguments (11.5.1(9)(b)),

but it is not associative in general. For example, let

ξ =

"
a 7→ 1

b 7→ 2

#
υ =

"
a 7→ −1

b 7→ 2

#
ζ =

"
a 7→ −1

b 7→ 2

#
then

(ξ ∨ υ) ∨ ζ =

"
a 7→ −1

b 7→ 2

#
6=
h
b 7→ 2

i
= ξ ∨ (υ ∨ ζ)

(2) O is associative for compatible arguments (11.5.1(9)(c)),
but not in general. For example, for

ξ = [i 7→ 1] υ = [i 7→ 2] ζ = [i 7→ 3]

we obtain

ξO (υO ζ) = [i 7→ 1] 6= [i 7→ 3] = (ξO υ)O ζ

(3) The condition υ ^ ζ is imperative for the distributivity
law 11.5.1(10)(a) ξ∧ (υ∨ζ) = (ξ∧υ)∨ (ξ∧ζ) to hold in gen-
eral. Consider the following counterexample, where υ 6^ ζ
with

ξ =

264 b 7→ 1

c 7→ 1

d 7→ 1

375 υ =

264 a 7→ 1

b 7→ 1

c 7→ 1

375 ζ =

264 c 7→ 3

d 7→ 1

e 7→ 1

375
For these records we obtain

ξ ∧ (υ ∨ ζ) =

264 b 7→ 1

c 7→ 1

d 7→ 1

375 ∧
26664
a 7→ 1

b 7→ 1

d 7→ 1

e 7→ 1

37775 =

"
b 7→ 1

d 7→ 1

#

6=

264 b 7→ 1

c 7→ 1

d 7→ 1

375 =

"
b 7→ 1

c 7→ 1

#
∨
h
d 7→ 1

i
= (ξ ∧ υ) ∨ (ξ ∧ ζ)

11.6 Properties for compatible ar-
guments

11.6.1 Lemma binary junctions of compatible arguments

Let ξ = [ξi|i ∈ I], υ = [υj |j ∈ J], ζ = [ζk|k ∈ K] be three
(pairwise) compatible records, i.e. ξ ^ υ ^ ζ. Next to the
properties of 11.5.1, we now have the following additional
facts.

(1) Compatible junction as projections: ξ, υ, ζ have an up-
per bound η (i.e. there is a record η with ξ, υ, ζ ≤ η).
And for every upper bound η holds

(a) ξ, υ, ζ ∈ Proj(η)

(b) ξ = pr (η, I)

(c) ξ \ υ = pr (η, I \ J)

(d) ξ ∧ υ = pr (η, I ∩ J)

(e) ξ ∨ υ = pr (η, I ∪ J)

(f) ξO υ = pr (η, I O J)

(2) Rejector and updater: they become superfluous in the
sense that

(a) ξ n υ = 〈〉
(b) ξ

√
υ = ξ ∨ υ

(3) Subtraction together with meet and join:

(a) ξ \ (υ ∧ ζ) = (ξ \ υ) ∨ (ξ \ ζ)
(b) ξ \ (υ ∨ ζ) = (ξ \ υ) ∧ (ξ \ ζ)
(c) (υ ∧ ζ) \ ξ = (υ \ ξ) ∧ (ζ \ ξ)
(d) (υ ∨ ζ) \ ξ = (υ \ ξ) ∨ (ζ \ ξ)
(e) (ξ \ υ) \ ζ = ξ \ (υ ∨ ζ)
(f) ξ \ (υ \ ζ) = (ξ \ υ) ∨ (ξ ∧ ζ)
(g) (ξ \ υ) ∧ ζ = (ξ ∧ ζ) \ υ
(h) (ξ \ υ) ∨ ζ = (ξ ∨ ζ) \ (υ \ ζ)

(4) Associativity:

(a) (ξ ∧ υ) ∧ ζ = ξ ∧ (υ ∧ ζ)
(b) (ξ ∨ υ) ∨ ζ = ξ ∨ (υ ∨ ζ)
(c) (ξO υ)O ζ = ξO (υO ζ)

(5) Distributivity:

(a) ξ ∧ (υ ∨ ζ) = (ξ ∧ υ) ∨ (ξ ∧ ζ)
(b) ξ ∨ (υ ∧ ζ) = (ξ ∨ υ) ∧ (ξ ∨ ζ)

11.6.2 Proof of 11.6.1

(1) According to 11.5.1(6)and (8)(c), ξ ^ υ means that ξ and υ
have an upper bound, which is every record η with ξ∨υ ≤ η.
≤ is transitive and similar statements hold for three argu-
ments as well: ξ, υ, ζ have a least upper bound and that
is given by any η with (ξ ∨ υ) ∨ ζ ≤ η. For each such
η = [ηl|l ∈ L], we have ξ, υ, ζ ∈ Proj(η), the order struc-
ture on Proj(η) resembles the ⊆–order structure on P(L)
(i.e. they are isomorph), so that each of the record junctions
\,∧,∨, O is a projections of η onto the according domain,
which is a result of the according operation \,∩,∪, O , re-
spectively.

(2) ξ ^ υ implies D 6^
{ξ,υ} = ∅, so that

(a) ξ n υ = pr
“
ξ,D 6^

{ξ,υ}

”
= pr (ξ, ∅) = 〈〉

(b) Applying the distinct decompositions from 11.5.1(1), we
obtain ξ

√
υ = (ξ ∨ υ) ∨̇ (ξ n υ) = (ξ ∨ υ) ∨̇ 〈〉 = ξ ∨ υ.

(3) Using (1), we are able to translate every record junction
on Proj(η) into a set operation on the junction domains.
And each of the eight statements (a)–(h) corresponds to the
according one of the eight statements in 5.6.5. For example,
for (a) we have

ξ \ (υ ∧ ζ)
= pr (η, I \ (J ∩K))

= pr (η, (I \ J) ∪ (I \K)) due to 5.6.5(1)

= (ξ \ υ) ∨ (ξ \ ζ)

(4) see 11.5.1(9).

(5) see 11.5.1(10).

11.7 Big junctions

11.7.1 Remark introduction
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We will now generalize the binary junctors to their big versions

and introduce
W

,
V

and ∇. The recipe is given in 11.4.4(2).
The domain of the big junction is the according class operation
on the arguments, but without the incompatible indices, i.e.

junction its domainW
Ξ

 S
ξ∈Ξ

dom(ξ)

!
\D 6^

Ξ = DΞ \D 6^
Ξ = D^

Ξ

V
Ξ

 T
ξ∈Ξ

dom(ξ)

!
\D 6^

Ξ

∇Ξ

„
∇
ξ∈Ξ

dom(ξ)

«
\D 6^

Ξ = ∇
ξ∈Ξ

dom(ξ)

Deleting the compatible domain D 6^
Ξ in each case ensures that

the value Ξ(k) of the new record is well defined for each k of
the according domain.

11.7.2 Definition

Given a record class Ξ. For each k ∈ D^
Ξ we define

Ξ(k) := sing{ξ(k) | ξ ∈ Ξ, k ∈ dom(ξ)}

the value of Ξ at k
And so we can introduceW

Ξ :=
ˆ

Ξ(k) k ∈ D^
Ξ
˜

the supremum or (big) disjunction of Ξ

V
Ξ :=

"
Ξ(k) k ∈

 T
ξ∈Ξ

dom(ξ)

!
\D 6^

Ξ

#

the infimum of (big) conjunction of Ξ

∇Ξ :=
h

Ξ(k) k ∈ ∇
ξ∈Ξ

dom(ξ)
i

the (big) opposition of Ξ

11.7.3 Example big junctions

An example record class is

Ξ =

8>>><>>>:
264 i 7→ 1

j 7→ 2

k 7→ 3

375 ,
264 j 7→ −2

k 7→ 3

l 7→ 4

375 ,
26664

j 7→ 2

k 7→ 3

l 7→ −4

m 7→ 5

37775
9>>>=>>>;

with

D^
Ξ =

S
ξ∈Ξ

dom(ξ) = {i, j, k, l,m}

T
ξ∈Ξ

dom(ξ) = {j, k}

∇
ξ∈Ξ

dom(ξ) = {i,m}

D 6^
Ξ = {j, l}

D^
Ξ = {i, k,m}

so that

W
Ξ =

264 i 7→ 1

k 7→ 3

m 7→ 5

375 V
Ξ =

h
k 7→ 3

i
∇Ξ =

"
i 7→ 1

m 7→ 5

#

11.7.4 Definition

For arbitrary records ξ1, . . . , ξn we define

ξ1 ∨ . . . ∨ ξn :=
W
{ξ1, . . . , ξn}

ξ1 ∧ . . . ∧ ξn :=
V
{ξ1, . . . , ξn}

11.7.5 Remark

(1)
W

Ξ and ∇Ξ are well–defined for all record classes Ξ. ButV
Ξ is well–defined only if Ξ 6= ∅, because

T
∅ is unde-

fined. Accordingly, ξ1 ∧ . . . ∧ ξn exists iff n ≥ 0, while
ξ1 ∨ . . . ∨ ξn = 〈〉 for n = 0. In 11.9.1 we introduce a useful
mutation of

V
that is defined on its whole domain.

(2) Definition 11.7.4 is well–defined generalization of the bi-
nary ∧ and ∨, because 11.7.6(1)(a) ξ ∨ υ =

W
{ξ, υ} and

ξ ∧ υ =
V
{ξ, υ}. But we need to keep in mind, that paren-

theses are not arbitrary in case of incompatible records, be-
cause the join is not associative.

(3) A similar generalization of the opposition would not be

consistent, because ξO υ = ∇ {ξ, υ} is not true in general.
The opposition is nilpotent, not idempotent, so ξO ξ = 〈〉,
but ∇ {ξ, ξ} =∇ {ξ} = ξ.

11.7.6 Lemma properties of the big junctions

(1) Generalization: For every two records ξ and υ

(a) ξ ∨ υ =
W
{ξ, υ}

(b) ξ ∧ υ =
V
{ξ, υ}

(2) Empty argument class:

(a)
W
∅ = 〈〉

(b)
V
∅ is undefined

(c) ∇∅ = 〈〉

(3) Compatibility: For every record class Ξ the following
statements are equivalent

(i) Ξ is compatible

(ii) ξ ≤
W

Ξ for each ξ ∈ Ξ

(iii) Ξ has an upper bound

(iv) D 6^
Ξ = ∅

(v) Ξ ⊆ Proj(
W

Ξ)

(vi) Ξ ⊆ Proj(η) for some record η

(4) Order: For every record class Ξ holds

(a)
V

Ξ ≤
W

Ξ

(b) ∇Ξ ≤
W

Ξ

(5) Extrema: For every record class Ξ holds

(a) If Ξ 6= ∅ then
V

Ξ is the greatest lower bound of Ξ

(b) The following statements are equivalent:

(i) Ξ is compatible

(ii)
W

Ξ is the least upper bound of Ξ
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(6) Compatible big junctions as projections: Let η be a
record and Ξ ⊆ Proj(η). That means, that Ξ is com-
patible and

(a)
W

Ξ = pr

 
η,
S
ξ∈Ξ

dom(ξ)

!
= pr (η,DΞ)

(b)
V

Ξ = pr

 
η,
T
ξ∈Ξ

dom(ξ)

!

(c) ∇Ξ = pr

„
η, ∇
ξ∈Ξ

dom(ξ)

«

(7) Subtraction and distributivity: For a record η and all
Ξ ⊆ Proj(η) and υ ∈ Proj(η) holds

(a) υ \
V

Ξ =
W
{υ \ ξ | ξ ∈ Ξ} for all Ξ 6= ∅

(b) υ \
W

Ξ =
V
{υ \ ξ | ξ ∈ Ξ} for all Ξ 6= ∅

(c) (
V

Ξ) \ υ =
V
{ξ \ υ | ξ ∈ Ξ} for all Ξ 6= ∅

(d) (
W

Ξ) \ υ =
W
{ξ \ υ | ξ ∈ Ξ}

(e) υ ∧
W

Ξ =
W
{υ ∧ ξ | ξ ∈ Ξ}

(f) υ ∨
V

Ξ =
V
{υ ∨ ξ | ξ ∈ Ξ} for all Ξ 6= ∅

11.7.7 Proof of 11.7.6

(1) Generalization: If ξ = [ξi|i ∈ I] and υ = [υj |j ∈ J] thenW
{ξ, υ} = [Ξ(k)|k ∈ D^

{ξ,υ}]

=

"
k 7→

(
ξk if k ∈ I
υk if k ∈ J

k ∈ D^
{ξ,υ}

#
= ξ ∨ υV

{ξ, υ} = [Ξ(k)|k ∈ (I ∩ J) \D 6^
{ξ,υ}]

= pr
“
ξk, k ∈ (I ∩ J) \D 6^

{ξ,υ}

”
= ξ ∧ υ

(2) Empty argument class: D 6^
∅ = ∅,

S
{dom(ξ) | ξ ∈ ∅} =

∇{dom(ξ) | ξ ∈ ∅} = ∅ and
T
{dom(ξ) | ξ ∈ ∅} is unde-

fined, so that
W
∅ =∇∅ = 〈〉 and

V
∅ is undefined.

(3) Compatibility: To proof the mutual equivalence
of all six statements, we use the following steps
(i)⇔(iv)⇔(ii)⇔(v)⇔(vi)⇔(iii), which are justified as fol-
lows.

(i)⇔(iv) See 11.3.4.

(iv)⇔(ii) If D 6^
Ξ = ∅ then dom(ξ) ⊆ DΞ = dom(

W
Ξ) for

each ξ ∈ Ξ. On the other hand, if D 6^
Ξ 6= ∅ then there is

a υ ∈ Ξ and j ∈ dom(υ) with j 6∈ D^
Ξ = dom(

W
Ξ). So

dom(υ) * dom(
W

Ξ), i.e. υ �
W

Ξ.

(ii)⇔(v) See 10.3.12(3).

(v)⇔(vi) Obviously, (v) implies (vi) when η :=
W

Ξ. On the
other hand, (vi) is saying that Ξ has an upper bound η,
so ξ ≤

W
Ξ ≤ η for all ξ ∈ Ξ, and that is (v).

(vi)⇔(iii) Ξ has a lower bound η iff ξ ≤ η for all ξ ∈ Ξ iff
ξ ∈ Proj(η), again according to 10.3.12(3).

(4) Order:

(a) We haveT
ξ∈Ξ

dom(ξ) ⊆
S
ξ∈Ξ

dom(ξ)

⇒
T
ξ∈Ξ

dom(ξ) \D 6^
Ξ ⊆

S
ξ∈Ξ

dom(ξ) \D 6^
Ξ

⇒

264 Ξ(k)

k ∈
T
ξ∈Ξ

dom(ξ) \D 6^
Ξ

375 ≤
264 Ξ(k)

k ∈
S
ξ∈Ξ

dom(ξ) \D 6^
Ξ

375
⇒

V
Ξ ≤

W
Ξ

(b) Similar to (a)we obtain

∇{dom(ξ) | ξ ∈ Ξ} ⊆
S
{dom(ξ) | ξ ∈ Ξ}

⇒ ∇Ξ ≤
W

Ξ

(5) Extrema:

(a) Every non–empty Ξ has lower bounds, at least 〈〉. Sup-
pose, υ = [υj |j ∈ J] is an arbitrary lower bound of Ξ, so
υ ≤ ξ for all ξ ∈ Ξ, i.e. J ⊆

T
{dom(ξ) | ξ ∈ Ξ}. Now

if k ∈ D 6^
Ξ , there are ξ′, ξ′′ ∈ Ξ with ξ′(k) 6= ξ′′(k). And

k cannot be in J, because otherwise υ 6≤ ξ′ or υ 6≤ ξ′′.

So D 6^
Ξ ∩ J = ∅, in other words, J ⊆

T
{dom(ξ) | ξ ∈

Ξ}\D 6^
Ξ = dom(

V
Ξ). Furthermore, υ ≤

V
Ξ,
V

Ξ is not
only a lower bound of Ξ, but the unique greatest lower
one.

(b) If Ξ is compatible, D 6^
Ξ = ∅ and

W
Ξ = [Ξ(k)|k ∈ DΞ].

For every ξ ∈ Ξ, dom(ξ) ⊆ DΞ and each i ∈ dom(ξ),
ξ(i) = Ξ(i), so ξ ≤

W
Ξ. But not only is

W
Ξ an up-

per bound of Ξ, it also is the unique least upper bound,
because for every upper bound υ, the criterion ξ ≤ υ
for all ξ ∈ Ξ would imply that dom(ξ) ⊆ dom(υ), i.e.
DΞ ⊆ dom(υ) and thus

W
Ξ ≤ υ.

On the other hand, if Ξ is incompatible, it has at least
two incompatible members. And we know from 11.5.1(6),
that these two records don’t have an upper bound. So Ξ
cannot have an upper bound, let alone a least one.

(6) Compatible big junctions as projections: Ξ ⊆ η means
that ξ ≤ η for all ξ ∈ Ξ and the compatibility of Ξ is a
trivial consequence. Also, Ξ(k) = η(k) for all k ∈ DΞ, and
(a),(b),(c)follow immediately from definition 11.7.2.

υ \
V

Ξ

= pr (η, J) \ pr

 
η,
T
ξ∈Ξ

dom(ξ)

!
due to (6)

= pr

 
η, J \

T
ξ∈Ξ

dom(ξ)

!

= pr

 
η,
S
ξ∈Ξ

(J \ dom(ξ))

!
see 5.6.5(1)

=
W
ξ∈Ξ

pr (η, J \ dom(ξ)) due to (6)(b)

=
W
ξ∈Ξ

pr (υ, J \ dom(ξ))

=
W
ξ∈Ξ

(υ \ ξ)

This is a proof for (a) and the other statements (b)–(f) are
proved likewise. The same idea is always, that in case we
operate on Proj(η), the structure on records is isomorph to
the power class structure on the domain of η, P(K). The
record operations behave similar to the according class op-
erations.

11.8 The general record structure

11.8.1 Definition

REC :=
˙
REC, G,^,≤, 〈〉, \,∧,n, O ,∨,

√
,
V
,
W
,∇¸

is the (general) record structure

11.8.2 Remark

Definition 11.8.1 combines the relations and junctions on
records into an overall structure. For the type of the oper-
ations in REC holds
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©1 G ©2
©1 ^ ©2
©1 ≤ ©2

9=; : REC! REC 〈〉 ∈ REC

©1 \ ©2
©1 ∧ ©2
©1 n ©2
©1 O©2
©1 ∨ ©2
©1
√
©2

9>>>>>=>>>>>;
: REC×REC −→ REC

V
©1 : (P (REC) \ {∅}) −→ RECW
©1

∇©1

9=; : P (REC) −→ REC

Recall, that
V
∅ is not defined in general, so ∅ is excluded from

the domain of
V

in REL.

11.9 The complete boolean algebra
of projections

11.9.1 Definition

For every record η we define

Proj (η) :=
˙
Proj (η) ,≤, 〈〉, η,∧,∨,

V
,
W
, -
¸

the record projection structure of η

where
V
∅ := η and -©1 := η \ ©1 is the complement.

11.9.2 Remark

(1) According to definition 5.8.1 for the usual form of an or-
dinary structure, we should have mentioned P (Proj (η)) as
a second carrier class, because that is the domain of

V
andW

. But, as it is common for complete boolean algebras (see
e.g. P (C) in 6.2.2), this class is not mentioned explicitely.

(2) Recall 11.7.6(2)(b) and 11.7.5(1), that
V

turns any record
class Ξ into a single record

V
Ξ, but it is not defined for

Ξ = ∅. But when
V

becomes a part of Proj (η), this gap is
filled with the definition

V
∅ := η. A full definition of this

modified
V

is given by

V
©1 :=

264 P (Proj (η)) −→ Proj (η)

Ξ 7→
V

({η} ∪ Ξ)

375
(For a proof that this definition does the job, see in the proof
of 11.9.4 under (d).)

(3) In 11.9.4 we will see that Proj (η) is a complete boolean
algebra, for every record η = [ηi|i ∈ I]. This is basically
true due to the isomorphy

Proj (η) ∼= P (I)

We illustrate this similarity in the following example 11.9.3.

11.9.3 Example lattice of projections

Take for example the record

η =

26664
i 7→ 1

j 7→ 2

k 7→ 3

l 7→ 4

37775
Proj(η) contains 24 = 16 subrecords and they are ordered
according to the following Hasse diagram:

〈〉

h
l 7→ 4

i h
k 7→ 3

i h
j 7→ 2

i h
i 7→ 1

i

"
k 7→ 3
l 7→ 4

# "
j 7→ 2
l 7→ 4

# "
j 7→ 2
k 7→ 3

# "
i 7→ 1
l 7→ 4

# "
i 7→ 1
k 7→ 3

# "
i 7→ 1
j 7→ 2

#

264 j 7→ 2
k 7→ 3
l 7→ 4

375
264 i 7→ 1
k 7→ 3
l 7→ 4

375
264 i 7→ 1
j 7→ 2
l 7→ 4

375
264 i 7→ 1
j 7→ 2
k 7→ 3

375

26664
i 7→ 1
j 7→ 2
k 7→ 3
l 7→ 4

37775

c
c

c
c

c
c

A
A
A
A
A

�
�

�
�
�

#
#

#
#

#
#

A
A
A
A
A

Q
Q

Q
Q

Q
Q

Q

�
�
�
�
�

�
�

�
�

�

Q
Q

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q
Q

Q

�
�

�
�

�

�
�

�
�

�
�

�

C
C
C
C
C

#
#

#
#

#
#

�
�

�
�
�

�
�
�
�
�

#
#

#
#

#
#

C
C
C
C
C

Q
Q

Q
Q

Q
Q

Q

�
�

�
�

�
�

�

�
�

�
�
�

Q
Q

Q
Q

Q
Q

Q

�
�

�
�
�

c
c

c
c

c
c

�
�
�
�
�

A
A

A
A
A

#
#

#
#

#
#

�
�
�
�
�

A
A

A
A
A

c
c

c
c

c
c

This structure is isomorph to the power lattice algebra (see
6.2.4) of a four–element class, i.e. P({1, 2, 3, 4}).

11.9.4 Lemma

Proj (η) is a complete boolean algebra, for every record
η.

11.9.5 Proof of 11.9.4

Suppose, η is given by η = [ηl|l ∈ L]. In the sequel, let
υ, ζ ∈ Proj(η) and Ξ ⊆ Proj(η).
(a)

˙
Proj(η),≤

¸
is a poclass.˙

REC,≤
¸

is a poclass, according to 11.1.1, so Proj(η) ⊆
REC together with ≤ is a poclass, too.

(b) 〈〉 is the least element.
This is true according to 11.5.1(8)(a).

(c) η is the greatest element.
True, because ξ ≤ η, for all ξ ∈ Proj(η).

(d)
V

({η} ∪ Ξ) is the greatest lower bound of Ξ.
If Ξ = ∅, then

V
({η}∪Ξ) =

V
{η} = η, and η is the greatest

lower bound of η.
On the other hand, if Ξ 6= ∅, then the fact that {η} ∪ Ξ ⊆
Proj(η) allows us to apply 11.7.6(6)(b) and we obtainV

({η} ∪ Ξ) = pr

 
η, L ∩

T
ξ∈Ξ

dom(ξ)

!

= pr

 
η,
T
ξ∈Ξ

dom(ξ)

!
=
V

Ξ
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and
V

Ξ is the greatest lower bound of Ξ for Ξ 6= ∅, accord-
ing to 11.7.6(5)(a).

(e) υ ∧ ζ is the greatest lower bound of υ and ζ.
That is due to 11.7.6(1)(b), saying that υ∧ζ =

V
{υ, ζ}, andV

{υ, ζ} is the greatest lower bound of υ and ζ, as proved
in (d).

(f)
W

Ξ is the least upper bound of Ξ.
Ξ is compatible according to 11.7.6(3), thus

W
Ξ is the least

upper bound of Ξ according to 11.7.6(5)(b).

(g) υ ∨ ζ is the least upper bound of υ and ζ.
υ ∨ ζ =

W
{υ, ζ} according to 11.7.6(1)(a) and due to (g),

that is the least upper bound.

(h) The whole lattice is distributive.
See 11.6.1(5).

(i) -υ is the complement of υ.
The criteria 7.5.2 of a complement are satisfied:

(-υ) ∧ υ
= (η \ υ) ∧ υ

= (η ∧ υ) \ υ due to 11.6.1(3)(g)

= υ \ υ because υ ≤ η, so η ∧ υ = υ

= 〈〉 due to 11.5.1(4)(a)

and

(-υ) ∨ υ
= (η \ υ) ∨ υ
= (η ∨ υ) \ (υ \ υ) due to 11.6.1(3)(h)

= η \ 〈〉 because υ ≤ η, so η ∨ υ = η

= η due to 11.5.1(5)(a)

Alltogether, the poclass
˙
Proj(η),≤

¸
is indeed a complete

complemented distributive lattice, i.e. a complete boolean lat-
tice.
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Part V

Schemas and their various products



Theory algebras on relations www.bucephalus.org 73

12 Various schema and power products

12.1 Various products

12.1.1 Repetition

Recall from 9.3.1, that a schema is a record X = [Xi|i ∈ I],
where each value Xi is a class, called the i–th domain.

Furthermore, such an X was in 9.3.3 defined to be called
♣ proper, if all Xi are non–empty

♣ finite, if I is finite

♣ completely finite, if I as well as each Xi is finite

12.1.2 Definition various products of schemas

For every schema X = [Xi|i ∈ I] we define

~X := {[xj |j ∈ J] | J ⊆ I and xj ∈ Xj for all j ∈ J}

the star product or

the (general) record class of X,

⊗X := {[xi|i ∈ I] | xi ∈ Xi for all i ∈ I}

the (cartesian) product or

the expanded record class of X,

⊕X := {
ˆ
i 7→ x

˜
| i ∈ I and x ∈ Xi}

the coproduct or
disjunct union or

the singular (or literal) record class of X.

12.1.3 Example product

A schema is given by

X =

264 a 7→ {2}
b 7→ {2, 3, 4}
c 7→ {5}

375
We obtain

~X =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

〈〉,
ˆ
a 7→ 2

˜
,
ˆ
b 7→ 2

˜
,ˆ

b 7→ 3
˜
,
ˆ
b 7→ 4

˜
,
ˆ
c 7→ 5

˜
,"

a 7→ 2

b 7→ 2

#
,

"
a 7→ 2

b 7→ 3

#
,

"
a 7→ 2

b 7→ 4

#
,

"
a 7→ 2

c 7→ 5

#
,

"
b 7→ 2

c 7→ 5

#
,

"
b 7→ 3

c 7→ 5

#
,

"
b 7→ 4

c 7→ 5

#
,

264 a 7→ 2

b 7→ 2

c 7→ 5

375 ,
264 a 7→ 2

b 7→ 3

c 7→ 5

375 ,
264 a 7→ 2

b 7→ 4

c 7→ 5

375

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

⊗X =

8><>:
264 a 7→ 2

b 7→ 2

c 7→ 5

375 ,
264 a 7→ 2

b 7→ 3

c 7→ 5

375 ,
264 a 7→ 2

b 7→ 4

c 7→ 5

375
9>=>;

⊕X =

8<:
ˆ
a 7→ 2

˜
,
ˆ
b 7→ 2

˜
,
ˆ
b 7→ 3

˜
,ˆ

b 7→ 4
˜
,
ˆ
c 7→ 5

˜
9=;

12.1.4 Lemma

For every schema X = [Xi|i ∈ I] holds:

(1) ⊗X ⊆ ~X and ⊕X ⊆ ~X
(2) Equivalent are:

(a) ⊗X ∩ ⊕X 6= ∅
(b) ⊗X = ⊕X = ~X \ {〈〉}
(c) card(I) = 1

(3) ~X =
S
{⊗Y | Y ∈ Proj(X)}

12.1.5 Proof of 12.1.4

From definition 12.1.2 we derive

⊗X = {x ∈ ~X | dom(x) = I}

⊕X = {x ∈ ~X | card(dom(x)) = 1}

so that (1) and (2) follow. (3) is true, because

~X = {[xj |j ∈ J] | J ⊆ I and xj ∈ Xj for all j ∈ J}

=
S
J⊆I
{[xj |j ∈ J] | xj ∈ Xj for all j ∈ J}

=
S
J⊆I
⊗ pr (X, J) =

S
Y∈Proj(X)

⊗ Y

12.1.6 Remark Record tables

In case a proper schema X = [Xi|i ∈ I] is indeed completely
finite, we can represent each of its products by a record table.
The i1, . . . , in ∈ I form the columns, and each record is a row.
If a record is not defined for a given i ∈ I, the according cell
is left empty. The following example demonstrates the general
idea.

12.1.7 Example record tables

Consider the last example schema X again. X is proper and
completely finite, and its various products can be represented
by
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~X =

a b c

2
2
3
3

5
2 2
2 3
2 4
2 5

2 5
3 5
4 5

2 2 5
2 3 5
2 4 5

⊗X =

a b c

2 2 5
2 3 5
2 4 5

⊕X =

a b c

2
2
3
3

5

12.1.8 Repetition

Recall from 5.6.15, that for every class κ = {κi | i ∈ I} of car-
dinal numbers,

Q
κ or

Q
i∈I

κi denotes the arithmetic product

(with result 1 for κ = ∅), and
P
κ or

P
i∈I

κi is the arithmetic

sum (with result 0 for I = ∅).

12.1.9 Lemma cardinalities

For every schema X = [Xi|i ∈ I] holds

card (⊗X) =
Q
i∈I

card(Xi)

card (⊕X) =
P
i∈I

card(Xi)

12.1.10 Proof of 12.1.9

Suppose, X is completely finite, i.e. I = {i1, . . . , in} and
card(Xk) = mi ∈ N for each k ∈ I. Then

card(⊗X) = card

8>>><>>>:
2664
i1 7→ x1

.

.

.
.
.
.

in 7→ xn

3775
x1 ∈ X1,

.

.

.

xn ∈ Xn

9>>>=>>>;
= m1 ·m2 · . . . ·mn

and

card(⊕X) = card{[i 7→ x] | i ∈ I, x ∈ Xi}

= card

 (
[i1 7→ x]

x ∈ X1

)
] . . .+

(
[in 7→ x]

x ∈ Xn

)!
= m1 +m2 + . . .+mn

where the last step is true, because the n classes {[ik 7→ x] |
x ∈ Xk} are pairwise disjunct. (Therefore, ⊕X is also called
the disjunct union of the classesXk.) So far for the completely
finite X.

If X is not completely finite, we are dealing with arithmetic
sums and products which have infinitely many arguments or
the arguments are infinite themselves. In these cases our
lemma is correct by definition, because Cantor introduced e.g.
the product of transfinite cardinal numbers as the cardinality
of the cartesian product of transfinite classes. But we did not
define transfinite arithmetic and our proof remains incomplete
here.

12.1.11 Remark cardinalities and special cases

We emphasize, that 12.1.9 also holds for the following special
cases. Suppose, X = [Xi|i ∈ I] is a given schema.
(1) If I is empty, then X = 〈〉 is the empty tuple and so

(a) ⊗X = {〈〉}. The cardinality card(⊗X) is 1, which is
also the arithmetic product of zero arguments (i.e. 1 is
the neutral element of

Q
).

(b) ⊕X = ∅, obviously, and

(c) ~X = {〈〉}.

(2) If I 6= ∅ and Xi = ∅, for at least one i ∈ I, then ⊗X = ∅.
In fact, this also holds the other way round.

It is worth to keep these things in mind:

12.1.12 Lemma

For every schema X = [Xi|i ∈ I] holds:

(1) ⊗X = ∅ iff X is not proper (i.e. Xi = ∅ for one i ∈ I)
(2) ⊗X = {〈〉} iff X is empty (i.e. I = ∅)

12.1.13 Proof of 12.1.12

See 12.1.11.

12.1.14 Lemma cardinality of the star product

Given a schema X = [Xi|i ∈ I]. Then

card(~X) =
P
J⊆I

Q
j∈J

card(Xj)

12.1.15 Proof of 12.1.14

card(~X)

= card (
S
{⊗Y | Y ∈ Proj(X)})

due to 12.1.4(3)

=
P

Y∈Proj(X)
card(⊗Y )

as the cartesian products are pairwise disjunct

=
P
J⊆I

card (⊗[Xj |j ∈ J])

=
P
J⊆I

Q
j∈J

card(Xj) due to 12.1.9

12.1.16 Remark

In 11.2.2 we defined

Rec (I, C) =

(
[ξj |j ∈ J]

J ⊆ I,
ξj ∈ C for all j ∈ J

)

We can now write this as

~[C|I] = Rec (I, C)

12.2 Various ordinal products

12.2.1 Remark

Recall, that a tuple is just a certain kind of record with a finite
ordinal as index class. In other words,
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〈x1, . . . , xn〉 = [xi|i ∈ {1, . . . , n}]

So, a class tuple 〈C1, . . . , Cn〉 is just a special kind of schema
and the various products ~〈C1, . . . , Cn〉, ⊗〈C1, . . . , Cn〉,
and ⊕〈C1, . . . , Cn〉 are well–defined. And if we write
⊗〈C1, . . . , Cn〉 as C1× . . .×Cn, we obtain the usual cartesian
product of classes. Accordingly, we also introduce a “+” and
“?” notation in analogy to “×”.

12.2.2 Definition various ordinal products

Let n ∈ N and C1, . . . , Cn be classes. We define

C1 ? · · · ? Cn :=
n
?
i=1

Ci := ~〈C1, . . . , Cn〉

the (ordinal) star product of C1, . . . , Cn

C1 × · · · × Cn :=
n
×
i=1

Ci := ⊗〈C1, . . . , Cn〉

the (ordinal or cartesian) product of C1, . . . , Cn

C1 + · · ·+ Cn :=
n
+
i=1

Ci := ⊕〈C1, . . . , Cn〉

the (ordinal) coproduct of C1, . . . , Cn
or disjunct union of C1, . . . , Cn

12.2.3 Remark various ordinal products

So, for n ∈ N and classes C1, . . . , Cn we obtain

C1 ? · · · ? Cn =

8><>:
[xj |j ∈ J]

J ⊆ {1, . . . , n} and

xj ∈ Cj for each j ∈ J

9>=>;
C1 × · · · × Cn =

(
〈x1, . . . , xn〉
x1 ∈ C1, . . . , xn ∈ Cn

)

C1 + · · ·+ Cn =

( ˆ
i 7→ x

˜
i ∈ {1, . . . , n} , x ∈ Ci

)

12.2.4 Example ordinal products

Recall that

〈{a, b} , {c, d}〉 =

"
1 7→ {a, b}
2 7→ {c, d}

#

so that

{a, b} ? {c, d} =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

〈〉,ˆ
1 7→ a

˜
,
ˆ
1 7→ b

˜
,ˆ

2 7→ c
˜
,
ˆ
2 7→ d

˜
,"

1 7→ a

2 7→ c

#
,

"
1 7→ b

2 7→ c

#
,

"
1 7→ a

2 7→ d

#
,

"
1 7→ b

2 7→ d

#

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

{a, b} × {c, d} =

8>>>>><>>>>>:

"
1 7→ a

2 7→ c

#
,

"
1 7→ b

2 7→ c

#
,

"
1 7→ a

2 7→ d

#
,

"
1 7→ b

2 7→ d

#
9>>>>>=>>>>>;

=

8><>:
〈a, c〉
〈a, d〉
〈b, c〉
〈b, d〉

9>=>;

{a, b}+ {c, d} =

8<:
ˆ
1 7→ a

˜
,
ˆ
1 7→ b

˜
,ˆ

2 7→ c
˜
,
ˆ
2 7→ d

˜
9=;

12.2.5 Lemma

Given n ∈ N classes C1, . . . , Cn.

(1) If n = 0 then

(a) C1 ? . . . ? Cn = {〈〉}
(b) C1 × . . .× Cn = ∅
(c) C1 + . . .+ Cn = ∅

(2) If n = 1 then

(a) C1 ? . . . ? Cn = {〈〉} ∪ {〈c〉 | c ∈ C1}
(b) C1 × . . .× Cn = {〈c〉 | c ∈ C1}
(c) C1 + . . .+ Cn = {〈c〉 | c ∈ C1}

(3) If n > 1 then

(a) C1 × . . .× Cn ⊂ C1 ? . . . ? Cn

(b) C1 + . . .+ Cn ⊂ C1 ? . . . ? Cn

(c) (C1 + . . .+ Cn) ∩ (C1 × . . .× Cn) = ∅

12.2.6 Proof of 12.2.5

These properties immediately follow from definition 12.2.2.

12.3 Concatenation of tuple classes

12.3.1 Remark

Note, that none of our product definitions is associative. For
our definition of the cartesian product holds (A × B) × C 6=
A × B × C 6= A × (B × C). (A × B) × C is a class of pairs,
A×B×C is a class of triples. Also, the unary cartesian prod-
uct ⊗〈C〉 is the class {〈c〉 | c ∈ C}. And that is different to C
itself.
But there is a tradition to define these things differently. Usu-
ally — this is a common habit in formal language theory —
the difference between say the element c and the unary tuple
〈c〉 is neglected, a character ’c’ and a string "c" are considered
the same thing. But from a strictly formal point of view or for
a computer programmer, this difference is real. And mathe-
maticians that define cartesian products as associative, are not
really able to define e.g. the set {〈〈a, b〉, c〉 | a, b, c ∈ N} with
their formalism.
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We next define the concatenation † which has the particular
property that (A× B) † (C ×D) = A× B × C ×D.

12.3.2 Definition

If L1, . . . , Ln are classes of tuples, then

L1 † . . . † Ln :=
n

†
i=1

Li :=

{x1 † . . . † xn | x1 ∈ L1, . . . , xn ∈ Ln}

the concatenation of L1, . . . , Ln.

12.3.3 Lemma

(1) For tuple classes L1, . . . , Ln we have

(a) L1 † . . . † Ln = {〈〉} for n = 0

(b) L1 † . . . † Ln = L1 for n = 1

(2) 〈P(C∗), {〈〉} , †〉 is a monoid, for every class C, in the
sense that

(a) ©1 † ©2 : P(C∗)×P(C∗) −→ P(C∗) is associative

(b) {〈〉} is the neutral element for ©1 † ©2

(3) For n ∈ N classes C1, . . . , Cn and 0 ≤ i < n holds

(a) C1× . . .×Cn = (C1 × . . .× Ci)†(Ci+1 × . . .× Cn)

(b) C1×. . .×Cn 6= (C1 × . . .× Ci)×(Ci+1 × . . .× Cn)

12.3.4 Proof of 12.3.3

In 10.5.1 we defined

ξ1 † . . . † ξn :=

(
〈〉 if n = 0

ξ1 † (ξ2 † . . . † ξn) else

We apply this definition and obtain:
(1) For tuple classes L1, . . . , Ln,

(a) n = 0 implies L1 † . . . † Ln = {〈〉 | }
(b) n = 1 implies L1 † . . . † Ln = {ξ1 † 〈〉 | ξ1 ∈ L1} = L1

(2) If L,L′, L′′ ∈ P(C∗) then

(a) ©1 † ©2 is associative, because:

L † (L′ † L′′) = {ξ † (ξ′ † ξ′′) | ξ ∈ L, ξ′ ∈ L′, ξ′′ ∈ L′′}

= {(ξ † ξ′) † ξ′′) | ξ ∈ L, ξ′ ∈ L′, ξ′′ ∈ L′′}

= (L † L′) † L′′

(b) {〈〉} is the neutral element of ©1 †©2 , because L†{〈〉} =
{ξ † 〈〉 | ξ ∈ L} = L and {〈〉} † L = L, too.

(3) For every i ∈ {0, 1, . . . , n} we have

(C1 × . . .× Ci) † (Ci+1 × . . .× Cn)

= {〈x1, . . . , xi〉 † 〈xi+1, . . . , xn〉 | x1 ∈ C1, . . . , xn ∈ Cn}

= {〈x1, . . . , xi, xi+1, . . . , xn〉 | x1 ∈ C1, . . . , xn ∈ Cn}

= C1 × . . .× Cn

and

(C1 × . . .× Ci)× (Ci+1 × . . .× Cn)

= {〈〈x1, . . . , xi〉, 〈xi+1, . . . , xn〉〉 | x1 ∈ C1, . . . , xn ∈ Cn}

6= {〈x1, . . . , xi, xi+1, . . . , xn〉 | x1 ∈ C1, . . . , xn ∈ Cn}

= C1 × . . .× Cn

12.4 Distributivity

12.4.1 Remark distributivity

The distributivity of the various products with class operations
is e.g. saying that

⊗

264 a 7→ {2}b 7→ {2, 3} ∩ {3, 4}
c 7→ {5}

375 = ⊗

264 a 7→ {2}b 7→ {2, 3}
c 7→ {5}

375 ∩ ⊗
264 a 7→ {2}b 7→ {3, 4}
c 7→ {5}

375
or more general and intuitive

⊗

266664
.
.
.

.

.

.

k 7→ C ∩D
.
.
.

.

.

.

377775 = ⊗

266664
.
.
.

.

.

.

k 7→ C

.

.

.
.
.
.

377775 ∩ ⊗
266664

.

.

.
.
.
.

k 7→ D

.

.

.
.
.
.

377775
Similar statements hold for ~ and ⊕ instead of ⊗, and ∪,

T
,
T

,
and partially for \ instead of ∩.

We obtain an elegant formal expression of these distributivity
laws when we apply the updater

√
definied in . Recall, that

for a given schema X = [Xi|i ∈ I], an identifier k and a class
C holds

X
√

[ k 7→ C ] = [X̂i|i ∈ I ∪ {k}] where X̂i :=

(
Xi if i 6= k

C if i = k

(Note, that it doesn’t matter if k is a member of I or not.) A
proper form for the previous distributivity law is then

⊗ (X
√

[ k 7→ C ∩D ]) = ⊗ (X
√

[ k 7→ C ]) ∩ ⊗ (X
√

[ k 7→ D ])

12.4.2 Example distributivity over intersections

~

"
a 7→ {1}
b 7→ {2, 3} ∩ {3, 4}

#

= ~

"
a 7→ {1}
b 7→ {3}

#

=

(
〈〉, [a 7→ 1] , [b 7→ 3] ,

"
a 7→ 1

b 7→ 3

#)

=

8>>>>>><>>>>>>:

〈〉, [a 7→ 1] ,

[b 7→ 2] , [b 7→ 3] ,"
a 7→ 1

b 7→ 2

#
,

"
a 7→ 1

b 7→ 3

#
9>>>>>>=>>>>>>;
∩

8>>>>>><>>>>>>:

〈〉, [a 7→ 1] ,

[b 7→ 3] , [b 7→ 4] ,"
a 7→ 1

b 7→ 3

#
,

"
a 7→ 1

b 7→ 4

#
9>>>>>>=>>>>>>;

= ~

"
a 7→ {1}
b 7→ {2, 3}

#
∩ ~

"
a 7→ {1}
b 7→ {3, 4}

#
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and

⊗
"
a 7→ {1}
b 7→ {2, 3} ∩ {3, 4}

#

= ⊗
"
a 7→ {1}
b 7→ {3}

#

=

("
a 7→ 1

b 7→ 3

#)

=

("
a 7→ 1

b 7→ 2

#
,

"
a 7→ 1

b 7→ 3

#)
∩
("

a 7→ 1

b 7→ 3

#
,

"
a 7→ 1

b 7→ 4

#)

= ⊗
"
a 7→ {1}
b 7→ {2, 3}

#
∩ ⊗

"
a 7→ {1}
b 7→ {3, 4}

#

and

⊕
"
a 7→ {1}
b 7→ {2, 3} ∩ {3, 4}

#

= ⊕
"
a 7→ {1}
b 7→ {3}

#
= {[a 7→ 1] , [b 7→ 3]}
=

˘
[a 7→ 1] , [b 7→ 2] , [b 7→ 3]

¯
∩
˘
[a 7→ 1] , [b 7→ 3] , [b 7→ 4]

¯
= ⊕

"
a 7→ {1}
b 7→ {2, 3}

#
∩ ⊕

"
a 7→ {1}
b 7→ {3, 4}

#

12.4.3 Lemma distributivity

Let X = [Xi|i ∈ I] be a schema and k an identifier.

(1) For every schema [Cj |j ∈ J] with J 6= ∅ holds

(a) ⊗
 
X
√
"
k 7→

T
j∈J

Cj

#!
=
T
j∈J
⊗ (X

√
[k 7→ Cj ])

(b) ⊕
 
X
√
"
k 7→

T
j∈J

Cj

#!
=
T
j∈J
⊕ (X

√
[k 7→ Cj ])

(c) ~

 
X
√
"
k 7→

T
j∈J

Cj

#!
=
T
j∈J
~ (X

√
[k 7→ Cj ])

(2) For every schema [Cj |j ∈ J] holds

(a) ⊗
 
X
√
"
k 7→

S
j∈J

Cj

#!
=
S
j∈J
⊗ (X

√
[k 7→ Cj ])

and if J 6= ∅ then

(b) ⊕
 
X
√
"
k 7→

S
j∈J

Cj

#!
=
S
j∈J
⊕ (X

√
[k 7→ Cj ])

(c) ~

 
X
√
"
k 7→

S
j∈J

Cj

#!
=
S
j∈J
~ (X

√
[k 7→ Cj ])

(3) For every two classes C1 and C2 holds

⊗ (X
√

[k 7→ C1 \ C2])

= ⊗ (X
√

[k 7→ C1]) \ ⊗ (X
√

[k 7→ C2])

12.4.4 Proof of 12.4.3

Given the schema X = [Xi|i ∈ I] and the identifier k (which
may or may not be a member of I). We put

Î := I ∪ {k} Ī := I \ {k} X̄ := pr
`
X, Ī

´
so that, for every class C,

X
√

[ k 7→ C ] = X̄ ∨̇ [ k 7→ C ]

(1) Now we also have a given schema [Cj |j ∈ J] with J 6= ∅.
We put

C :=
T
j∈J

Cj

X̂ := X
√

[ k 7→ C ]

= X̄ ∨̇ [ k 7→ C ]

=

"
i 7→

(
Xi if i 6= k

C if i = k
i ∈ Î

#
and for each j ∈ J we put

σj := X
√

[ k 7→ Cj ]

= X̄ ∨̇ [ k 7→ Cj ]

=

"
i 7→

(
Xi if i 6= j

Cj if i = j
i ∈ Î

#
With these notations our original statements now become

(a) ⊗X̂ =
T
j∈J
⊗ σj

(b) ⊕X̂ =
T
j∈J
⊕ σj

(c) ~X̂ =
T
j∈J
~ σj

and their proof is as follows

⊗X̂

=

(
[xi|i ∈ Î]

xi ∈ Xi for i ∈ Ī,
xk ∈

T
{Cj | j ∈ J}

)

=
T
j∈J

(
[xi|i ∈ Î]

xi ∈ Xi for i ∈ Ī,
xk ∈ Cj

)
=

T
j∈J
⊗ σj

⊕X̂
= {[ i 7→ x ] | i ∈ Î, x ∈ X̂i}
= ⊕X̄ ∪ ⊕[ k 7→ C ]

= ⊕X̄ ∪
T
j∈J
⊕ [ k 7→ Cj ]

=
T
j∈J

`
⊕X̄ ∪ ⊕[ k 7→ Cj ]

´
=

T
j∈J
⊕
`
X̄ ∨̇ [ k 7→ Cj ]

´
=

T
j∈J
⊕ σj

For a proof of (c)let us first note, that for each L ⊆ Î, exactly
one of the following two situations is the case:

(i) k 6∈ L and that implies

pr
“
X̂, L

”
= pr

`
X̄, L

´
= pr (σj , L) for each j ∈ J

so that

⊗pr
“
X̂, L

”
= ⊗pr (σj , L) =

T
j∈J
⊗ pr (σj , L)

because J 6= ∅ and ⊗pr (σj , L) is the same for each j ∈ J.

(ii) k ∈ L and that implies

pr
“
X̂, L

”
= pr

“
X̂, L \ {k}

”
∨̇ [ k 7→ C ]

= pr
“
X̂, L \ {k}

”
∨̇
"
k 7→

T
j∈J

Cj

#
so that
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⊗pr
“
X̂, L

”
= ⊗

 
pr
“
X̂, L \ {k}

”
∨̇
"
k 7→

T
j∈J

Cj

#!

=

8<: [xl|l ∈ L]
xl ∈ Xl for l 6= k

xk ∈
T
j∈J

Cj

9=;
=

T
j∈J

(
[xl|l ∈ L]

xl ∈ Xl for l 6= k

xk ∈ Cj

)
=

T
j∈J
⊗ pr (σj , L)

So anyway, for every L ⊆ Î we have

⊗pr
“
X̂, L

”
=

T
j∈J
⊗ pr (σj , L)

and thus we obtain the following derivation for (c)

~X̂

=
S
L⊆Î
⊗ pr

“
X̂, L

”
due to 12.1.4

=
S
L⊆Î

T
j∈J
⊗ pr (σj , L)

=
S
L⊆Î

T
j∈J

(
[xl|l ∈ L]

xl ∈ Xl for l ∈ L \ {k}
xl ∈ Cj for l ∈ {k}

)

=

8>><>>: [xl|l ∈ L]

L ⊆ Î
xl ∈ Xl for l ∈ L \ {k}
xl ∈

T
j∈J

Cj for l ∈ {k}

9>>=>>;
=

T
j∈J

S
L⊆Î

(
[xl|l ∈ L]

xl ∈ Xl for l ∈ L \ {k}
xl ∈ Cj for l ∈ {k}

)
=

T
j∈J

S
L⊆Î
⊗ pr (σj , L)

=
T
j∈J
~ σj due to 12.1.4, again

(2) Again, we have a given schema [Cj |j ∈ J] and this time
we put

C :=
S
j∈J

Cj

X̂ := X
√

[ k 7→ C ]

= X̄ ∨̇ [ k 7→ C ]

=

"
i 7→

(
Xi if i 6= k

C if i = k
i ∈ Î

#
and for each j ∈ J we put

σj := X
√

[ k 7→ Cj ]

= X̄ ∨̇ [ k 7→ Cj ]

=

"
i 7→

(
Xi if i 6= j

Cj if i = j
i ∈ Î

#
With these notations our statements are

(a) ⊗X̂ =
S
j∈J
⊗ σj

That is proven similar to (1)(a):

⊗X̂

=

(
[xi|i ∈ Î]

xi ∈ Xi for i ∈ Ī,
xk ∈

S
{Cj | j ∈ J}

)

=
S
j∈J

(
[xi|i ∈ Î]

xi ∈ Xi for i ∈ Ī,
xk ∈ Cj

)
=

S
j∈J
⊗ σj

(b) If J 6= ∅ then ⊕X̂ =
S
j∈J
⊕ σj .

That is true because

⊗X̂
= {[ i 7→ x ] | i ∈ Î, x ∈ X̂i}

=

(
[ i 7→ x ]

i ∈ Ī, x ∈ X̄i

)
∪
(

[ k 7→ x ]

x ∈ C

)

=

(
[ i 7→ x ]

i ∈ Ī, x ∈ X̄i

)
∪
S
j∈J

(
[ k 7→ x ]

x ∈ Cj

)

=
S
j∈J

 (
[ i 7→ x ]

i ∈ Ī, x ∈ X̄i

)
∪
(

[ k 7→ x ]

x ∈ Cj

)!
=

S
j∈J
⊗
`
X̄ ∨̇ [ k 7→ Cj ]

´
=

S
j∈J
⊗ σj

(c) If J 6= ∅ then ~X̂ =
S
j∈J
~ σj .

Similar to the reasoning for the proof of (1)(c), let us note
that for each L ⊆ Î we have

(i) either k 6∈ L, so that

pr
“
X̂, L

”
= pr

`
X̄, L

´
= pr (σj , L) for each j ∈ J

and thus

⊗pr
“
X̂, L

”
= ⊗pr (σj , L) for each j ∈ J

=
S
j∈J
⊗ pr (σj , L) because J 6= ∅

(ii) or k ∈ L, so that

pr
“
X̂, L

”
= pr

“
X̂, L \ {k}

”
∨̇ [ k 7→ C ]

= pr
“
X̂, L \ {k}

”
∨̇
"
k 7→

S
j∈J

Cj

#
so that

⊗pr
“
X̂, L

”
= ⊗

 
pr
“
X̂, L \ {k}

”
∨̇
"
k 7→

S
j∈J

Cj

#!

=

8<: [xl|l ∈ L]
xl ∈ Xl for l 6= k

xk ∈
S
j∈J

Cj

9=;
=

S
j∈J

(
[xl|l ∈ L]

xl ∈ Xl for l 6= k

xk ∈ Cj

)
=

S
j∈J
⊗ pr (σj , L)

So anyway, for every L ⊆ Î holds

⊗pr
“
X̂, L

”
=

S
j∈J
⊗ pr (σj , L)

Using that in the derivation for (c) gives us

~X̂

=
S
L⊆Î
⊗ pr

“
X̂, L

”
due to 12.1.4

=
S
L⊆Î

S
j∈J
⊗ pr (σj , L)

=
S
j∈J

S
L⊆Î
⊗ pr (σj , L)

=
S
j∈J
~ σj due to 12.1.4, again

(3) Finally, we take any two classes C1 and C2 and obtain

⊗ (X
√

[ k 7→ C1 \ C2 ])

=

(
[ xi 7→ i ∈ Î ]

i ∈ Xi for i ∈ Ī,
xk ∈ C1 \ C2

)

=

8><>:
[ xi 7→ i ∈ Î ]

i ∈ Xi for i ∈ Ī,
xk ∈ C1

9>=>; \
8><>:

[ xi 7→ i ∈ Î ]

i ∈ Xi for i ∈ Ī,
xk ∈ C1

9>=>;
= ⊗ (X

√
[ k 7→ C1 ]) \ ⊗ (X

√
[ k 7→ C2 ])

12.4.5 Remark and example distributivity over differences

Note, that there is neither a statement
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~X = ~X
√

[ k 7→ C1 ] \~X
√

[ k 7→ C2 ]

nor

⊕X = ⊕X
√

[ k 7→ C1 ] \ ⊕X
√

[ k 7→ C2 ]

in 12.4.3(3), because that would be false in general. Let us
illustrate that with an example, similar to the one in 12.4.2.

The cartesian product is distributive:

⊗
"
a 7→ {1}
b 7→ {2, 3} \ {3, 4}

#

= ⊗
"
a 7→ {1}
b 7→ {2}

#

=

("
a 7→ 1

b 7→ 2

#)

=

("
a 7→ 1

b 7→ 2

#
,

"
a 7→ 1

b 7→ 3

#)
\
("

a 7→ 1

b 7→ 3

#
,

"
a 7→ 1

b 7→ 4

#)

= ⊗
"
a 7→ {1}
b 7→ {2, 3}

#
\ ⊗

"
a 7→ {1}
b 7→ {3, 4}

#

But that neither holds for the star product

~

"
a 7→ {1}
b 7→ {2, 3} \ {3, 4}

#

= ~

"
a 7→ {1}
b 7→ {2}

#

=

(
〈〉, [a 7→ 1] , [b 7→ 2] ,

"
a 7→ 1

b 7→ 2

#)

6=
(

[b 7→ 2] ,

"
a 7→ 1

b 7→ 2

#)

=

8>>>>>><>>>>>>:

〈〉, [a 7→ 1] ,

[b 7→ 2] , [b 7→ 3] ,"
a 7→ 1

b 7→ 2

#
,

"
a 7→ 1

b 7→ 3

#
9>>>>>>=>>>>>>;
\

8>>>>>><>>>>>>:

〈〉, [a 7→ 1] ,

[b 7→ 3] , [b 7→ 4] ,"
a 7→ 1

b 7→ 3

#
,

"
a 7→ 1

b 7→ 4

#
9>>>>>>=>>>>>>;

= ~

"
a 7→ {1}
b 7→ {2, 3}

#
\ ~

"
a 7→ {1}
b 7→ {3, 4}

#

nor for the coproduct

⊕
"
a 7→ {1}
b 7→ {2, 3} \ {3, 4}

#

= ⊕
"
a 7→ {1}
b 7→ {2}

#
=

˘
[a 7→ 1] , [b 7→ 2]

¯
6=

˘
[b 7→ 2]

¯
=

˘
[a 7→ 1] , [b 7→ 2] , [b 7→ 3]

¯
\
˘
[a 7→ 1] , [b 7→ 3] , [b 7→ 4]

¯
= ⊕

"
a 7→ {1}
b 7→ {2, 3}

#
\ ⊕

"
a 7→ {1}
b 7→ {3, 4}

#

12.5 Power products

12.5.1 Definition power products

For all classes C and I, where at least one of the two is
non–empty, we define

CI := ⊗[C|I] =

(
[xi|i ∈ I]
xi ∈ C for all i ∈ I

)

the I–th power (product) of C.

For every every non–empty class C and all n ∈ N we define

Cn := ⊗〈C | n〉 =

(
〈x1, . . . , xn〉
xi ∈ C for i = 1, . . . , n

)

the n–th power (product) of C or

the n–tuple class on C.
And for every non–empty class C, we define

C∗ :=
S
n∈N

Cn =

(
〈x1, . . . , xn〉
n ∈ N, ∀i ∈ I . xi ∈ C

)

the Kleene closure or
the tuple class on C.

12.5.2 Remark power products with empty classes

We have the following special cases:
(1) I = ∅ and C 6= ∅. Then CI = {〈〉}, i.e. the power product

is made of one element, the empty tuple.

(2) I 6= ∅ and C = ∅. Then CI = ∅.

Now if I = C = ∅, both these cases would apply and result
in an impossible situation. Therefore, I = C = ∅ is excluded
from the definition of CI .

12.5.3 Example power product

{a, b}{c,d} =

8>>>>><>>>>>:

"
c 7→ a

d 7→ a

#
,

"
c 7→ b

d 7→ a

#
,

"
c 7→ a

d 7→ b

#
,

"
c 7→ b

d 7→ b

#
9>>>>>=>>>>>;

{a, b}2 = {〈a, a〉, 〈b, a〉, 〈a, b〉, 〈b, b〉}

{a, b}∗ =

8>>>>><>>>>>:

〈〉,
〈a〉, 〈b〉,

〈a, a〉, 〈b, a〉, 〈a, b〉, 〈b, b〉,
〈a, a, a〉, 〈b, a, a〉, 〈a, b, a〉, . . . ,

.

.

.

9>>>>>=>>>>>;

12.5.4 Remark

Usually, the expression CI for two classes C and I is defined
to be the class of all functions with domain I and codomain
C, i.e.

CI := {f | f : I −→ C}

In our design however, this is actually

CI := {f : I −→ D | D ⊆ C and f is surjective}

But there is an obvious bijection between these two function
classes and usually no context in practice, where this difference
in definition becomes significant. So we will allow to consider
our slightly modified definition as conform with the common
standard.
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The notation CI is tradition in mathematics. Most likely it
is again motivated by the following statement about its cardi-
nalities in an attempt to merge set theory and arithmetic.

12.5.5 Remark cardinality of power products

For all classes C and I holds

card(CI) = card(C)card(I)

where the right hand side denotes the power operation of (pos-
sibly infinite) cardinal numbers. Note that this correspondence

even holds for the case C = I = ∅, since neither ∅∅ nor 00 are
defined.
In particular, the case I = {1, . . . , n} for some n ∈ N and C
non–empty makes

card(Cn) = (card(C))n
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13 Digressions

13.0.6 Introduction

In the first of the two following digressions we generalize the
binary product and coproduct definition towards a “product
construction” and “coproduct construction”. This kind of ab-
straction is often done in category theory, for example. Our
definitions depart slightly from the standard ones, but we will
find that the differences are insignificant. In other words, our
binary product (as defined in 12.2.2) is a proper product con-
struction, and our coproduct (defined in 12.2.2 as well) is a
proper coproduct construction.

In the second digression in subsection 13.2, we introduce a
practical application for schema coproducts: the definition of
formal languages or data structures.

13.1 Digression: Product and co-
product constructions

13.1.1 Definition

Given two classes A and B.

(1) A (binary) (cartesian) product construction for A and

B comprises

(i) P the so–called product class

(ii) p1 : P −→ A the first projector

(iii) p2 : P −→ B the second projector

(iv) ©1 · ©2 : A× B −→ P the constructor

such that

(a) p1(a · b) = a for all a ∈ A and b ∈ B
(b) p2(a · b) = b for all a ∈ A and b ∈ B

(2) A (binary) coproduct construction for A and B com-

prises

(i) S the so–called coproduct class (or sum or disjunct
union)

(ii) i1 : A −→ S the first injector

(iii) i2 : B −→ S the second injector

(iv) δ : S −→ (({1} × A) ] ({2} × B)) the deconstruc-
tor

such that

(a) δ(i1(a)) = 〈1, a〉 for all a ∈ A
(b) δ(i2(b)) = 〈2, b〉 for all b ∈ B

13.1.2 Remark

(i) In category theory and other mathematical branches, a
“product” usually is defined as the combination of P , p1
and p2, the “constructor” is not mentioned explicitely.

Similarly, a “coproduct” is made of P , i1 and i2. A “decon-
structor” is absent.

(ii) The default product construction is the one, where the
constructor is the identity (see ??).
Similarly, the most common coproduct construction is the
one where the deconstructor is the identity (see 13.1.5).

(iii) A “good” product and coproduct construction usually
have the additional property, that they motivate the product
and sum of cardinal numbers, respectively. More precisely,
if A and B are given classes and P and S are their product
and coproduct classes, then card (P ) = card (A) · card (B)
and card (S) = card (A)+card (B). One way to character-
ize such a “good” product or coproduct is to demand that
the constructor or deconstructor must be a bijection.

13.1.3 Example

The default product construction of given classes A and B is

the ordinary cartesian product itself, i.e.28

(i) A× B is the product class,

(ii) ©1 (1) : A× B −→ A is the first and

(iii) ©2 (2) : A× B −→ B is the second projection.

(iv) The constructor is of course the identity function on A×B.

13.1.4 Example

The ordinary cartesian product is based on the tuple concept;
but there is also a set version.29For given classes A and B their
Kuratowski product construction comprises:

(i) P := {{{a} , {a, b}} | a ∈ A, b ∈ B} is the product class

(ii) p1(π) := sing (
T
π) for each π ∈ P is the first projection.

So, p1({{a} , {a, b}}) = sing ({a}) = a.

(iii) p2(π) := sing
“
∇π

”
for each π ∈ P is the second projec-

tion.
So, p2({{a} , {a, b}}) = sing ({a} O {a, b}) = sing ({b}) =
b.

(iv) a · b := {{a} , {a, b}} for a ∈ A and b ∈ B is the construc-
tor

13.1.5 Example

The default coproduct construction for given A and B puts

(i) S := ({1} × A) ] ({2} × B) as the coproduct class

(ii) i1(a) := 〈1, a〉 for each a ∈ A is the first injection

(iii) i2(b) := 〈2, a〉 for each b ∈ B is the second injection

(iv) δ(n, x) := 〈n, x〉 is the deconstructor

13.1.6 Example

(i)
28Recall 5.4.1, that 〈a, b〉(1) = a and 〈a, b〉(2) = b for arbitrary pairs 〈a, b〉.
29 Recall 5.6.13, that sing (C) denotes the unique member of a singleton C; and 5.6.6, that ∇K is opposition of a class family K; in

particular ∇ {C1, C2} = C1 OC2 = (C1 \ C2) ∪ (C2 \ C1).
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The binary version of our coproduct definition in 12.2.2 is a
coproduct contruction in the sense of 13.1.1. For two given
classes A and B we put
S := A+B = {[ 1 7→ a ] | a ∈ A} ] {[ 2 7→ b ] | b ∈ B} as the
coproduct class

(ii) i1(a) := [ 1 7→ a ] for all a ∈ A is the first injection

(iii) i2(b) := [ 2 7→ b ] for all b ∈ B is the first injection

(iv) δ([n 7→ x ]) := 〈n, x〉 for all [n 7→ x ] ∈ S is the decon-
structor.

13.2 Digression: Datastructures
and formal languages as co-
products of schemas

13.2.1 Introduction

Often in mathematics and metamathematics, we need to de-
fine formal languages. In computer science, these expression
classes are often called data structures. 30

Suppose, we want to define “(simple) arithmetic terms”. This
term class Arith is a formal language and should contain ex-
pressions like

[ 0 + [ [ [ 0 + 1 ] ∗ 0 ] + 1 ] ]

i.e. expressions that start with zero and unit and allow more
complex constructions by means of addition and multiplica-
tion, embraced by square brackets.

We already discussed the mathematical nature of expressions
in 5.2, where we emphasized (5.2.3(2)) that expressions are ac-
tually parse trees and the example above is just a camouflage
for something like

[©1 + ©2 ]

0 [©1 ∗ ©2 ]

1 [©1 + ©2 ]

[©1 ∗ ©2 ] 1

[©1 + ©2 ] 0

0 1

��

��

��

��

��

@@

@@

@@

@@

@@

We are going to introduce a convenient and elegant “coprod-
uct definition” for data structures in general. For Arith such
a definition is given in 13.2.4. But before that, let us start
with a “vulgar definition” for Arith in 13.2.2.

13.2.2 vulgar definition of arithmetic terms

The arithmetic term class Arith is defined to be the smallest
class containing the following expressions:
(1) 0 (zero)

(2) 1 (unit)

(3) [ ξ + υ ] for all ξ, υ ∈ Arith (addition)

(4) [ ξ ∗ υ ] for all ξ, υ ∈ Arith (multiplication)

13.2.3 Remark

The arithmetic term class is a union of four disjunct classes

Arith = {0} ] {1} ]
(

[ ξ + υ ]

ξ, υ ∈ Arith

)
]
(

[ ξ ∗ υ ]

ξ, υ ∈ Arith

)

Even more so — and that is essential for data structures
in computer programs — we can immediately “see” for each
arithmetic term, to which of the four classes it belongs. Our
example arithmetic term in 13.2.1 is an addition term, because
“©1 + ©2 ” is the root of parse tree.

This is a characteristic property of data structures compare
to other classes in general: each element is a transparent con-
struction; either a primitive one, like 0, or a more complex
one like [ ξ ∗ υ ]. And the complex one is a combination of an
operator symbol or constructor “[©1 ∗ ©2 ]” and an argument
tuple, in this case “〈ξ, υ〉”. And since “[ ξ ∗ υ ]” is in fact just
the linear representation for the tree node

ξ υ

[©1 ∗ ©2 ]

�� @@

the mathematical formalization would be more appropriately
something like a constructor–arguments pair

“〈[©1 ∗ ©2 ], 〈ξ, υ〉〉”

or a singular record

“[ [©1 ∗ ©2 ] 7→ 〈ξ, υ〉 ]”

We take this record representation “[ [©1 ∗ ©2 ] 7→ 〈ξ, υ〉 ]” as
the general form of expressions, i.e. elements of data struc-
tures. And similar to the definition of “constants” as “func-
tions with zero arguments”, we can also subsume primitive
expressions under this form and represent “0” by “[ 0 7→ 〈〉 ]”.

Applying this approach to Arith, we now obtain the following
disjunct union

Arith = {[ 0 7→ 〈〉 ]}]

{[ 1 7→ 〈〉 ]}]˘
[ [©1 + ©2 ] 7→ 〈ξ, υ〉 ] ξ, υ ∈ Arith

¯
]˘

[ [©1 ∗ ©2 ] 7→ 〈ξ, υ〉 ] ξ, υ ∈ Arith
¯

And since

{[ 0 7→ 〈〉 ]} = ⊕[ 0 7→ {〈〉} ]

{[ 1 7→ 〈〉 ]} = ⊕[ 1 7→ {〈〉} ](
[ [©1 + ©2 ] 7→ 〈ξ, υ〉 ]
ξ, υ ∈ Arith

)
= ⊕[ [©1 + ©2 ] 7→ Arith2 ](

[ [©1 ∗ ©2 ] 7→ 〈ξ, υ〉 ]
ξ, υ ∈ Arith

)
= ⊕[ [©1 ∗ ©2 ] 7→ Arith2 ]

30 We only think of formal languages as context–free languages. There is of course a more general notion, as any standard book on

formal languages tells us. But the syntax of most mathematical formalisms or computer languages is indeed definable by a context–free

grammar.
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with Arith2 = Arith×Arith as defined in 12.5.1, we obtain

Arith = ⊕[ 0 7→ {〈〉} ] ]
⊕[ 1 7→ {〈〉} ] ]

⊕[ [©1 + ©2 ] 7→ Arith
2
] ]

⊕[ [©1 ∗ ©2 ] 7→ Arith
2
]

= ⊕

26664
0 7→ {〈〉}
1 7→ {〈〉}

[©1 + ©2 ] 7→Arith2

[©1 ∗ ©2 ] 7→Arith2

37775
And that is the final version of the following “coproduct def-

inition” of arithmetic terms.

13.2.4 coproduct definition of arithmetic terms

The arithmetic term class is defined as

Arith := ⊕

26664
0 7→ {〈〉}
1 7→ {〈〉}

[©1 + ©2 ] 7→Arith2

[©1 ∗ ©2 ] 7→Arith2

37775

13.2.5 Remark

As a second example for the definition of an expression class,
let us consider the definition of propositional formulas. If a
given class A contains a and b, an example of such a proposi-
tional formula on A shall be given by

¬[¬a ∧ [ 0 ∨ ¬[ 0 ∨ 1 ] ∨ a ] ∧ 1 ∧ b ]

These kind of expressions are covered by the following defini-
tion.

13.2.6 Coproduct definition of propositional formulas

For every class A of identifiers we define

Form (A) := ⊕

266666664

0 7→ {〈〉}
1 7→ {〈〉}
©1 7→ A

¬©1 7→ Form (A)

[©1 ∧ . . . ∧ ©n ] 7→ Form (A)∗

[©1 ∨ . . . ∨ ©n ] 7→ Form (A)∗

377777775

the propositional formula class on A.

13.2.7 Remark

This definition of Form (A) is another example of a schema
coproduct definition. It is recursive, as it is typical for many
data structures, but that does not cause a problem whatsoever.
And again, the whole class is a disjunct union of six different
kinds of constructions: the zero bit, the unit bit, the atomic
formula, the negation, the conjunction and the disjunction,
respectively.

Once again, there is a precise tree form and a convenient writ-
ten version of each construction:
♣ Each zero bit formula from ⊕[ 0 7→ {〈〉} ] has the precise

form [ 0 7→ 〈〉 ], which is simply written “0”, as usual.

♣ Each negation formula, each element from ⊕[¬©1 7→
Form (A) ] has the precise form [¬©1 7→ ϕ ], for some
ϕ ∈ Form (A), and the usual written representation “¬ϕ”.

♣ Each conjunction formula from ⊕[ [©1 ∧ . . . ∧ ©n ] 7→
Form (A)∗ ] has the actual form [ [©1 ∧ . . . ∧ ©n ] 7→
〈ϕ1, . . . , ϕn〉 ], for some 〈ϕ1, . . . , ϕn〉 ∈ Form (A)∗, and is
usually written as “[ϕ1 ∧ . . . ∧ ϕn ]”.

♣ Each atomic formula is an element of ⊕[©1 7→ A ]. Accord-
ingly, an atomic formula has the form [©1 7→ a ], for some
a ∈ A, but it is usually written as “a” itself.

13.2.8 Example

Alltogether, a propositional formula like ¬[ a ∧ 0 ] has the ac-
tual form

[¬©1 7→ [ [©1 ∧ ©2 ] 7→ 〈[©1 7→ a ], [ 0 7→ 〈 〉]〉 ] ]

which is the formalization of the tree

¬©1

[©1 ∧ ©2 ]

©1 0

a

�
�

@
@
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14 Order structures on schemas

14.1 The operations

14.1.1 Definition

For two schemas X = [Xi|i ∈ I] and Y = [Yi|i ∈ I] with
identical index class I we define

X ⊆ Y :iff Xi ⊆ Yi for all i ∈ I inclusion

X 6⊆ Y :iff Xi 6⊆ Yi for some i ∈ I

X ∩ Y := [Xi ∩ Yi|i ∈ I] intersection

X ∪ Y := [Xi ∪ Yi|i ∈ I] union

X\Y := [Xi\Yi|i ∈ I] difference

For every non–empty class Y of schemas, where all mem-
bers have the same index class I, we defineT

Y :=
T
Y∈Y

Y :=
ˆ T
{Yi | Y ∈ Y} i ∈ I

˜
the (big) intersection of Y

S
Y :=

S
Y∈Y

Y :=
ˆ S
{Yi | Y ∈ Y} i ∈ I

˜
the (big) union of Y

14.1.2 Remark

Note, that
T
Y is defined iff Y 6= ∅.

14.1.3 Example

Given two schemas

X =

264 p 7→ {a, b, c}q 7→ ∅
r 7→ {a}

375 Y =

264 p 7→ {a, b}q 7→ {a, b}
r 7→ {a, b}

375
with the same index class I = {p, q, r}. Then

X 6⊆ Y and Y 6⊆ X

and

X ∩ Y =

264 p 7→ {a, b}q 7→ ∅
r 7→ {a}

375 X ∪ Y =

264 p 7→ {a, b, c}q 7→ {a, b}
r 7→ {a, b}

375

X \ Y =

264 p 7→ {c}q 7→ ∅
r 7→ ∅

375 Y \X =

264 p 7→ ∅q 7→ {a, b}
r 7→ {b}

375

14.2 The included schema class

14.2.1 Definition

If X = [Xi|i ∈ I] is a schema, then

Incl(X) := {[Yi|i ∈ I] | Yi ⊆ Xi for all i ∈ I}

is the included schema class or inclusions of X.

14.2.2 Example

Taking the schema

X =

264 p 7→ {a, b}q 7→ ∅
r 7→ {a}

375
then

Incl(X) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

264 p 7→ ∅q 7→ ∅
r 7→ ∅

375 ,
264 p 7→ {a}q 7→ ∅
r 7→ ∅

375 ,
264 p 7→ {b}q 7→ ∅
r 7→ ∅

375 ,
264 p 7→ {a, b}q 7→ ∅
r 7→ ∅

375 ,
264 p 7→ ∅q 7→ ∅
r 7→ {a}

375 ,
264 p 7→ {a}q 7→ ∅
r 7→ {a}

375 ,
264 p 7→ {b}q 7→ ∅
r 7→ {a}

375 ,
264 p 7→ {a, b}q 7→ ∅
r 7→ {a}

375

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

14.3 The boolean algebra of inclu-
sions

14.3.1 Definition

The inclusion algebra of a given schema X = [Xi|i ∈ I] is
defined as

Incl (X) :=
˙
Incl (X) ,⊆, [∅|I], X,∩,∪,

T
,
S
, {
¸

where
T

is defined on its whole domain P (Incl (X)) by

putting
T
∅ := X and {Y := X \Y is the complement of

every Y ∈ Incl (X).

14.3.2 Theorem

Incl (X) is a complete boolean algebra, for every schema
X.

14.3.3 Proof of 14.3.2

Let W,Y, Z ∈ Incl(X), then
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(a) (W ⊆ Y and Y ⊆ Z) implies (Wi ⊆ Yi ⊆ Zi for all
i ∈ I) implies (Wi ⊆ Zi for all i ∈ I) implies W ⊆ Z. ⊆ is
transitive.

(b) W ⊆ W , because Wi ⊆ Wi for all i ∈ I. ⊆ is reflexive.

(c) (W ⊆ Y and Y ⊆ W ) implies (Wi = Yi for all i ∈ I)
implies W = Y . ⊆ is antisymmetric.

Altogether, ⊆ is a (partial) order relation on Incl(X). Fur-
thermore

(d) [∅|I] ⊆ W , because ∅ ⊆ Wi for all i ∈ I. [∅|I] is the least
element.

(e) W ⊆ X, because Wi ⊆ Xi for all i ∈ I. X is the greatest
element.

For every Y ⊆ Incl(X)

(f)
T
Y ⊆ Y for every Y ∈ Y. And for every Z ∈ Incl(X)

holds: If Z ⊆ Y for all Y ∈ Y, then Zi ⊆
T
{Yi | Y ∈ Y}

for all i ∈ I, and so Z ⊆
T
Y. In other words,

T
Y is the

greatest lower bound of Y.

(g)
S
Y is the least upper bound of Y, similar to (f).

There is ©1 ∩ ©2 =
T
{©1 ,©2 } and ©1 ∪ ©2 =

S
{©1 ,©2 }. So

far, we have a complete lattice, which is distributive, because
the underlying class algebra is distributive. And finally, for
every Y ∈ Incl(X) we have

(h) ({Y )∩Y = (X\Y )∩Y = [∅|I] and ({Y )∪Y = (X\Y )∪Y =
X. That makes { the complement operator.

That completes the proof.

14.3.4 Example

If we take the schema X again from the previous example
14.2.2, the order diagram of the complete boolean lattice on
Incl(X) is

264 p 7→ ∅q 7→ ∅
r 7→ ∅

375

264 p 7→ ∅q 7→ ∅
r 7→ {a}

375
264 p 7→ {a}q 7→ ∅
r 7→ ∅

375
264 p 7→ {b}q 7→ ∅
r 7→ ∅

375

264 p 7→ {a}q 7→ ∅
r 7→ {a}

375
264 p 7→ {b}q 7→ ∅
r 7→ {a}

375
264 p 7→ {a, b}q 7→ ∅
r 7→ ∅

375

264 p 7→ {a, b}q 7→ ∅
r 7→ {a}

375

aaaaaa

!!!!!!

!!!!!!

aaaaaa

!!!!!!

aaaaaa

!!!!!!

aaaaaa
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Part VI

Graphs and their distinct products
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15 Schemas and graphs

15.1 Schemas of record classes

15.1.1 Definition

Let Ξ be a class of records. We define

@(Ξ) :=
S
{dom(ξ) | ξ ∈ Ξ}

the attribute class of Ξ

domα(Ξ) := {ξ(α) | ξ ∈ Ξ, α ∈ dom(ξ)}

the α–domain of Ξ, for each α ∈ @(Ξ)

x(Ξ) := [domα(Ξ)|α ∈ @(Ξ)]

the schema of Ξ

15.1.2 Example

Given the record class

Ξ =

8><>:〈〉,
"
a 7→ 5

b 7→ 3

#
,
h
a 7→ 4

i
,

264 a 7→ 5

b 7→ 7

d 7→ 1

375 ," a 7→ 2

d 7→ 2

#9>=>;
then

@(Ξ) = ∅ ∪ {a, b} ∪ {a} ∪ {a, b, d} ∪ {a, d}

= {a, b, d}

doma(Ξ) = {2, 4, 5}

domb(Ξ) = {3, 7}

domd(Ξ) = {1, 2}

x(Ξ) =

264 a 7→ {2, 4, 5}b 7→ {3, 7}
d 7→ {1, 2}

375
Note, that x(Ξ) is proper and Ξ ⊆ ~x(Ξ).

15.1.3 Remark Table construction

Consider the record class Ξ from the previous example 15.1.2
again. The construction of its schema can be done with a ta-
ble. First, list each record of Ξ as a row in a table, the tables
head row is the attribute class. We obtain

a b d

5 3

4

5 7 1

2 2

Next, combine the entries of each column as a separate class.

a b d

5 3

4

5 7 1

2 2

{2, 4, 5} {3, 7} {1, 2}

The schema of Ξ is finally given by

x(Ξ) =

264 a 7→ {2, 4, 5}b 7→ {3, 7}
d 7→ {1, 2}

375

15.1.4 Lemma

(1) x(Ξ) is a proper schema, for every record class Ξ.

(2) Ξ ⊆ ~x(Ξ), for every record class Ξ.

(3) For every schema X holds

(a) x(~X) = X

(b) x(⊕X) = X

And if X is proper, then

(c) x(⊗X) = X

(4) For every schema X and record class Ξ holds:

Ξ ⊆ ~X iff x(Ξ) ⊆ pr (X,dom(X) ∩@(Ξ))

15.1.5 Proof of 15.1.4

(1) Obviously, x(Ξ) is a well defined schema. If @(Ξ) = ∅,
then x(Ξ) = 〈〉, which is a proper schema. If @(Ξ) 6= ∅,
then for every α ∈ @(Ξ) holds: domα(Ξ) = {ξ(α) | ξ ∈
Ξ, α ∈ @(Ξ)} 6= ∅. So in every case, x(Ξ) is proper.

(2) According to definition 15.1.1 and 12.1.2 we have

~x(Ξ) = ~[domα(Ξ)|α ∈ @(Ξ)]

= ~

(
[ξj |j ∈ J]

J ⊆ @(Ξ) and

ξj ∈ domj(Ξ) for all j ∈ J

)
So let υ = [υj |j ∈ J]. @(Ξ) =

S
{dom(ξ) | ξ ∈ ξ} implies

J ⊆ @(Ξ). And for each j ∈ J, domj(Ξ) = {ξ(j) | ξ ∈
Ξ, j ∈ dom(ξ)} implies υj ∈ domj(Ξ). Thus υ ∈ ~x(Ξ).

(3) Let X = [Xi|i ∈ I] be the given schema.

(a) For the schema of its star product holds:
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~X =

(
[ξj |j ∈ J]

J ⊆ I, ξj ∈ Xj for all j ∈ J

)
@(~X) =

S
{J | J ⊆ I} = I

domi(~X) = {ξi | ξ ∈ ~X, i ∈ dom(ξ)}

= Xi for each i ∈ I

x(~X) = [Xi|i ∈ I] = X

(b) For the schema of the coproduct holds:

⊕X =

( ˆ
i 7→ ξ

˜
i ∈ I, ξ ∈ Xi

)
@(⊕X) =

S
{{i} | i ∈ I} = I

domi(⊕X) = {ξ |
ˆ
i 7→ ξ

˜
∈ ⊕X}

= Xi for each i ∈ I

x(⊕X) = [Xi|i ∈ I] = X

(c) And if X is proper, then

⊗X = {[ξi|i ∈ I] | ξi ∈ Xi for all i ∈ I}

6= ∅ (see 12.1.12)

@(⊗X) =
S
{dom(ξ) | ξ ∈ ⊗X}

= I (because ⊗X 6= ∅)

domi(⊗X) = {ξi | ξ ∈ ⊗X}

= Xi for each i ∈ I

x(⊗X) = [Xi|i ∈ I] = X

(4) Let X = [Xi|i ∈ I] be the given schema and x(Ξ) =
[Yj |j ∈ J] = Y the schema of the given record class Ξ.
We need to show that

Ξ ⊆ ~X iff Y ⊆ pr (X, I ∩ J)

We proof this equivalence in both directions:

(a) Suppose, Ξ ⊆ ~X. That means, that for every ξ ∈ Ξ,
dom(ξ) ⊆ J and ξ(j) ∈ Ξj for all j ∈ dom(ξ). J :=S
{dom(ξ) | ξ ∈ Ξ} implies J ⊆ I and Yj := {ξ(j) |

ξ ∈ Ξ, j ∈ dom(ξ)} implies Yj ⊆ Xj , for all j ∈ J. So
Y ⊆ pr (X, I ∩ J).

(b) On the other hand, suppose Y ⊆ pr (X, I ∩ J). Then
J = I ∩ J, i.e. J ⊆ I. ξ ∈ Ξ implies dom(ξ) ⊆ J ⊆ I and
j ∈ J implies ξ(j) ⊆ Yj ⊆ Xj . Thus Ξ ⊆ ~X.

15.2 Graphs

15.2.1 Definition

A record class Ξ is also called a graph. More specifically,
we call Ξ a

(1) star graph, Kleene graph, general graph or
quasi–relation graph, if Ξ ⊆ ~X for some schema
X

(2) cartesian graph, expanded graph or relation graph, if
Ξ ⊆ ⊗X for some schema X

(3) cograph or singular graph, if Ξ ⊆ ⊕X for some schema
X

15.2.2 Example

Let us take the record class Ξ from example 15.1.2 again

Ξ =

8><>:〈〉,
"
a 7→ 5

b 7→ 3

#
,
h
a 7→ 4

i
,

264 a 7→ 5

b 7→ 7

d 7→ 1

375 ," a 7→ 2

d 7→ 2

#9>=>;
(1) Ξ certainly is a star graph, because with 15.1.4(2)we can

derive

Ξ ⊆ ~x(Ξ) = ~

264 a 7→ {2, 4, 5}b 7→ {3, 7}
d 7→ {1, 2}

375
(2) Ξ is certainly not a cartesian graph. The members of Ξ

have different domains: ∅, {a, b}, {a}, {a, b, d}, {a, d}. But
for every cartesian product, they would have to be identical.

(3) Ξ is coproduct neither. Therefore, every of its members
would have to be a singular record, i.e. with exactly one
index. But one [a 7→ 4] is actually singular, the others are
not.

15.2.3 Lemma

Every record class Ξ is

(1) a star graph

(2) a cartesian graph iff Ξ ⊆ ⊗x(Ξ)

(3) a cartesian graph iff dom(ξ) = dom(υ) for all ξ, υ ∈ Ξ

(4) a cograph iff Ξ ⊆ ⊕x(Ξ)

(5) a cograph iff card(dom(ξ)) = 1 for all ξ ∈ Ξ

15.2.4 Proof of 15.2.3

(1) Each record class Ξ has a schema X such that Ξ ⊆ ~X,
namely X := x(Ξ). Ξ ⊆ ~x(Ξ) holds, according to
15.1.4(2).

(2) In case Ξ = ∅, Ξ is a cartesian graph and Ξ ⊆ {〈〉} =
⊗(〈〉) = ⊗x(Ξ).
Otherwise, Ξ 6= ∅, and then

Ξ is a cartesian graph

iff Ξ ⊆ ⊗X for some schema X

iff Ξ ⊆ {[xi|i ∈ I] | xi ∈ Xi for all i ∈ I}

for some schema X = [Xi|i ∈ I]

iff Ξ ⊆ {[xi|i ∈ @(Ξ)] | xi ∈ Xi for all i ∈ @(Ξ)}

for some schema X = [Xi|i ∈ @(Ξ)]

iff Ξ ⊆ ⊗x(Ξ) ⊆ ⊗X

for some schema X = [Xi|i ∈ @(Ξ)]

iff Ξ ⊆ ⊗x(Ξ)

So in every case, Ξ is a cartesian graph iff Ξ ⊆ ⊗x(Ξ).

(3) If Ξ is a cartesian graph, then dom(ξ) = dom(υ) = @(Ξ),
for all ξ, υ ∈ Ξ (regardless, if Ξ is empty or not). On the
other hand, if dom(ξ) = dom(υ) for all ξ, υ ∈ Ξ, then
ξ ∈ ⊗x(Ξ) for all ξ ∈ Ξ, and Ξ is a cartesian graph accord-
ing to (2).

(4) For every record class Ξ holds
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Ξ is a cograph

iff Ξ ⊆ ⊕X for some schema X

iff Ξ ⊆ {
ˆ
i 7→ xi

˜
| i ∈ I, xi ∈ Xi}

for some schema X = [Xi|i ∈ I]

iff Ξ ⊆ {
ˆ
i 7→ xi

˜
| i ∈ @(Ξ), xi ∈ domi(Ξ)}

iff Ξ ⊆ ⊕x(Ξ)

(5) If Ξ is a cograph, then every member has the formˆ
i 7→ xi

˜
, i.e. card(dom(ξ)) = 1. On the other hand,

if card(dom(ξ)) = 1 is the case, then ξ ∈ ⊕x(Ξ), i.e.
Ξ ⊆ ⊗x(Ξ), so that Ξ is a cograph according to (4).
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16 Partitions and distinct products

16.0.5 Repetition

(1) Recall (10.3.2 and 10.3.4), that we call two records ξ =

[ξi|i ∈ I] and υ = [υj |j ∈ J] distinct, written ξ G υ , iff

I ∩ J = ∅. In case they are distinct, their distinct join

ξ ∨̇ υ :=

"
k 7→

(
ξk if k ∈ I
υk if k ∈ J

k ∈ I ∪ J
#

is well–defined (according to 10.4.1). And more general,
a class Ξ of records is (pairwise) distinct, if ξ G υ for all

ξ, υ ∈ Ξ with ξ 6= υ. And in that case, its distinct joinẆ
Ξ is well–defined

(2) Recall 9.1.1, that a “record–record” is a record

ρ = [ρk|k ∈ K] = [[ρk,l|l ∈ Lk]|k ∈ K]

where every ρk = [ρk,l|l ∈ Lk] is a record itself.

So a special record–record is a schema record

σ = [σk|k ∈ K] = [[σk,l|l ∈ Lk]|k ∈ K]

where each σk = [σk,l|l ∈ Lk] is a schema.

(3) Recall 15.2.1, that a record class Ξ is also called a graph.

16.1 Class partition (record)

16.1.1 Definition

A class partition (record) is a schema P = [Pk|k ∈ K],

such that
Pi ∩ Pj = ∅ for all i, j ∈ K with i 6= j

P is also called a class partition of C, where C is the class
defined by

C :=
S
{Pk | k ∈ K}

Furthermore, P is called a proper class partition, if P is a
proper schema.

16.1.2 Remark and example class partitions

Let C = {1, 2, 3, 4, 5, 6}. Usually in mathematics, a partition
of C is a distribution of C’s members into mutually disjunct
subclasses, e.g. {{1, 3} , {2, 4, 5} , {6}}. We use the same idea
here, except that each subclass in a partition is indexed, i.e. a
class partition (record) of C is a schema, say

P =

264 a 7→ {1, 3}b 7→ {2, 4, 5}
c 7→ {6}

375
or with an alternative index class

P ′ =

264 1 7→ {1, 3}
2 7→ {2, 4, 5}
3 7→ {6}

375 = 〈{1, 3} , {2, 4, 5} , {6}〉

P and P ′ are (class) partitions of C. And they are proper be-

cause they are proper schemas. Two examples of non–proper
partitions of C are

P ′′ =

26664
a 7→ {1, 3}
b 7→ {2, 4, 5}
c 7→ {6}
d 7→ ∅

37775
and

P ′′′ = 〈{1, 3} , ∅, {2, 4, 5} , ∅, {6}〉

16.1.3 Lemma inclusion criterion

For every schema P = [Pk|k ∈ K] the following statements
are equivalent:

(1) P is a class partition.

(2) There is a class partition P ′ = [P ′k|k ∈ K] with
P ⊆ P ′.

16.1.4 Proof of 16.1.3

(1) implies (2): Suppose, P is a class partition. There is
P ⊆ P .
(2) implies (1): Suppose P ′ = [P ′k|k ∈ K] is a class partition
with P ⊆ P ′. P ′ being a class partition means P ′i ∩ P

′
j = ∅

for all i, j ∈ K with i 6= j. P ⊆ P ′ means Pk ⊆ P ′k for all
k ∈ K. So Pi ∩ Pj = ∅ for all i, j ∈ K with i 6= j, P is a class
partition as well.

16.2 Record and schema partition

16.2.1 Definition

If ρ = [ρk|k ∈ K] is a record–record, then

doms(ρ) := [dom(ρk)|k ∈ K]

is the domain schema or index schema of ρ.

16.2.2 Example

(1) A record–record ρ and its domain schema are given by

ρ =

26666664
a 7→

"
d 7→ w

e 7→ x

#
b 7→ 〈〉

c 7→
"
f 7→ y

g 7→ z

#
37777775 doms(ρ) =

264 a 7→ {d, e}b 7→ ∅
c 7→ {f, g}

375
(2) A tuple of tuples is a special case of a record–record:

ρ′ = 〈〈1, 2, 3〉, 〈2, 3, 4〉, 〈〉, 〈〉, 〈3, 4, 5〉〉

doms(ρ′) = 〈{1, 2, 3} , {1, 2, 3} , ∅, ∅, {1, 2, 3}〉
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16.2.3 Definition

A record partition is a record–record π = [πk|k ∈ K], such
that

πi G πj for all i, j ∈ K with i 6= j

In that case, it is also called a (record) partition of ξ,

where ξ is the record, well–defined by

ξ :=
Ẇ
{πk | k ∈ K}

Furthermore, π is called a proper record partition, if

πk 6= 〈〉 for every k ∈ K
A (record) partition π = [πk|k ∈ K] of a schema X is also
called a schema partition of X.

16.2.4 Lemma

For every record–record ρ = [ρk|k ∈ K] holds

(1) ρ is a record partition iff doms(ρ) is a class partition

(2) ρ is a proper record partition iff doms(ρ) is a proper
class partition

16.2.5 Proof of 16.2.4

Let ρ = [ρk|k ∈ K] = [[ρk,l|l ∈ Lk]|k ∈ K] be the given
record–record. Then doms(ρ) = [Lk|k ∈ K] and we obtain:

(1) ρ is a record partition iff (ρi G ρj for all i, j ∈ K with
i 6= j) iff (Li ∩ Lj = ∅ for all i, j ∈ K with i 6= j) iff
doms(ρ) is a class partition.

(2) ρ is proper iff ρk 6= 〈〉 for all k ∈ K iff Lk 6= ∅ for all k ∈ K
iff doms(ρ) is proper.

16.2.6 Remark and example record partitions

Let ξ be a record, given by

ξ =

2666664
a 7→ ξa
b 7→ ξb
c 7→ ξc
d 7→ ξd
e 7→ ξe

3777775
We cut up ξ into pairwise distinct records, say"

a 7→ ξa
c 7→ ξc

# h
b 7→ ξb

i "
d 7→ ξd
e 7→ ξe

#

We index these records, i.e. we define a record–record such as

π =

26666664
p 7→

"
a 7→ ξa
c 7→ ξc

#
q 7→

h
b 7→ ξb

i
r 7→

"
d 7→ ξd
e 7→ ξe

#
37777775

which is then a record partition of ξ.

Lemma 16.2.4 is easily confirmed:

P := doms(π) =

264 p 7→ {a, c}q 7→ {b}
r 7→ {d, e}

375
is a class partition, namely a class partition of

dom(ξ) = {a, b, c, d, e}

No value of π is 〈〉, P is not a proper schema, so π is a proper
record partition of ξ.

Examples of non–proper record partitions of ξ are given by

π′ =

26666666664

p 7→
"
a 7→ ξa
c 7→ ξc

#
q 7→

h
b 7→ ξb

i
r 7→

"
d 7→ ξd
e 7→ ξe

#
s 7→ 〈〉

37777777775
and

π′′ =

*"
a 7→ ξa
c 7→ ξc

#
, 〈〉,

h
b 7→ ξb

i
, 〈〉,

"
d 7→ ξd
e 7→ ξe

#+

Their domain schemas

P ′ := [dom(π′k)|k ∈ dom(π′)] =

26664
p 7→ {a, c}
q 7→ {b}
r 7→ {d, e}
s 7→ ∅

37775
P ′′ := [dom(π′′k )|k ∈ dom(π′′)]

=

2666664
1 7→ {a, c}
2 7→ ∅
3 7→ {b}
4 7→ ∅
5 7→ {d, e}

3777775 = 〈{a, c} , ∅, {b} , ∅, {d, e}〉

are class partitions of dom(ξ), but not proper.

16.2.7 Remark

So if ξ = [ξi|i ∈ I] is a record and ρ = [[ρk,l|l ∈ Lk]|k ∈ K] is
a record–record, the following statements are obviously equiv-
alent:
(1) ρ is a record partition of ξ

(2) doms(ρ) = [Lk|k ∈ K] is a class partition (record) of I
and ρk,l = ξl for all k ∈ K and l ∈ Lk.

16.2.8 Lemma inclusion criterion

For every schema record σ = [σk|k ∈ K] the following
statements are equivalent:

(1) σ is a schema partition

(2) There is a schema partition σ′ = [σ′k|k ∈ K] with
σ ⊆ σ′.

16.2.9 Proof of 16.2.8

(1) implies (2): If σ is a schema partition, then σ′ = [σ′k|k ∈
K] := σ obviously satisfies σk ⊆ σ′k for all k ∈ K.
(2) implies (1): Suppose σ′ = [σ′k|k ∈ K] is a schema parti-
tion with σk ⊆ σ′k for all k ∈ K. σ′ being a schema partition
means that dom(σ′i)∩dom(σ′j) = ∅ for all i, j ∈ K with i 6= j.

σk ⊆ σ′k presupposes dom(σk) = dom(σ′k) (definition 14.1.1
of the schema inclusion ⊆). So dom(σi) ∩ dom(σj) = ∅ for
all i, j ∈ K with i 6= j. σ is a schema partition.
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16.2.10 Lemma

(1) If ξ = [ξi|i ∈ I] is a record and [Pk|k ∈ K] a class
partition of I, then

ξ =
Ẇ
k∈K

pr (ξ, Pk)

(2) If ξ = [ξi|i ∈ I] is a record, J ⊆ I, and [Pk|k ∈ K] is
a class partition of J, then

pr (ξ, J) =
Ẇ
k∈K

pr (ξ, Pk)

(3) Let π = [πk|k ∈ K] be a record partition and P =
[Pk|k ∈ K] a schema with Pk ⊆ dom(πk) for each
k ∈ K. Then

pr

 Ẇ
k∈K

πk,
S
k∈K

Pk

!
=

Ẇ
k∈K

pr (πk, Pk)

16.2.11 Proof of 16.2.10

(1) ξ = [ξi|i ∈
S
k∈K

Pk] =
Ẇ
k∈K

[ξi|i ∈ Pk] =
Ẇ
k∈K

pr (ξ, Pk)

(2) We have

pr (ξ, J)

= pr

 
ξ,
S
k∈K

Pk

!
= [ξi|i ∈

S
k∈K

Pk]

=
Ẇ
k∈K

[ξi|i ∈ Pk] due to (1)

(3) π is a record partition, so the dom(πk) are pairwise dis-
junct. With Pk ⊆ dom(πk), the Pk are pairwise disjunct as
well and [Pk|k ∈ K] is a class partition. We can apply (2)

and obtain

pr

 Ẇ
k∈K

πk,
S
k∈K

Pk

!
=

Ẇ
k∈K

pr

 Ẇ
k∈K

πk, Pk

!
=

Ẇ
k∈K

pr (πk, Pk)

16.3 Relative distinctness

16.3.1 Definition

Two graphs (i.e. record classes) Γ and ∆ are called

relatively distinct, written Γ G ∆ , if ξ G υ for all ξ ∈ Γ

and υ ∈ ∆.
A graph record [Γk|k ∈ K] is called

♣ relatively distinct, if Γi G Γj for all i, j ∈ K with i 6= j.

♣ proper, if Γk 6= ∅ for all k ∈ K
Graphs Γ1, . . . ,Γn are called relatively distinct, written

Γ1 G . . . G Γn , if 〈Γ1, . . . ,Γn〉 is relatively distinct.

16.3.2 Example

Let

Γ =

(
〈〉,
h
a 7→ 1

i
,

"
a 7→ 2

b 7→ 3

#)
∆ = ∅

Σ =

(
〈〉,
"
c 7→ 4

d 7→ 3

#)

then Γ G ∆, Γ G Σ, and ∆ G Σ. In other words, Γ G ∆ G Σ.

Recall, that this is the relative distinctness. For the (pair-
wise) distinctness (see definition 10.3.4) of each of the three
graphs holds: ∆ and Σ are (pairwise) distinct each. But Γ is
not, because

h
a 7→ 1

i
6G
"
a 7→ 2

b 7→ 3

#

However, Γ G ∆ G Σ is saying that a graph record with these
three graphs as values, say 〈Γ,∆,Σ〉, is a relatively distinct
graph record. If we generate

〈@(Γ),@(∆),@(Σ)〉 = 〈{a, b} , ∅, {c, d}〉

we see that this is a class partition. In fact, it is a class
partition exactly because the graph record 〈Γ,∆,Σ〉 is rela-
tively distinct. This gives us an alternative criterion of relative
distinctness. Yet another equivalent criterion comes with the
schema record

〈x(Γ),x(∆),x(Σ)〉

=

*"
a 7→ {1, 2}
b 7→ {3}

#
, 〈〉,

"
c 7→ {4}
d 7→ {3}

#+

This schema record is a schema partition.

16.3.3 Lemma

If Γ = [Γk|k ∈ K] is a relatively distinct graph record,
then every member of Incl(Γ), i.e. every graph record
Γ′ = [Γ′k|k ∈ K] with Γ′ ⊆ Γ, is relatively distinct as
well.

16.3.4 Proof of 16.3.3

This is quite obvious. If Γ′ ⊆ Γ, then Γ′k ⊆ Γk for all k ∈ K.
So the fact that Γi G Γj holds for all i, j ∈ K, i 6= j, immedi-
ately implies Γ′i G Γ′j .

16.3.5 Lemma

Let Γ = [Γk|k ∈ K] be a graph record. Then the following
statements are equivalent:

(1) Γ is relatively distinct.

(2) [@(Γk)|k ∈ K] is a class partition.

(3) There is a class partition [Pk|k ∈ K] such that
[@(Γk)|k ∈ K] ⊆ [Pk|k ∈ K].

(4) [x(Γk)|k ∈ K] is a schema partition.

(5) There is a schema partition [σk|k ∈ K] with x(Γk) ⊆
σk for every k ∈ K.

(6) There is a schema partition [σk|k ∈ K] with Γ ⊆
[~σk|k ∈ K].

16.3.6 Proof of 16.3.5

Let Γ = [Γk|k ∈ K] be the given graph record.
(1)⇔ (2) We have
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Γ is relatively distinct

iff ξ G υ for all i, j ∈ K, i 6= j and all ξ ∈ Γi and υ ∈ Γj

iff dom(ξ) ∩ dom(υ) = ∅

for all i, j ∈ K, i 6= j and all ξ ∈ Γi and υ ∈ Γj

iff
S
{dom(ξ) | ξ ∈ Γi} ∩

S
{dom(υ) | υ ∈ Γu} = ∅

for all i, j ∈ K, i 6= j

iff @(Γi) ∩@(Γj) = ∅ for all i, j ∈ K, i 6= j

iff [@(Γk)|k ∈ K] is a class partition

(2)⇔(3) see lemma 16.1.3.

(2)⇔(4) [@(Γk)|k ∈ K] = doms([x(Γk)|k ∈ K] so accord-
ing to 16.2.4, [x(Γk)|k ∈ K] is a record/schema partition iff
[@(Γk)|k ∈ K] is a class partition.

(4)⇔(5) see lemma 16.2.8.

(1)⇔(6) If Γ is relatively distinct, then [x(Γk)|k ∈ K] is a
schema partition according to (4) and Γk ⊆ ~x(Γk) accord-
ing to 15.1.4(2) for each k ∈ K.
On the other hand, if there is a schema partition [σk|k ∈ K]
with Γ ⊆ [~σk|k ∈ K], then all k, l ∈ K with k 6= l satisfy
dom(σk) ∩ dom(σl) = ∅ and thus @(Γk) ∩ @(Γl) = ∅. In
other words, Γk G Γl and Γ is relatively distinct.

16.3.7 Lemma

If [σk|k ∈ K] is a schema partition, then each of the fol-
lowing three graph records

[~σk|k ∈ K] [⊗σk|k ∈ K] [⊕σk|k ∈ K]
is relatively distinct.

16.3.8 Proof of 16.3.7

Let i, j ∈ K with i 6= j and let ξi ∈ ~σi and ξj ∈ ~σj . Then
dom(ξi) ⊆ dom(σi) and dom(ξj) ⊆ dom(σj). [σk|k ∈ K]
is a schema partition, so dom(σi) ∩ dom(σj) = ∅. Therefore
dom(ξi) ∩ dom(ξj) = ∅, i.e. ~σi G ~σj , i.e. [~σk|k ∈ K] is
relatively distinct.
For every k ∈ K, ⊗σk ⊆ ~σk and ⊕σk ⊆ ~σk, so [⊗σk|k ∈
K] ⊆ [~σk|k ∈ K] and [⊕σk|k ∈ K] ⊆ [~σk|k ∈ K]. With
16.3.3 we infer that both graph records are relatively distinct,
too.

16.4 Distinct products

16.4.1 Definition

If Γ = [Γk|k ∈ K] is a relatively distinct graph record,
then

�Γ := �
k∈K

Γ := {
Ẇ
ρ | ρ ∈ ⊗Γ}

is the distinct product of Γ

And for graphs Γ1, . . . ,Γn with Γ1 G . . . G Γn we define

Γ1 � . . .� Γn :=
n
�
i=1

Γi := �〈Γ1, . . . ,Γn〉

the distinct product of Γ1, . . . ,Γn

16.4.2 Remark

(1) Note, that the �Γ is well–defined, because the relative dis-

tinctness of Γ guarantees that
Ẇ
ρ exists for each ρ = [ρk|k ∈

K] ∈ ⊗Γ.

(2) For graphs Γ1, . . . ,Γn with Γ1 G . . . G Γn we obtain

Γ1 � . . .� Γn =

8>>><>>>:
{〈〉} if n = 0

Γ1 if n = 1(
ρ1 ∨̇ . . . ∨̇ ρn
ρ1 ∈ Γ1, . . . , ρn ∈ Γn

)
else

(3) An immediate consequence of its definition are the asso-
ciativity and commutativity (see lemma 16.4.3 below). We
may place parentheses arbitrarily:

Γ1 � Γ2 � Γ3 = (Γ1 � Γ2)� Γ3 = Γ1 � (Γ2 � Γ3)

where each of the three terms is well–defined iff the other
two are.

16.4.3 Lemma

If Γ,∆,Σ are pairwise distinct record classes, i.e. Γ G ∆ G
Σ, then

(1) (Γ�∆)� Σ = Γ� (∆� Σ) (associativity of �)

(2) Γ�∆ = ∆� Γ (commutativity of �)

(3) Γ� ∅ = ∅ (� with empty class)

(4) Γ� {〈〉} = Γ (� with empty product)

16.4.4 Proof of 16.4.3

(1) For all ξ ∈ Γ, υ ∈ ∆, ζ ∈ Σ holds ξ ∨̇ υ ∨̇ ζ = (ξ ∨̇ υ) ∨̇ ζ =
ξ ∨̇ (υ ∨̇ ζ), so Γ�∆� Σ = (Γ�∆)� Σ = Γ� (∆� Σ).

(2) Γ�∆ = {ξ ∨̇ υ | ξ ∈ Γ, υ ∈ ∆} = {υ ∨̇ ξ | υ ∈ ∆, ξ ∈ Γ} =
∆� Γ.

(3) Γ� ∅ = {ξ ∨̇ υ | ξ ∈ ξ, υ ∈ ∅} = ∅
(4) Γ�∆ = {ξ ∨̇ υ | ξ ∈ Γ, υ ∈ {〈〉}} = {ξ ∨̇ 〈〉 | ξ ∈ Γ} = Γ.

16.4.5 Example

Take the graphs Γ,∆,Σ from 16.3.2 again. Due to their rela-
tive distinctness, the following two examples of distinct prod-
ucts are well defined:

Γ� Σ =

8>>>>>>><>>>>>>>:

〈〉,
h
a 7→ 1

i
,

"
a 7→ 2

b 7→ 3

#
,

"
c 7→ 4

d 7→ 3

#
,

264 a 7→ 1

c 7→ 4

d 7→ 3

375 ,
26664
a 7→ 2

b 7→ 3

c 7→ 4

d 7→ 3

37775

9>>>>>>>=>>>>>>>;
Γ�∆� Σ = {γ ∨̇ δ ∨̇ σ | γ ∈ Γ, δ ∈ ∅, σ ∈ Σ} = ∅

16.4.6 Remark

Consider the cardinalities of the graphs and their products in
the previous example 16.4.5:

card(Γ� Σ) = 6 = 3 · 2 = card(Γ) · card(Σ)

card(Γ�∆� Σ) = 0 = 3 · 0 · 2 = card(Γ) · card(∆) · card(Σ)

This behavior is typical for distinct products (hence one moti-
vation for the term “product”) as we will point out in lemma
16.4.10 below. Obviously, the distinct product Γ�∆� Σ has
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the same cardinality than the cartesian product Γ × ∆ × Σ.
There is even a bijection between the cartesian and the dis-
tinct product and this correspondence allows us to uniquely
reconstruct the arguments from the result.

16.4.7 Lemma

Let Γ = [Γk|k ∈ K] be relatively distinct graph record,
then

πΓ :=

264 ⊗Γ −→ �Γ

ρ 7→
Ẇ
ρ

375
πΓ is a bijection with the inverse

π−1
Γ =

264 �Γ −→ ⊗Γ

ξ 7→
ˆ

pr (ξ,dom(ξ) ∩@(Γk)) k ∈ K
˜
375

Furthermore, if P = [Pk|k ∈ K] a class partition with
[@(Γk)|k ∈ K] ⊆ P , then

π
−1
Γ =

264 �Γ −→ ⊗Γ

ξ 7→
ˆ

pr (ξ,dom(ξ) ∩ Pk) k ∈ K
˜
375

16.4.8 Proof of 16.4.7

First of all, let us mention that �Γ and the function πΓ are
well defined because Γ is relatively distinct.
πΓ is ought to be a bijection, i.e. it must surjective and in-
jective. The surjectivity is a trivial truth, �Γ is in 16.4.1 just
defined to be the image class {πγ(ρ) | ρ ∈ ⊗Γ} of πΓ. It re-
mains to show that πΓ is injective as well.
Let ρ = [ρk|k ∈ K] and ρ′ = [ρ′k|k ∈ K] be any two members
of ⊗Γ, i.e. ρk ∈ Γk and ρ′k ∈ Γk for all k ∈ K. We put

ξ := πΓ(ρ) =
Ẇ
{ρk | k ∈ K} and ξ′ := πΓ(ρ′). Suppose,

ρ 6= ρ′. This means, there has to be a k ∈ K with ρk 6= ρ′k.
These ρk and ρ′k are records and not being equal means ei-
ther (a) dom(ρk) 6= dom(ρ′k) or (b)dom(ρi) = dom(ρ′k) and
ρk(i) 6= ρ′k(i) for some i ∈ dom(ρk). If (a) is the case,
dom(ρk) 6= dom(ρ′k) implies dom(ξ) =

S
{dom(ρk) | k ∈

K} 6=
S
{dom(ρ′k) | k ∈ K} = dom(ξ′), thus ξ 6= ξ′. If (b) is

the case, then ξ(i) 6= ξ′(i) for some i ∈ dom(ρk), thus again
ξ 6= ξ′. So πΓ is indeed injective.

Since πΓ is a bijection, it has an inverse π−1
Γ , i.e. π−1

Γ : �Γ −→
⊗Γ with π−1

Γ (πΓ(ρ)) = ρ for all ρ ∈ ⊗Γ. We gave a charac-

terization of π−1
Γ in our lemma above and we now need to

ensure that this characterization is correct. So let ρ = [ρk|k ∈
K] = [[ρk,l|l ∈ Lk]|k ∈ K] ∈ ⊗Γ and ξ := πΓ(ρ). Note, that
dom(ξ) =

S
{Lk | k ∈ K} and dom(ξ) ∩ @(Γk) = Lk for

every k ∈ K. So applying our definition of π−1
Γ on ξ we obtain

π−1
Γ (ξ) := [pr (ξ,dom(ξ) ∩@(Γk)) |k ∈ K] = [pr (ξ, Lk) |k ∈
K] = [ρk|k ∈ K] = ρ. Our characterization of π−1

Γ is indeed
correct.

Finally, let us assume that P = [Pk|k ∈ K] is a class parti-
tion with [@(Γk)|k ∈ K] ⊆ P . Again let ρ = [ρk|k ∈ K] =
[[ρk,l|l ∈ Lk]|k ∈ K] ∈ ⊗Γ and ξ := πΓ(ρ). Note, that for
all k1, k2 ∈ K, k1 = k2 implies Γk1 ⊆ Pk2 and k1 6= k2
implies Γk1 ∩ Pk2 = ∅. That leads to dom(ξ) ∩ Pk = Lk
for each k ∈ K. So applying the second characterization of
π−1
Γ on ξ we obtain π−1

Γ (ξ) := [pr (ξ,dom(ξ) ∩ Pk) |k ∈ K] =
[pr (ξ, Lk) |k ∈ K] = [ρk|k ∈ K] = ρ.

16.4.9 Example

Consider the graphs

Γ =

(
〈〉,
h
a 7→ 1

i
,

"
a 7→ 2

b 7→ 3

#)
∆ = ∅

Σ =

(
〈〉,
"
c 7→ 4

d 7→ 3

#)

again with Γ G ∆ G Σ. So

〈Γ,Σ〉 :=

266664
1 7→

(
〈〉,
h
a 7→ 1

i
,

"
a 7→ 2

b 7→ 3

#)

2 7→
(
〈〉,
"
c 7→ 4

d 7→ 3

#)
377775

is a relatively distinct graph record and its distinct product
Γ� Σ is well–defined with the result given in 16.4.5.

The function π〈Γ,Σ〉 is a reconstruction of Γ � Σ. It is given
by

π〈Γ,Σ〉 =

2666666666666666666666666666666666666666664

Γ× Σ −→ Γ� Σ26666666666666666666666666666666666664

˙
〈〉, 〈〉

¸
7→ 〈〉*

〈〉,
"
c 7→ 4

d 7→ 3

#+
7→
"
c 7→ 4

d 7→ 3

#
Dh
a 7→ 1

i
, 〈〉
E
7→
h
a 7→ 1

i
*h

a 7→ 1
i
,

"
c 7→ 4

d 7→ 3

#+
7→

264 a 7→ 1

c 7→ 4

d 7→ 3

375
*"

a 7→ 2

b 7→ 3

#
, 〈〉
+
7→
"
a 7→ 2

b 7→ 3

#

*"
a 7→ 2

b 7→ 3

#
,

"
c 7→ 4

d 7→ 3

#+
7→

26664
a 7→ 2

b 7→ 3

c 7→ 4

d 7→ 3

37775

37777777777777777777777777777777777775

3777777777777777777777777777777777777777775
Obviously, it is a bijection, and its inverse is

π−1
〈Γ,Σ〉 =

264 Γ� Σ −→ Γ× Σ

ξ 7→
˙
pr (ξ,dom(ξ) ∩ {1}) ,pr (ξ,dom(ξ) ∩ {2})

¸
375

Another example of a relatively distinct graph record is

〈Γ,∆,Σ〉 :=

26666664
1 7→

(
〈〉,
h
a 7→ 1

i
,

"
a 7→ 2

b 7→ 3

#)
2 7→ ∅

3 7→
(
〈〉,
"
c 7→ 4

d 7→ 3

#)
37777775

But here, their cartesian as well as their distinct product is
empty, i.e. Γ×∆×Σ = Γ�∆�Σ = ∅. So π〈Γ,∆,Σ〉 : ∅ −→ ∅
is the empty function, but by definition it is a bijection which
is identical with its inverse π−1

〈Γ,∆,Σ〉 : ∅ −→ ∅.
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16.4.10 Lemma

If Γ = [Γk|k ∈ K] is a relatively distinct graph record,
then

card (�Γ) =
Q
k∈K

card(Γk)

16.4.11 Proof of 16.4.10

According to 16.4.7, there is a bijection between �Γ and
⊗Γ, so card(�Γ) = card(⊗Γ). And according to 12.1.9,
card(⊗Γ) =

Q
k∈K

card(Γk).

16.5 Projections of graphs

16.5.1 Definition

For every graph Γ and each class J we define

pr (Γ, J) := {pr (ξ,dom(ξ) ∩ J) | ξ ∈ Γ}

the projection of Γ onto J

16.5.2 Lemma

If [Γk|k ∈ K] is a relatively distinct graph record and J
any class, then

pr (�[Γk|k ∈ K], J) = �[pr (Γk,@(Γk) ∩ J) |k ∈ K]

16.5.3 Proof of 16.5.2

pr (�[Γk|k ∈ K], J)

= {pr (ξ,dom(ξ) ∩ J) | ξ ∈ �[Γk|k ∈ K]}
def. 16.5.2

=

8><>:pr

 Ẇ
k∈K

ρk,
S
k∈K

(dom(ρk) ∩ J)

!
[ρk|k ∈ K] ∈ ⊗[Γk|k ∈ K]

9>=>;
def. 16.4.1

=

 Ẇ
k∈K

pr (ρk,dom(ρk) ∩ J) [ρk|k ∈ K] ∈ ⊗[Γk|k ∈ K]
ff

due to 16.2.10(3)

=

 Ẇ
k∈K

ρ′k [ρ′k|k ∈ K] ∈ ⊗[pr (Γk,@(Γk) ∩ J) |k ∈ K]
ff

def. 16.5.2

= �[pr (Γk,@(Γk) ∩ J) |k ∈ K]
def. 16.4.1 again

16.6 Distributivity

16.6.1 Lemma distributivity

Let X be a schema and Y, Z ∈ Proj(X) with Y G Z. For
all Γ1,Γ2 ∈ P(~Y ), every {Γi | i ∈ I} ⊆ P(~Y ) and each
Σ ∈ P(~Z) holds:

(1) (Γ1 ∩ Γ2)� Σ = (Γ1 � Σ) ∩ (Γ2 � Σ)

(2) (Γ1 ∪ Γ2)� Σ = (Γ1 � Σ) ∪ (Γ2 � Σ)

(3) (Γ1\Γ2)� Σ = (Γ1 � Σ)\(Γ2 � Σ)

(4)
S
{Γi | i ∈ I} � Σ =

S
{Γi � Σ | i ∈ I}

(5) If I 6= ∅ thenT
{Γi | i ∈ I} � Σ =

T
{Γi � Σ | i ∈ I}

16.6.2 Proof of 16.6.1

Recall 5.7.18, that for every function ϕ : D −→ C and each
D′ ⊆ D, the f–image class of D′ was written

ϕ[D′ ] := {ϕ(d) | d ∈ D′}

We will make use of the fact, that if ϕ : D −→ C is a bijection,
then
(a) for every {Di | i ∈ I} ⊆ P(D) with I 6= ∅ holds

ϕ[
T
{Di | i ∈ I} ] =

T
{ϕ[Di ] | i ∈ I}

(b) for every {Di | i ∈ I} ⊆ P(D) holds

ϕ[
S
{Di | i ∈ I} ] =

S
{ϕ[Di ] | i ∈ I}

(c) for all D1, D2 ∈ P(D) holds

ϕ[D1 \D2 ] = ϕ[D1 ] \ ϕ[D2 ]

Furthermore, we will use the facts (which are special cases of
12.4.3) that

(d) for every schema [Cj |j ∈ J], J 6= ∅, and each class D,T
{Cj | j ∈ J} ×D =

T
{Cj ×D | j ∈ J}

(e) for every schema [Cj |j ∈ J] and each class D,S
{Cj | j ∈ J} ×D =

S
{Cj ×D | j ∈ J}

(f) for all classes C1, C2 and D holds

(C1 \ C2)×D = (C1 ×D) \ (C2 ×D)

If Γ ∈ P(~Y ) and Σ ∈ P(~Z), then Y G Z implies ~Y G ~Z
and Γ G Σ, so that ~Y �~Z and Γ�Σ are well–defined. Using
the image class notation and the definition of the bijection in
16.4.7, we have

(g) Γ� Σ = π〈~Y,~Z〉[ Γ× Σ ]

We can now put everything together:

(4) For every {Γi | i ∈ I} ⊆ P(~Y ) and Σ ∈ P(~Z) holdsS
{Γi | i ∈ I} � Γ

= π〈~Y,~Z〉[
S
{Γi | i ∈ I} × Σ ] due to (g)

= π〈~Y,~Z〉[
S
{Γi × Σ | i ∈ I} ] due to (e)

=
S˘

π〈~Y,~Z〉[ Γi � Σ ] i ∈ I
¯

due to (b)

=
S
{Γi � Σ | i ∈ I} due to (g)

(5) If additionally I 6= ∅, thenT
{Γi | i ∈ I} � Γ

= π〈~Y,~Z〉[
T
{Γi | i ∈ I} × Σ ] due to (g)

= π〈~Y,~Z〉[
T
{Γi × Σ | i ∈ I} ] due to (d)

=
T˘

π〈~Y,~Z〉[ Γi � Σ ] i ∈ I
¯

due to (a)

=
T
{Γi � Σ | i ∈ I} due to (g)

(1) For every Γ1,Γ2 ∈ P(~Y ) and Σ ∈ P(~Z), (1) is just two
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special cases of (5) with I = {1, 2}
(2) Similar to (1), (2) is a special case of (4).

(3) There is

(Γ1 \ Γ2)� Σ

= π〈~Y,~Z〉[ (Γ1 \ Γ2)× Σ ] due to (g)

= π〈~Y,~Z〉[ (Γ1 × Σ) \ (Γ2 × Σ) ] due to (f)

= π〈~Y,~Z〉[ Γ1 \ Σ ] \ π〈~Y,~Z〉[ Γ2 \ Σ ] due to (c)

= (Γ1 � Σ) \ (Γ2 � Σ) due to (g)

16.6.3 Remark more general products

The distinct product is only partially defined, it is restricted
to relatively distinct graphs. It is not difficult to find more
general definitions of “graph products” (see the ./ operator
below). But the constraint pays off: the distributivity with
the class operations (given in 16.6.1) holds for the distinct
product, but is violated for generalizations like the following
./.

Suppose, we define for any two (not necessarily relatively dis-
tinct) record classes Γ and Σ a more general product ./ by
putting31

Γ ./ Σ := {ξ ∨ υ | ξ ∈ Γ, υ ∈ Σ, ξ ^ υ}

Obviously, if Γ G Σ, then Γ ./ Σ = Γ � Σ and ./ is a general-
ization of �.

But a distributivity statement like

(Γ1 ∩ Γ2) ./ Σ = (Γ1 ./ Σ) ∩ (Γ2 ./ Σ)

is not true in general. For example, let

Γ1 =
˘ˆ
a 7→ 1

˜¯
Γ2 =

˘ˆ
b 7→ 2

˜¯
Σ =

˘ˆ
a 7→ 1

˜
,
ˆ
b 7→ 2

˜¯
then

(Γ1 ∩ Γ2) ./ Σ

= ∅ ./ Σ

= ∅

6=
("

a 7→ 1

b 7→ 2

#)

=

(ˆ
a 7→ 1

˜
,

"
a 7→ 1

b 7→ 2

#)
∩
(ˆ

b 7→ 2
˜
,

"
a 7→ 1

b 7→ 2

#)
= (Γ1 ./ Σ) ∩ (Γ2 ./ Σ)

16.6.4 Remark

There is another form of distributivity in connection with
distinct products. Suppose, X1, . . . , Xn are schemas with
X1 G . . . G Xn. In other words, they make are a schema
partition of X = X1 ∨̇ . . . ∨̇ Xn. Then it doesn’t matter
if we either first generate their cartesian products ⊗Xi and
then the distinct product of these cartesian graphs, or if we
first join these (pairwise) distinct schemas and then generate
their cartesian product. Put formally, (⊗X1)� . . .� (⊗Xn) =
⊗(X1 ∨̇ . . . ∨̇ Xn) = ⊗X. A similar statement holds for the

star product ~X.

16.6.5 Lemma

If [σk|k ∈ K] is a schema partition of a schema X, then

(1) ~X = �[~σk|k ∈ K]

(2) ⊗X = �[⊗σk|k ∈ K]

So in particular, if X1, . . . , Xn are (two or more) schemas
with X1 G . . . G Xn, then

(3) (~X1)� . . .� (~Xn) = ~(X1 ∨̇ . . . ∨̇Xn)

(4) (⊗X1)� . . .� (⊗Xn) = ⊗(X1 ∨̇ . . . ∨̇Xn)

16.6.6 Proof of 16.6.5

Let σ = [σk|k ∈ K] = [[σk,l|l ∈ Lk]|k ∈ K] and X = [Xi|i ∈
I] be given, where σ is a schema partition of X.
(1) Since σ is a schema partition of X, there is (see 16.2.7)

σk,l = Xl for all k ∈ K and l ∈ Lk
as mentioned in 16.2.7. From 16.2.3 and 16.2.4 we know that
[Lk|k ∈ K] is a class partition of I, soS

{Lk | k ∈ K} = I

This implies the following equation

{
S
k∈K

Mk | [Mk|k ∈ K] ⊆ [Lk|k ∈ K]} = {J | J ⊆ I}

which we will use below. Now,

~σk =

(
[ρj |j ∈M ]

M ⊆ Lk,
ρj ∈ Xj for all j ∈M

)
for each k ∈ K, so that

�[~σk|k ∈ K]

= {
Ẇ
ρ | ρ ∈ ⊗[~σk|k ∈ K]}

=

8><>:Ẇ ρ ρ ∈

8><>:
[[ρj |j ∈Mk]|k ∈ K]

[Mk|k ∈ K] ⊆ [Lk|k ∈ K],

ρj ∈ Xj for all k ∈ K and j ∈Mk

9>=>;
9>=>;

=

8<: [ρj |j ∈
S
k∈K

Mk]
[Mk|k ∈ K] ⊆ [Lk|k ∈ K],

ρj ∈ Xj for all j ∈
S
k∈K

Mk

9=;
=

(
[ρj |j ∈ J]

J ⊆ I
ρj ∈ Xj for all j ∈ J

)
= ~[Xi|i ∈ I]

= ~X

(2) For every k ∈ K,

⊗σk = {[ρj |j ∈ Lk] | ρj ∈ Xj for all j ∈ Lk}
so that

�[~σk|k ∈ K]

= {
Ẇ
ρ | ρ ∈ ⊗[⊗σk|k ∈ K]}

=

( Ẇ
ρ ρ ∈

(
[[ρj |j ∈ Lk]|k ∈ K]

ρj ∈ Xj for all k ∈ K and j ∈ Lk

))

=

8<: [ρj |j ∈
S
k∈K

Lk]

ρj ∈ Xj for all k ∈ K and j ∈ Lk

9=;
= {[ρj |j ∈ I] | ρj ∈ Xj for all j ∈ I}

= ⊗X

If X1, . . . , Xn are (two or more) schemas with X1 G . . . G Xn,
then 〈X1, . . . , Xn〉 is a schema partition of X1 ∨̇ . . . ∨̇ Xn.
Thus

31 The notation ./ resembles the natural join operation ./ on relations, a common operation and notation in relational databank theory.
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(3) is just is special case of (1), and

(4) derives from (2)

16.6.7 Example

Let

X =

264 a 7→ {1, 2}b 7→ {3}
c 7→ {2, 3}

375
A schema partition of X is given by 〈X1, X2〉 with

X1 =

"
a 7→ {1, 2}
b 7→ {3}

#
and X2 =

h
c 7→ {2, 3}

i
A verification of 16.6.5(4) is then given by:

(⊗X1)� (⊗X2)

= �〈⊗X1,⊗X2〉

=
n Ẇ

ρ ρ ∈ ⊗〈⊗X1,⊗X2〉
o

=

( Ẇ
ρ ρ ∈

("
1 7→ ρ1
2 7→ ρ2

#
ρ1 ∈ ⊗X1

ρ2 ∈ ⊗X2

))

=

8>><>>:
Ẇ
ρ ρ ∈

8>><>>:
2664 1 7→

"
a 7→ ρ1,a
b 7→ ρ1,b

#
2 7→

h
c 7→ ρ2,c

i
3775 ρ1,a ∈ {1, 2}

ρ1,b ∈ {3}
ρ2,c ∈ {2, 3}

9>>=>>;
9>>=>>;

=

8><>:
264 a 7→ ρ1,a
b 7→ ρ1,b
c 7→ ρ2,c

375 ρ1,a ∈ {1, 2}
ρ1,b ∈ {3}
ρ2,c ∈ {2, 3}

9>=>;
=

8><>:
264 a 7→ ρa
b 7→ ρb
c 7→ ρc

375 ρa ∈ {1, 2}
ρb ∈ {3}
ρc ∈ {2, 3}

9>=>;
= ⊗

264 a 7→ {1, 2}b 7→ {3}
c 7→ {2, 3}

375
= ⊗

 "
a 7→ {1, 2}
b 7→ {3}

#
∨̇
h
c 7→ {2, 3}

i!
= ⊗(X1 ∨̇X2)

16.6.8 Lemma

For every schema X = [Xi|i ∈ I] holds:

(1) �[~ [i 7→ Xi] |i ∈ I] = ~X

(2) �[⊗ [i 7→ Xi] |i ∈ I] = ⊗X
(3) �[⊕ [i 7→ Xi] |i ∈ I] = ⊗X

16.6.9 Proof of 16.6.8

[[i 7→ Xi] |i ∈ I] is obviously a schema partition of X. So
(1) is just a special case of 16.6.5(1), and

(2) is a special case of 16.6.5.

(3) There is ⊕ [i 7→ Xi] = ⊗ [i 7→ Xi], for every i ∈ I, so that

�[⊕ [i 7→ Xi] |i ∈ I] = �[⊗ [i 7→ Xi] |i ∈ I] = ⊗X
according to (2).

16.6.10 Example

If we consider the schema

X =

264 a 7→ {1, 2}b 7→ {3}
c 7→ {2, 3}

375
from example 16.6.7 again and put

Xa := [a 7→ {1, 2}] Xb := [b 7→ {3}] Xc := [c 7→ {2, 3}]

we obtain a confirmation of 16.6.8 by

(~Xa)� (~Xb)� (~Xc)

=

8<: 〈〉,
[a 7→ 1] ,
[a 7→ 2]

9=;�

〈〉,

[b 7→ 3]

ff
�

8<: 〈〉,
[c 7→ 2] ,
[c 7→ 3]

9=;
= ~X

(⊗Xa)� (⊗Xb)� (⊗Xc)

=


[a 7→ 1] ,
[a 7→ 2]

ff
�
˘
[b 7→ 3]

¯
�


[c 7→ 2] ,
[c 7→ 3]

ff
= ⊗X

(⊕Xa)� (⊕Xb)� (⊕Xc)

=


[a 7→ 1] ,
[a 7→ 2]

ff
�
˘
[b 7→ 3]

¯
�


[c 7→ 2] ,
[c 7→ 3]

ff
= ⊗X
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Part VII

Relations
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17 Relations

17.1 Introduction

17.1.1 Remark a more general relation concept

We already introduced and used quite a lot ordinary (or ordi-
nal) relations, they are essential and standard in mathemat-
ics.32 In database theory there is another relation concept,
the partial table, as we call it here. We will now introduce a
more general definition of a (schematic) relation which is able
to treat both ordinary relations and partial tables as special
cases.

schematic
relation

ordinary relation
(mathematics)

partial table
(database theory)

�
��

@
@@

17.1.2 Remark representations

One main objective here in chapter VII is an understanding
of the many ways in which relations can be represented. This
whole variation may be tiresome at first, but it really pays off
for a good understanding of the many facets of these things
called relations.
♣ Our default and most general representation is conform to

the standard appearance of operations"
syntax

semantics

#
described in 4.3.1 and 5.3, which was already applied to
ordinary relations. However, even this representation has
some variations, which are supposed to be convenient, not
confusing.

♣ Every relation R can be seen as a function, the character-
istic function χR (17.4.2).

♣ A certain subclass of relations, called tables (17.5.3), can be
represented as such.

♣ And a certain class of tables, called completely finite rela-
tions, can also be displayed by either their boolean tables
(17.5.4) or their double tables (17.6.1).

♣ Allowing null values at first leads to a generalization and we
call that a quasi–relation. But we will understand null val-
ues in a way that turns quasi–relations into relations again.

There are other suggestions for representations which are very
suitable for implementations in common computer systems.
But for now and our purposes here, that will do.

17.1.3 Remark partial tables and database theory

A partial table (or Codd relation) is a table that allows possi-
ble null values, similar to a partial function that is a function
with possibly undefined arguments. Partial tables are pretty
much the kind of relations used in database theory. However,
the terminology is not standard, just “table” or “relation” is
more common. Neither is the interpretation of partial tables
and null values seem to be undisputed, not even in database
theory itself.

Our interpretation is closely related to our concept of rela-
tion expansions and that smoothly fits into an elegant algebra
that is very close to the behavior of logic. That way we are
probably more close to Codd’s original ideas than the various
implementations of the relational database language SQL.33

In 18 we introduce partial tables as a particular finite ver-
sion of quasi–relations in general. And we will see, how these
quasi–relations are well covered by our relation concept from
17 .

17.2 General definition

17.2.1 Definition relation

A relation R is essentially made of a schema X and a
graph Γ, where Γ ⊆ ⊗X. The default form for R is

R =

24 X
Γ

35 or R = [X,Γ]

17.2.2 Definition relation

If R = [X,Γ] is a relation with X = [Xi|i ∈ I] we put

@(R) := I the attribute or index class of R

x(R) := X the schema of R

gr(R) := Γ the graph of R

dom(R) := ⊗X the domain of R

domi(R) := Xi the i–domain of R, for each i ∈ I

17.2.3 Remark deconstruction

(1) In other words, if R is an arbitrary relation R then

R =

264 x(R)

gr(R)

375 =

264 [domi(R)|i ∈ @(R)]

gr(R)

375
32 At this point, it might be useful to recall the design of basic mathematical concepts in 4 and 5 , in particular the introduction of

predicators and ordinary relations in 5.7.
33 See e.g. on wikipedia.org the according articles such as “Relational algebra”.
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(2) Note, that for a given relation R = [X,Γ] withX = [Xi|i ∈
I], the domain of R and the domain ofX are different things:
dom(R) = ⊗X and dom(X) = @R = I. By a domain of an
operation we mean the class of its possible arguments. For
the schema X that is I, and for R that is the record class
⊗X.

17.2.4 Example relation

Let us consider the following schema

Date :=

26664
year 7→ Z

month 7→ {1, . . . , 12}
day 7→ {1, . . . , 31}

title 7→ {monday, . . . , sunday}

37775
and two elements of its cartesian product ⊗Date

d1 :=

26664
year 7→ 2003

month 7→ 1

day 7→ 18

title 7→ saturday

37775 d2 :=

26664
year 7→ 2003

month 7→ 1

day 7→ 19

title 7→ sunday

37775
A relation is then given by

ThisWeekend :=

264 Date

{d1, d2}

375

As we will define it properly below, a relation like this with
a finite attribute class and a finite graph is usually better be
represented by its graph table (diagram) (see below in 17.5.4),

which is

year : month : day : title :

Z {1, . . . , 12} {1, . . . , 31} {monday, . . . , sunday}
2003 1 18 saturday

2003 1 19 sunday

A decomposition of ThisWeekend returns:

@(ThisWeekend) = {year, month, day, title}

x(ThisWeekend) = Date

dom(ThisWeekend) = ⊗Date

domyear(ThisWeekend) = Z

dommonth(ThisWeekend) = {1, . . . , 12}

domday(ThisWeekend) = {1, . . . , 31}

domtitle(ThisWeekend) = {monday, . . . , sunday}

gr(ThisWeekend) = {d1, d2}

Another relation with the the same schema is the calendar of
2003, which has not only the two members d1 and d2, but 365
records in its graph.

17.2.5 Definition membership

Let R = [X,Γ] be a relation. For every x ∈ dom(R) we
write as usual:

x ∈ R iff x ∈ Γ saying that x is a member or R or
in R

x 6∈ R iff x ∈ Γ saying that x is a not a member,
i.e. x is not in R

17.2.6 Definition relation class

REL denotes the overall relation class.

For every schema X we define

Rel(X) :=

("
X

Γ

#
Γ ⊆ ⊗X

)

the relation class on X.

17.2.7 Remark relation type expression

The fact that R is a relation with the schema X is expressed
by the type expression

R : Rel(X)

(Type expressions in general were defined in 5.3.5).

For example 17.2.4 we have the type expression

ThisWeekend : Rel(Date)

17.2.8 Remark empty schema relations

〈〉 is a well defined schema, the empty schema. There are pre-
cisely two relations with this schema:

Rel(〈〉) =

("
〈〉
∅

#
,

"
〈〉
{〈〉}

#)

In 5.6.8 we suggested to write

B instead of Rel (〈〉)

and in 17.5.7 below we introduce yet another notation for its
two members.

17.2.9 Definition proper relations

A relation R = [X,Γ] is proper iff X is proper.

17.2.10 Remark proper relations

Recall 9.3.3 and 12.1.12, that for every schema X = [Xi|i ∈ I]
holds:

X is proper ⇔ Xi 6= ∅ for all i ∈ I ⇔ ⊗X 6= ∅

and thus:
(1) Rel(X) = {[X, ∅]} iff X is not proper.

(2) If X is proper, then Rel(X) has at least two elements.



Theory algebras on relations www.bucephalus.org 101

(3) No matter what the schema X looks like, Rel(X) is never
empty.

We usually assume the schemas involved to be proper and
things are mostly pretty pointless if they are not. However,
we don’t make that assumption a quiet agreement in the se-
quel and call the situation “proper” in case it is.

17.2.11 Definition

Let R = [[Xi|i ∈ I],Γ] be a relation. We define

rngi(R) := {xi | x ∈ Γ}

the i–th range of R, for each i ∈ I, and

rng(R) := {xi | i ∈ I, x ∈ Γ}

is the (overall) range of R.

17.2.12 Example

Let 10 = {1, . . . , 10} and gcd(n,m) be the greatest common
divisor of two natural numbers n and m. Let D be the binary
endorelation, given by

D =

264 10! 10

〈n,m〉  (n < m and gcd(n,m) > 1)

375
Since D is a table, we can as well represent it by

D =

1 : 10 2 : 10

2 4

2 6

2 8

3 6

3 9

4 8

We have

dom1(D) = 10 dom2(D) = 10

rng1(D) = {2, 3, 4} rng2(D) = {4, 6, 8, 9}

and so

rng(D) = {2, 3, 4, 6, 8, 9}

17.2.13 Remark

Note that for every relation R = [[Xi|i ∈ I],Γ] holds
(1) rngi(R) ⊆ domi(R), for each i ∈ I
(2) rng(R) ⊆

S
{Xi | i ∈ I}

17.3 Ordinary relations as
(schematic) relations and
other notational variations

17.3.1 Definition notation

According to 5.7.10, the default form of an ordinary rela-
tion R is the typed–predicator form

R =

264 D1 ! . . .! Dn

〈x1, . . . , xn〉 ϕ

375
To fit into the new default form of definition 17.2.1, called
schema–graph form, we transform R into

R =

264 〈D1, . . . , Dn〉

{〈x1, . . . , xn〉 ∈ D1 × . . .×Dn | ϕ}

375

17.3.2 Remark ordinal relation class

For every ordinal schema (i.e. class tuple) 〈D1, . . . , Dn〉 holds

Rel(〈D1, . . . , Dn〉) =

8><>:
D1 ! . . .! Dn if n ≥ 2

Pty (D1) if n = 1

B if n = 0

as defined in 5.6.8 and due to the convention in 17.3.1.

If some R ∈ (D1 ! . . . ! Dn) is given, then R ∈
Rel(〈D1, . . . , Dn〉) according to 17.3.1. On the other hand,
if some

R =

"
〈D1, . . . , Dn〉

Γ

#
∈ Rel(〈D1, . . . , Dn〉)

is given, we have

R =

"
D1 ! . . .! Dn

〈x1, . . . , xn〉 〈x1, . . . , xn〉 ∈ Γ

#

to write R in the default form for ordinal relations.

17.3.3 Example ordinal relation

The usual linear order ≤ on the integers is a binary relation,
which can be written in our standard notation for ordinal re-
lations as

©1 ≤ ©2 =

264 Z! Z

〈n,m〉 ∃d ∈ N . n+ d = m

375

So that is the typed–predicator form: first the type Z ! Z,
then the predicator 〈n,m〉 ∃d ∈ N . n+ d = m. We have

dom(≤) = Z× Z = ⊗〈Z,Z〉

x(≤) = 〈Z,Z〉

@(≤) = {1, 2}

dom1(≤) = Z

dom2(≤) = Z

gr(≤) = {〈n,m〉 ∈ (Z× Z) | ∃d ∈ N . n+ d = m}
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In schema-graph form we have

©1 ≤ ©2 =

264 〈Z,Z〉

{〈n,m〉 ∈ (Z× Z) | ∃d ∈ N . n+ d = m}

375

17.3.4 Remark

We could as well use yet another variation, the schema–
predicator form. For ≤ that is

©1 ≤ ©2 =

264 〈Z,Z〉

〈n,m〉 ∃d ∈ N . n+ d = m

375

which is a bit more compact and less redundant again. Let us
summarize the motivation and taxonomy of the various forms.

17.3.5 Remark summary of the notations

In 4.3.1 and 5.3 we explained that we use"
syntax

semantics

#

as the standard form for operators. Relations are also opera-
tors and fit in as well. But there is a certain degree of variation
in the precise formalization.
♣ The syntax of a relation R = [X,Γ] is given either by its

schema X or its domain ⊗X or by its type Rel(X). Each
of the three specifications has the same information.

♣ The semantics of R is given by its graph Γ. But we have the
same information if we replace the graph Γ = {x ∈ ⊗X | ϕ}
by a predicator x  ϕ, as wel already did (in 4.3.1 and
5.7.10) for ordinary relations.

This gives us the following six variations for equivalent formal-
izations of a given relation R:

syntax\semantics graph form predicator form

schema form

"
X

Γ

#

This is our default form

for schematic relations

in general, as defined in

17.2.1.

"
X

x ϕ

#

This is also used in our

text, because it often is

less redundant than the

default form.

domain form

"
⊗X
Γ

#

We never use that.

"
⊗X
x ϕ

#

Again, we never use that.

typed form

"
Rel(X)

Γ

#

is the general version and

we never use that. There is

the special version for or-

dinal relations:

"
X1 ! . . .! Xn

Γ

#

but we never use that,

either.

"
Rel(X)

x ϕ

#

is the general version and

we never use that, either.

The special version for or-

dinal relations

"
X1 ! . . .! Xn

x ϕ

#

is the default notation as

defined in 5.7.10.

17.4 Relations as functions and vice
versa

17.4.1 Repetition

(1) Recall from 5.8.4, that

B :=
n

0, 1
o

is the bit value or boolean value class.

(2) For an earlier introduction of the characteristic function,
recall 5.7.14.

17.4.2 Definition characteristic function

(1) If R = [X,Γ] is a relation, then

χR :=

266664
⊗X −→ B

x 7→
(

0 if x ∈ Γ

1 if x 6∈ Γ

377775

is the characteristic function of R

(2) On the other hand, if X is a schema and χ : ⊗X −→ B,
then

rel(χ) :=

264 X

x ξ(x) = 1

375 is the relation of χ
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17.5 Tables and table representa-
tion

17.5.1 Repetition

Recall from 9.3.3, that a schema X = [Xi|i ∈ I] is called
(1) finite iff I is finite (i.e. X as a record is a finite record)

(2) completely finite iff I is finite and Xi is finite, for each
i ∈ I.

17.5.2 Definition finiteness properties

We say that a relation R = [[Xi|i ∈ I],Γ]

(1) has a finite table or is a table iff I is finite and Γ is
finite,

(2) is completely finite iff X is completely finite.

In that case, I and each Xi is finite, and thus Γ is finite,
too.

17.5.3 Definition table class

For every schema X we define

Tab(X) :=

8><>:
"
Y

Γ

# Y ≤ X
dom(Y ) is finite

Γ is finite

9>=>;
the table class on X

17.5.4 Remark graph tables and boolean tables

If R = [[Xi|i ∈ I],Γ] has a finite table (or is a table), i.e. if I
and Γ are finite with

I = {i1, . . . , in}

Γ =

8>><>>:
2664
i1 7→ x1,1

.

.

.
.
.
.

in 7→ x1,n

3775 , . . . ,
2664
i1 7→ xm,1
.
.
.

.

.

.

in 7→ xm,n

3775
9>>=>>;

then it is usually much more convenient to represent R by its
graph table (diagram)

i1 : Xi . . . in : Xn

x1,1 . . . x1,n

.

.

.
.
.
.

xm,1 . . . xm,n

If R is even completely finite, i.e. if furthermore each domain
is finite with

X1 =
˘
x1,1, . . . , x1,k1

¯
, . . . , Xn = {xn,1, . . . , xn,kn}

then R can also be written as a boolean table (diagram),

i1 . . . in

x1,1 . . . xn,1 β1

.

.

.
.
.
.

.

.

.

x1,k1 . . . xn,1 βk1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

x1,k1 . . . xn,kn βi1·····in

The left side of the table contains all the i1 · . . . · in ele-
ments of the product ⊗[Xi|i ∈ I]. Each boolean or bit value
β ∈ B = {0, 1} on the right side indicates, if the element on
the left is a member of the graph (β = 1) or if it isn’t (β = 0).

Note that for both kinds of tables, the relation can entirely be
recovered from the table. However, the table diagrams are not
unique in general, since there is no pre–defined order on the
columns and rows.

17.5.5 Example

The relation ThisWeekend from example 17.2.4 was given by the
graph table

year : month : day : title :

Z {1, . . . , 12} {1, . . . , 31} {monday, . . . , sunday}
2003 1 18 saturday

2003 1 19 sunday

We could change the order of the rows and obtain

year : month : day : title :

Z {1, . . . , 12} {1, . . . , 31} {monday, . . . , sunday}
2003 1 19 sunday

2003 1 18 saturday

but we consider these two different diagrams as graphical rep-
resentations of the same table.

This relation is not completely finite, its year–domain is the in-
finite class Z of integers. It cannot be represented by a boolean
table. (At least not in the strict sense. One could use (hori-
zontal and vertical) dots “. . .” to display it anyway.)

17.5.6 Example

If we take the schema

X =

264 one 7→ {1, 2}
two 7→ {2, 3, 4}

three 7→ {5}

375
and a subset Γ of ⊗X, say

Γ =

8><>:
264 one 7→ 1

two 7→ 3

three 7→ 5

375 ,
264 one 7→ 2

two 7→ 4

three 7→ 5

375
9>=>;

then R := [X,Γ] is represented by its graph table

R =

one : {1, 2} two : {2, 3, 4} three : {5}

1 3 5

2 4 5
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Since R is completely finite, we can as well represent it by its
boolean table

R =

one two three

1 2 5 0

2 2 5 0

1 3 5 1

2 3 5 0

1 4 5 0

2 4 5 1

We mentioned that the order of the rows and columns are not
unique in general. So we can as well write the same boolean
table as

R =

three two one

5 4 2 1

5 4 1 0

5 3 2 0

5 3 1 1

5 2 2 0

5 2 1 0

17.5.7 Remark table representation of empty schema relations

As mentioned in 17.2.8, Rel(〈〉) has two members. Their table
diagrams are

0 for

"
〈〉
∅

#
and 1 for

"
〈〉
{〈〉}

#

respectively. (Later on in ??, we introduce yet another nota-

tion for these two important relations and write ⊥ and > ,

respectively.)

17.5.8 Remark generalized table notation

Yet another and often convenient notation for a relation with
a finite schema is a generalized table notation

i1 : X1 . . . in : Xn

x1 . . . xn

ϕ(x1, . . . , xn)

which stands for

26666666666666664

2664
i1 7→ X1

.

.

.
.
.
.

in 7→ Xn

3775
2664
i1 7→ x1

.

.

.
.
.
.

in 7→ xn

3775 ϕ(x1, . . . , xn)

37777777777777775
where ϕ(x1, . . . , xn) is a formula with all free variables among
the x1, . . . , xn.

For example, we can define a “spring relation” for the accord-
ing season (on the northern hemisphere) by

year : month : day : title :

Z {1, . . . , 12} {1, . . . , 31} {monday, . . . , sunday}
y m d t

(m = 3 ∧ d ≥ 20) ∨m = 4 ∨m = 5 ∨ (m = 6 ∧ d ≤ 21)

17.6 Double tables

17.6.1 Remark double tables

There is yet another variation of the one–dimensional boolean
table representation: two–dimensional so–called double tables.
Besides being more compact, they are useful in understanding
operations like schema reductions and expansion (see 21.1).

Consider a completely finite relation R with a schema

X =

2664
i1 7→ X1

.

.

.
.
.
.

in 7→ Xn

3775
Its boolean table has the general form

i1 . . . in

⊗X
boolean
values
of R

Now let us split X into two distinct schemas

Y =

2664
i1 7→ X1

.

.

.
.
.
.

ik 7→ Xk

3775 and Z =

2664
ik+1 7→ Xk+1

.

.

.
.
.
.

in 7→ Xn

3775
i.e. X = Y ∨̇ Z.

In the double table of R we put the elements of ⊗Y in the left,
and the elements of ⊗Z in the upper part:

⊗Z

ik+1

.

.

.

in

⊗Y
boolean
values
of R

i1 . . . ik

17.6.2 Example double table

For example, let

X =

26664
one 7→ {1, 2}
two 7→ {2, 3, 4}

three 7→ {1, 2}
four 7→ {2, 3, 4}

37775
A relation on X is
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R =

2666666664

X26664
one 7→ a

two 7→ b

three 7→ c

four 7→ d

37775 a · b < c+ d

3777777775
i.e.

R =

one two three four

a b c d

a · b < c+ d

and a schema split of X is given by

Y =

"
one 7→ {1, 2}
two 7→ {2, 3, 4}

#
and Z =

"
three 7→ {1, 2}
four 7→ {2, 3, 4}

#

The boolean table of R has 2 · 3 · 2 · 3 = 36 rows (heading
excluded) and is given by

one two three four

1 2 1 2 1

2 2 1 2 0

1 3 1 2 0

2 3 1 2 0

1 4 1 2 0

2 4 1 2 0

1 2 2 2 1

2 2 2 2 0

1 3 2 2 1

2 3 2 2 0

1 4 2 2 0

2 4 2 2 0

1 2 1 3 1

2 2 1 3 0

1 3 1 3 1

2 3 1 3 0

1 4 1 3 0

2 4 1 3 0

1 2 2 3 1

2 2 2 3 1

1 3 2 3 1

2 3 2 3 0

1 4 2 3 1

2 4 2 3 0

1 2 1 4 1

2 2 1 4 1

1 3 1 4 1

2 3 1 4 0

1 4 1 4 1

2 4 1 4 0

1 2 2 4 1

2 2 2 4 1

1 3 2 4 1

2 3 2 4 0

1 4 2 4 1

2 4 2 4 0

The double table of R with Y on the left and Z on top is more
compact:

1 2 1 2 1 2 three

2 3 4 2 3 4 four

1 2 1 1 1 1 1 1

2 2 0 0 0 1 1 1

1 3 0 1 1 1 1 1

2 3 0 0 0 0 0 0

1 4 0 0 0 1 1 1

2 4 0 0 0 0 0 0

one two

17.7 More properties of relations

17.7.1 Definition measures

For every relation R = [[Xi|i ∈ I],Γ] we define:

(1) the dimension of R is the cardinality of the attributes
(i.e. card(I)).

(2) the cardinality of R is the cardinality of the graph (i.e.

card(Γ)).

17.7.2 Remark

So a relation is a table iff both its dimension and its cardinal-
ity are finite.
For ordinary relations, the dimension is the arity of the rela-
tion.

17.7.3 Definition properties

A relation R = [X,Γ] with X = [Xi|i ∈ I] is called

(1) empty, if

Γ = ∅
(2) full, if

Γ = ⊗X
(3) elementary, if

Γ has exactly one element

(4) literal, if

both I and Γ are singletons.

(5) singular, if

X is singular (9.1.5), i.e. I is a singleton

(6) an endorelation if

the schema is univalent, i.e. all Xi are one and the same
class.

(7) (a) total in i, for i ∈ I, if rngi(R) = Xi, and
(b) total, if R is total in each i ∈ I.

17.7.4 Example

Consider the example relation D of 17.2.12 again,

D =

1 : 10 2 : 10

2 4

2 6

2 8

3 6

3 9

4 8

D is neither total in 1 nor in 2, and thus not total altogether.

17.7.5 Remark

Note, that
(1) a full relation is always total, but not the other way round.

For example, the identity relation on the natural numbers
©1 = ©2 : N! N is an example of a total relation which is
not full.
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(2) An improper relation (17.2.9 and 17.2.10) is always empty,
but not the other way round.

17.7.6 Remark properties

The special relations defined in 17.7.3 have the following pat-
tern:

endorelation"
[C|I]

Γ

# empty

relation"
X

∅

#
full

relation"
X

⊗X

#

elementary

relation"
X

{x}

# literal relation"
[ i 7→ Xi ]

{[ i 7→ c ]}

# singular

relation"
[ i 7→ Xi ]

⊗[ i 7→ C ]

#

17.7.7 Remark

An empty relation has none, a full relation has all records
as members. In the design of a relation algebra as a quasi–
boolean algebra later on, empty and full relations become the
least and greatest elements of these (quasi–)order structures.
If we consider relation algebras as logical structures, empty re-
lations represent “false” (they don’t hold for any record) and
“true” (satisfied for all records).

Elementary, literal and singular relations will play the role of
basic building bricks for relations. For example, every table
can be (re-)constructed algebraically from a finite number of
literal relations.

Endorelations, relations in which all domains are one and the
same carrier class C, impose a kind of internal structure on C.
Binary endorelations, i.e. relations of type C ! C play an
important role in mathematics. Endorelations in general have
a schema of the form [C|I], where I = {1, 2} for the binary
case. In relation algebras, the “compatibility” (19.1.2) of re-
lations is an important constraint for many operations to be
defined. But when all the relations involved are endorelations
on the same C, they are always compatible (see 19.1.2 and
19.1.3).

17.8 Projection relation class

17.8.1 Definition

For every schema X we define

Prel(X) :=
S

Y∈Proj(X)
Rel(Y )

the projection relation class on X

17.8.2 Remark

For a given schema X, the class Prel(X) is a very important
class of relations. Later on, we will see how each relalion class
Prel(X) comes along with a couple of operations that turn it
into a quasi–boolean and a theory algebra, as we call it.

As the size of X increases, the number of relations in Prel(X)

grows exponentially. In the next example, we take a very sim-
ple X, which allows us to list all these elements. The whole
exercise is quite trivial, but it is worth studying, because it
already reveals almost all the properties of these structures in
general.

17.8.3 Example

A schema X is given by

X =

"
a 7→ B
b 7→ B

#

We obtain

Proj(X) =

(
〈〉,
ˆ
a 7→ B

˜
,
ˆ
b 7→ B

˜
,

"
a 7→ B
b 7→ B

#)

For each of the four Y ∈ Proj(X) we obtain a class Rel(Y ),
which is given as follows.
(1) Rel(〈〉) has 2 members. As mentioned in 17.5.7, these can

be represented as

0 and 1

respectively.

(2) Rel(
ˆ
a 7→ B

˜
) has 4 members:

a

0 0

1 0

a

0 1

1 0

a

0 0

1 1

a

0 1

1 1

(3) Rel(
ˆ
b 7→ B

˜
) has 4 members, too:

b

0 0

1 0

b

0 1

1 0

b

0 0

1 1

b

0 1

1 1

(4) Rel

 "
a 7→ B
b 7→ B

#!
has 16 members:

a b

0 0 0

1 0 0

0 1 0

1 1 0

a b

0 0 1

1 0 0

0 1 0

1 1 0

a b

0 0 0

1 0 1

0 1 0

1 1 0

a b

0 0 1

1 0 1

0 1 0

1 1 0

a b

0 0 0

1 0 0

0 1 1

1 1 0

a b

0 0 1

1 0 0

0 1 1

1 1 0

a b

0 0 0

1 0 1

0 1 1

1 1 0

a b

0 0 1

1 0 1

0 1 1

1 1 0

a b

0 0 0

1 0 0

0 1 0

1 1 1

a b

0 0 1

1 0 0

0 1 0

1 1 1

a b

0 0 0

1 0 1

0 1 0

1 1 1

a b

0 0 1

1 0 1

0 1 0

1 1 1

a b

0 0 0

1 0 0

0 1 1

1 1 1

a b

0 0 1

1 0 0

0 1 1

1 1 1

a b

0 0 0

1 0 1

0 1 1

1 1 1

a b

0 0 1

1 0 1

0 1 1

1 1 1
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Finally, Prel(X) is the union of these four classes with 2+4+
4 + 16 = 26 members.

Such example X is an univalent bit–value schema, i.e. a
schema of the form (9.2.4) [B|A], for some A, in this case
A = {a, b}. The relation classes induces by these schemas are
important and we introduce the following notation to denote
them. For our example, that is Prel(X) = Brel({a, b}).

17.8.4 Definition

For every class A we define

Brel(A) := Prel([B|A])

the bit value relation class on A

17.8.5 Lemma

For every schema X, the following statements are equiva-
lent:

(1) X is completely finite.

(2) Every R ∈ Prel(X) is completely finite.

(3) Prel(X) = Tab(X)

17.8.6 Proof of 17.8.5

Let X = [Xi|i ∈ I] be a given schema.
(1)⇔(2) is true, because

X is completely finite

⇔ (I is finite) and (Xi is finite, for each i ∈ I)

⇔ (each J ∈ P(I) is finite) and (each Xi is finite)

⇔ Y is completely finite, for every Y ∈ Proj(X)

⇔ R is completely finite, for every R ∈ Prel(X)

(3)⇔(1) is true, because

Prel(X) = Tab(X)

⇔

8><>:
[Y,Γ]

Y ∈ Proj(X),

Γ ⊆ ⊗Y

9>=>; =

8>>>>>><>>>>>>:

[Y,Γ]

Y ∈ Proj(X),

dom(Y ) is finite ,

Γ ⊆ ⊗Y,
Γ is finite

9>>>>>>=>>>>>>;
⇔ ∀Y ∈ Proj(X) .

0@dom(Y ) is finite and

∀Γ ⊆ ⊗Y . Γ is finite

1A
⇔ ∀Y ∈ Proj(X) .

0@dom(Y ) is finite and

⊗Y is finite

1A
⇔ ∀Y ∈ Proj(X) . (Y is completely finite )

⇔ X is completely finite
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18 Digression: null values, quasi-relations and expansions

18.0.7 Remark introduction

A “partial table” is very much the definition of a “relation” in
database theory. Most database management systems nowa-
days use a (more or less) standard syntax and semantics, called
SQL (structured query language). In this section, the notion
“database algebras” refers to the underlying structure of these
kind of systems.

This section is a “digression”, it introduces null values, quasi–
relations and partial tables, and none of these concepts plays
a role in the remainder of this text. In our interpretation they
become an insignificant part of a more general design. This
interpretation is very different to the approach in database al-
gebras. So the statement that our “relation algebras” would
generalize the mathematical as well as the database theoretical
relation concept, is only true with some restrictions, at least
when the SQL–like approach is taken.

18.1 Null values and quasi–
relations

18.1.1 Remark

Consider the following

Q1 :=

name : String age : {0, 1, . . . , 255} sex : {f, m}
”peter” 57 m

”mo” 40

”hanna” f

This is not a table or relation in the strict sense, because the
data is incomplete in the last two record entries. Values for
the attribute sex in the second, and age in the third row are
missing. Database algebras usually use a default or null value

“ null ” for these cases to fill the empty places.

The generalization of the relation concept that allows null val-
ues shall be called quasi–relation. In other words, for a quasi–
relation Q with schema X, the graph Γ doesn’t have to be a
subclass of the cartesian product ⊗X, but may be a subclass of
the bigger star product ~X. A table that allows such null val-
ues, like the one for Q1 above, shall be called a partial table.
34

18.1.2 Definition quasi–relation

As a generalization of the relation concept (17.2.1), a
quasi–relation Q is given as a pair

[X,Γ] or

24 X
Γ

35
where

♣ X is a schema

♣ Γ ⊆ ~X is the so–called quasi–graph of Q.

Such a quasi–relation is a partial table, if both dom(X)
and Γ are finite.

18.1.3 Example

Given in this formal notation [X,Γ] with schema X and Γ ⊆
~X, our previous example Q1 is given as

2666666666664

264 name 7→ String

age 7→ {0, . . . , 255}
sex 7→ {f, m}

375
8><>:
264 name 7→ ”peter”

age 7→ 57

sex 7→ m

375 ," name 7→ ”mo”

age 7→ 40

#
,

"
name 7→ ”hanna”

sex 7→ f

#9>=>;

3777777777775

18.1.4 Remark two different meanings of null values

There is a fundamental difference in the interpretation of null
values in database algebras and in our approach.
♣ In database algebras, null values are a kind of default value

of each domain component. A null stands for something like
“unknown”. In order to consequently fit this into the overall
design, many operations need to be extended for these ex-
ceptional cases. For example, the binary logic of false and
true has to be accompanied by a third value unknown to
deal with null occurrences.

♣ In our approach, a null value is some kind of placeholder or
abbreviation for “all possible values”.

Consider the initial example Q1 again and the following record

y :=

264 name 7→ ”mo”

age 7→ 0

sex 7→ f

375
Is y a member of Q1?

♣ In our approach, this is a clear “yes”: y ∈ Q1 does hold.

The question is understood as: “Could it be compatible with
the information we have, that y does exist?”

♣ In database algebras, the answer is “unknown”: neither
y ∈ Q1 nor y 6∈ Q1 does hold.

The question is here understood as: “Does y exist in our
data world Q1?”

34 Neither “quasi–relation” nor “partial table” is part of the standard terminology in database theory.
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Our algebra is an attempt to generalize the binary semantics
of propositional logic toward a multivalued semantics. At the
same time we want to introduce an intuitive and efficient se-
mantics for both propositional and predicate logic. Therefore
our algebra of relations needs to have at least the properties
of a boolean lattice. Database algebras do not provide these
properties.

18.1.5 Remark quasi–relations are relations

Quasi–relations are “as–good–as relations”, every quasi–
relation Q is actually supposed to stand for a proper relation

rel(Q) . From this point of view, quasi–relations are just

another representation for relations. Accordingly, this whole
section 18 on quasi–relations could be skipped for a more con-
ceptional and less technical study. However, a familiarity with
the arguments of the following discussion are very helpful for
an overall understanding of the operations introduced later on.
So in 18.3 we motivate the important concept of the expansion

R ‖ Y of a relation R by a compatible schema Y .

18.2 Quasi–relations as relations

18.2.1 Remark introduction

We will now see how a quasi–relation Q is converted into a

proper relation rel(Q) . The basic idea is to translate each

incomplete record x ∈ ~X into the class x ‖ X ⊆ ⊗X of

all full records which are compatible with x. rel(Q) is then
essentially the union of these classes.

18.2.2 Example quasi–relation as relation

Consider the example Q1 from 18.1.1 again. Let us start with
the second record

x2 =

"
name 7→ ”mo”

age 7→ 40

#

in Q1. The schema of Q1 is

X =

264 name 7→ String

age 7→ {0, . . . , 255}
sex 7→ {f, m}

375
X has one index (namely “sex”) which doesn’t occur in x2.
Since there is no clue which of the two sexes should belong to
x2, we define x2 to stand for both alternatives264 name 7→ ”mo”

age 7→ 40

sex 7→ f

375 and

264 name 7→ ”mo”

age 7→ 40

sex 7→ m

375
one for “sex=f” and one for “sex=m”. In other words, the
table of the proper relation rel(Q1) shall contain the two rows

”mo” 40 f

”mo” 40 m

We call this record class the expansion of x1 in X and write

x1 ‖ X :=

8><>:
264 name 7→ ”mo”

age 7→ 40

sex 7→ f

375 ,
264 name 7→ ”mo”

age 7→ 40

sex 7→ m

375
9>=>;

Putting this method into a formula (see 18.2.4), we generate
for every schema X and x ∈ ~ the expansion of x into X by
applying

x ‖ X := {x ∨̇ y | y ∈ ⊗pr (X,dom(X) \ dom(x))}

In case of our specific example X and x2 ∈ ~X, we obtain

⊗pr (X,dom(X) \ dom(x2))

= ⊗pr (X, {name, age, sex} \ {name, age})

= ⊗pr (X, {sex})

= ⊗
h
sex 7→ {f, m}

i
=
nh

sex 7→ f
i
,
h
sex 7→ m

io
so that

x2 ‖ X =
n
x2 ∨̇

h
sex 7→ f

i
, x2 ∨̇

h
sex 7→ m

io
=

8><>:
264 name 7→ ”mo”

age 7→ 40

sex 7→ f

375 ,
264 name 7→ ”mo”

age 7→ 40

sex 7→ m

375
9>=>;

This definition of the expansion is more constructive. Perhaps
more elegant is the characterization by means of the compati-
bility notion:

x2 ‖ X = {y ∈ ⊗X | y ^ x2}

The only y ∈ ⊗X which are compatible with x2 are

264 name 7→ ”mo”

age 7→ 40

sex 7→ f

375 and

264 name 7→ ”mo”

age 7→ 40

sex 7→ m

375
So this characterization produces indeed the same result. This
coincidence is true in general (and stated in 18.2.3 and 18.2.4).

So far for x2. Let us do the same for x1 and x3:

x3 =

"
name 7→ ”hanna”

sex 7→ f

#

stands for 256 records with attribute “age” ranging from 0 to
255. More formal

x3 ‖ X =

8><>:
264 name 7→ ”hanna”

age 7→ 0

sex 7→ f

375 , . . . ,
264 name 7→ ”hanna”

age 7→ 255

sex 7→ f

375
9>=>;

The first record x1 of Q1 has all the attributes of X, its ex-
pansion is simply

x1 ‖ X =

8><>:
264 name 7→ ”peter”

age 7→ 57

sex 7→ m

375
9>=>;

The proper relation rel(Q1) of Q now is basically the union of
all these record expansions

rel(Q1) :=

264 X

(x1 ‖ X) ∪ (x2 ‖ X) ∪ (x3 ‖ X)

375
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It is given by the table

name : String age : {0, . . . , 255} sex : {f, m}
”peter” 57 m

”mo” 40 f

”mo” 40 m

”hanna” 0 f

”hanna” 1 f

”hanna” 2 f

.

.

.
.
.
.

.

.

.

”hanna” 255 f

But here, too, we can apply the same result by

rel(Q1) :=

24 X

y  y ^ x1 or y ^ x2 or y ^ x2

35

in other words

rel(Q1) :=

264 X

y  ∃x ∈ X . y ^ x

375

We finally summarize the definitions properly.

18.2.3 Definition record expansion

Let X = [Xi|i ∈ I] be a schema and x ∈ ~X. We define

x ‖ X := {y ∈ ⊗X | y ^ x}

the expansion of x into X.

18.2.4 Lemma record expansion

For every schema X and x ∈ ~X holds

x ‖ X = {x ∨̇ y | y ∈ ⊗pr (X,dom(X) \ dom(x))}

18.2.5 Proof of 18.2.4

Let X = [Xi|i ∈ I] be the given schema and x = [xj |j ∈ J] ∈
~X. For every y = [yi|i ∈ I] ∈ ⊗X holds J ⊆ J and

y ^ x ⇔ x ∨̇ pr (y, I \ J) = y

Therefore

x ‖ X = {y ∈ ⊗X | y ^ x}

= {x ∨̇ y | y ∈ ⊗pr (X, I \ J)}

18.2.6 Definition quasi–relation as relation

For every quasi–relation Q = [X,Γ] we define

rel(Q) :=

264 X

y  ∃x ∈ Γ . y ^ x

375
the relation of Q.

18.2.7 Lemma quasi–relation as relation

For every quasi–relation Q = [X,Γ] holds

rel(Q) =

2664
XS

x∈Γ
(x ‖ X)

3775

18.2.8 Proof of 18.2.7

For each quasi–relation Q = [X,Γ] we have

rel(Q) =

"
X

y  ∃ ∈ Γ . y ^ x

#

=

"
X

{y ∈ ⊗X | ∃x ∈ Γ . y ^ x}

#

=

24 XS
x∈Γ
{x ∈ ⊗X | y ^ x}

35
=

24 XS
x∈Γ

(x ‖ X)

35

18.3 Schema expansion of relations

18.3.1 Remark introduction

One very important operation in our upcoming algebra is the

expansion R ‖ Y of a given relation R = [X,Γ] by a compat-

ible (i.e. X ^ Y ) schema Y . The schema of the result R′ is
then the join X ∨ Y .

18.3.2 Example expansion

Let us take the example

R :=

name : String age : {0, . . . , 255}
”peter” 57

”mo” 40

with schema

X := x(R) =

"
name 7→ String

age 7→ {0, . . . , 255}

#
A second schema is given by

Y :=
h
sex 7→ {f, m}

i
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X and Y are compatible and their join is

X
′
:= X ∨ Y =

264 name 7→ String

age 7→ {0, . . . , 255}
sex 7→ {f, m}

375
The expansion of R by Y is a relation R′ with the modified

schema X′, but “equivalent” to R. And this means, that R′

has the same graph as R, i.e.

R
′
=

name : String age : {0, . . . , 255} sex : {f, m}
”peter” 57

”mo” 40

But this is a quasi–relation and not a proper relation yet. Ap-
plying rel returns the standard form of R′, which is, as a table
diagram, given by

R
′
=

name : String age : {0, . . . , 255} sex : {f, m}
”peter” 57 f

”peter” 57 m

”mo” 40 f

”mo” 40 m

18.3.3 Definition relation expansion

Let R = [X,Γ] be a relation and Y a schema with Y ^ X.
Then

R ‖ Y := rel

 "
X ∨ Y

Γ

#!

is the expansion of R by Y .

18.3.4 Remark

An alternative characterization of this expansion is given by
the fact that

R ‖ Y =

264 X ∨ Y

y  ∃x ∈ Γ . x ^ y

375
Actually, we prefer the latter equation as the definition (see
20.1.1) because it doesn’t need to refer to quasi–relations and
the rel operation.

18.3.5 Remark schema unification

This expansion concept is very important for the development
of our whole algebra on relations later on.

Take, for example, two relations R = [X,Γ] and S = [Y,Σ].
Lattice operations like ∪ and ∩ are very important and they
are understood as the according operations on the graphs, e.g.

R ∪ S :=

24 X

Γ ∪ Σ

35

But of course, this is only a well–defined relation, if R and S
are equischematic, i.e. if Y = X.

However, by applying the previous ideas, we can generalize ∪
and ∩ for the case that X and Y are compatible. We denote

these generalizations by t and u , respectively. So

R t S := rel

0BB@
24 X ∨ Y

Γ ∪ Σ

35
1CCA

Without applying rel this can alternatively be expressed by

R t S := R
′ ∪ S′ where R

′
:= R ‖ Y and S

′
:= S ‖ X

R′ and S′ are equischematic, their common schema is X ∨ Y ,
and that allows us to apply ∪.

Besides, this is also the basis for a definition of the equivalence
of relations:

R ≡ S iff R′ = S′

This recipe:
♣ first, make the relations equischematic, and

♣ second, apply a class operation on the new graphs

is a general method in the algebra we are going to develop
below.

18.3.6 Remark

The schema unification of relations is similar to the denom-
inator unification of two fractions: To compare or add two
fractions

α =
n

d
and β =

m

e

we first produce

α
′
:=

n · e
d · e

and β
′
=
m · d
d · e

and then we are able to compare:

α ≤ β iff n · e ≤ m · d

and to add:

α+ β =
(n · e) + (m · d)

d · e

The general idea is, that α′ and β′ have the same denominator
d · e. Similarly, R′ and S′ have the same schema X ∨ Y .

For the fraction arithmetic, it is important that α′ = α and
β′ = β. And the same is true for the relation algebra: R′ ≡ R
and S′ ≡ S. The result of an expansion is always equivalent
to the original relation.
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Part VIII

Operations on relations
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19 Some basic operations on relations

19.1 Schema comparison

19.1.1 Repetition

Recall (definition 10.3.2), that for two schemas X = [Xi|i ∈ I]
and Y = [Yj |j ∈ J]

(1) X G Y iff I ∩ J = ∅ (distinct)

(2) X ^ Y iff Xk = Yk for all k ∈ I ∩ J (compatible)

(3) X ≤ Y iff I ⊆ J and Xi = Yi for all i ∈ I (smaller)

19.1.2 Definition

Let X = [Xi|i ∈ I] and Y = [Yj |j ∈ J] be two schemas
and R = [X,Γ] and S = [Y,Σ] two relations. We define:

(1) R is sub–schematic to S, written

R E S

iff X ≤ Y (i.e. I ⊆ J and Xi = Yi for all i ∈ I)

(2) R is equi–schematic with S, written

R , S

iff X = Y

(3) R and S are (schema) compatible, written

R ^ S

iff X ^ Y (i.e. Xk = Yk for all k ∈ I ∩ J)

(4) R and S are (attribute or schema) distinct, written

R G S

iff X G Y (i.e. I ∩ J = ∅)

And again, we write

R 6E S R 6, S R 6^ S R 6G S

if the according relation does not hold.

19.1.3 Definition

A class R of relations is called

(1) (pairwise) distinct, if

all R,S ∈ R with R 6= S are distinct

(2) (pairwise) compatible, if

all R,S ∈ R are compatible

(3) (pairwise) equi–schematic, if

all R,S ∈ R are equi–schematic

19.1.4 Example

The just defined relations between relations and properties of
relation classes all depend on the schemas only, the graphs are
not concerned.

Let us take the following example relations in graph table no-
tation:

R1 =

a : N b : Z
1 2

3 4

R2 =
a : N b : Z

1 3
R3 =

b : Z c : N
1 2

3 4

R4 =

a : Z c : N
1 2

3 4

R5 =

p : N q : Z
2 3

4 5

R6 =

r : N s : Z
1 2

3 4

(1) R1 and R2 are equi–schematic, R1 , R2.

This example explains the introduction of ,. For any two
schemas X and Y , X ≤ Y and Y ≤ X implies X = Y . For
relations, this is not true in general: R1 E R2 and R2 E R1
does not necessarily imply R1 = R2.

In more general terms: (REC,≤) is a poclass (i.e. ≤ is
transitive, reflexive and antisymmetric on the class of all
records, including schemas), but (Rel,E) is only a quasi–
ordered class (i.e. E is transitive and reflexive, but not
necessarily antisymmetric on the class of all relations).

(2) R1 ^ R3 and R3 ^ R4, but R1 6^ R4 (because
doma(R1) = N 6= Z = doma(R4))

This example shows, that ^ is not transitive in general. So
it is not an equivalence relation, although it is reflexive and
symmetric.

(3) R1 and R5 are distinct, i.e. R1 G R5, because their at-
tribute classes {a, b} and {p, q} are disjunct.

R1 and R5 are also compatible, i.e. R1 ^ R5, because
@(R1) ∩ @(R5) = ∅ and domi(R1) = domi(R5) is true for
all i ∈ ∅ in a trivial sense.

Obviously, this example is symptomatic for the general rule:
distinctness implies compatibility.

(4) {R1, R5, R6} is distinct. Their attribute classes
{a, b} , {p, q} , {r, s} are pairwise disjunct and thus R1 G R5,
R1 G R6, and R5 G R6.

{R1, R5, R6} is also compatible.
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19.1.5 Example

(1) The empty class ∅ is a distinct, compatible, and equi–
schematic class of relations.

(2) Rel, the class of all relations is not distinct, not compati-
ble, and not equischematic.

19.1.6 Lemma

(1)
˙
Rel,E

¸
is a quasi–ordered class.

(2)
˙
R,E

¸
is a quasi–ordered class, for each R ⊆ Rel.

(3) , is the derived equivalence relation of E in the sense

that R , S iff R E S and S E R, for all relations R,S.

19.1.7 Proof of 19.1.6

Recall, that a quasi–order relation is a transitive and reflexive
binary endorelation.
(1) Let R1 = [X1,Γ1] , R2 = [X2,Γ2] , R3 = [X3,Γ3] be any

three relations. If R1 E R2 and R2 E R3, then X1 ≤ X2
and X2 ≤ X3, so that X1 ≤ X3 (according to 11.1.1) and
thus R1 E R3. This is the transitivity of ≤ on REC. And
with X1 ≤ X1 we have R1 E R1, which is the reflexivity.

(2) The same reasoning in (1) holds, when we restrict the three
relations to come from R. More general: Every subclass of
a quasi–ordered class is a quasi–ordered class itself, with
respect to the same relation (see 7.2.3).

(3) On the class of schemas, ≤ is antisymmetric, i.e. X ≤ Y
and Y ≤ X implies X = Y . So two relations R = [X,Γ] and
S = [Y,Σ] with R E S and S E R have X ≤ Y and Y ≤ X,

so X = Y and thus R , S.

19.1.8 Lemma

(1) Every distinct class of relations is compatible.

(2) Every equischematic class of relations is compatible.

19.1.9 Proof of 19.1.8

Both statements are immediate consequences of the definitions
in 19.1.2.

19.1.10 Lemma

For every schema X holds:

(1) Rel(X) is equi–schematic and compatible

(2) Prel(X) is compatible

On the other hand, if R is a relation class, then

(3) R is equi–schematic iff R ⊆ Rel(Y ), for some schema
Y

(4) R is compatible iff R ⊆ Prel(Y ), for some schema Y

Furthermore

(5) If R is compatible, then R ⊆ Prel({x(R) | R ∈ R}).

19.1.11 Proof of 19.1.10

Let X = [Xi|i ∈ I] be any given schema.
(1) Rel(X) = {[X,Γ] | Γ ⊆ ⊗X} is equi–schematic by defini-

tion, each member has the same schema X. Therefore it is
compatible as well.

(2) We have Prel(X) = {[Y,Γ] | Y ∈ Proj(X),Γ ⊆ ⊗Y }

and we know (from 10.3.10), that Proj(X) is compatible.
So all Y1, Y2 ∈ Proj(X) are compatible and that makes all
[Y1,Γ1] , [Y2,Γ2] ∈ Prel(X) compatible as well.

(3) If R = ∅, then R ⊆ Rel(Y ) for every arbitrary schema
Y . If R 6= ∅ and [X,Γ] is a member of R, then every other
member must have the same schema X, because R is sup-
posed to be equi–schematic. So R ∈ Rel(X) for all R ∈ R,
i.e. R ⊆ Rel(X).

From lemma 11.7.6(3) we know that for every class X of
schemas, the following three statements are equivalent: (a)

X is compatible. (b) X ⊆ Proj(Y ), for some schema Y . (c)

X ⊆ Proj(X) for X :=
W
X .

We can apply that knowledge immediately for the compatibil-
ity of a relation class R, because that only depends on the
schemas of the elements in R. As a result be obtain (4) and
(5).

19.2 Identity relations

19.2.1 Definition identity

For every schema X = [Xi|i ∈ I] we define

IdX :=

264 X

x x(i) = x(j) for all i, j ∈ I

375
the identity (relation) of X.

19.2.2 Remark

If C is a class, the usual identity =C on C is just a special
case. We can (re)define

©1 =C ©2 := Id〈C,C〉 =

264 C! C

{〈x, x〉 | x ∈ C}

375

19.2.3 Table representations

Recall, that N := {0, 1, 2, . . .} is the natural number and Q is
the rational number class. Let A := {−2, 0, 3, 7, 11} and

X :=

264 a 7→ A

n 7→ N
q 7→ Q

375

The graph of IdX contains exactly the records

x :=

264 a 7→ ν

n 7→ ν

q 7→ ν

375 with ν ∈ A ∩ N ∩ Q

Accordingly, the graph table contains all the possible rows with



Theory algebras on relations www.bucephalus.org 115

identical components:

a : A n : N q : Q
0 0 0

3 3 3

7 7 7

11 11 11

An often used special case in mathematics is the double table
of =C , for some class C. For example, the double table for =A
is

−2 0 3 7 11

−2 1 0 0 0 0

0 0 1 0 0 0

3 0 0 1 0 0

7 0 0 0 1 0

11 0 0 0 0 1

(Note, that this standard table in mathematics is a little vari-
ation of our precise definition of a double table. We left away
the attributes in 1 and 2 for the left column and top row.
In fact, it doesn’t matter where they are place, because the
identity is symmetric.) The 1’s form a diagonal shape in the
table. Sometimes, the identity relation itself is therefore called
the diagonal relation.

19.2.4 Example identity

Recall, that N := {0, 1, 2, . . .} and Z := {. . . ,−1, 0, 1, . . .}.
So

Id〈N,Z〉 =

264 N! Z

〈n,m〉 n = m

375

And the ternary identity on B = {0, 1} is

Id〈B,B,B〉 =

1 : B 2 : B 3 : B
0 0 0

1 1 1

=

1 2 3

0 0 0 1

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 1

19.3 Empty and full relations

19.3.1 Definition empty and full relations

Let X = [Xi|i ∈ I] be a schema, then

⊥X :=

264 X
∅

375
is the empty, bottom or zero relation on X

>X :=

24 X

⊗X

35
is the full, top, or unit relation on X

In particular

⊥ := ⊥〈〉 =

264 〈〉
∅

375
is the empty, bottom, or zero relation

> := >〈〉 =

264 〈〉

{〈〉}

375
is the full, top, or unit relation

19.3.2 Table representations

Let X =

"
a 7→ {p, q}
b 7→ {r, s, t}

#
.

The graph tables of ⊥X and >X are given by

⊥X = a : {p, q} b : {r, s, t}

and

>X =

a : {p, q} b : {r, s, t}
p r

q r

p s

q s

p t

q t

i.e. in ⊥X there is none, in >X every element of ⊗X is in the
table, ⊥X is the least and >X is the greatest relation on X.

Their boolean tables are typical as well:

⊥X =

a b

p r 0

q r 0

p s 0

q s 0

p t 0

q t 0

and >X =

a b

p r 1

q r 1

p s 1

q s 1

p t 1

q t 1

i.e. ⊥X shows 0’s and >X has 1’s only.

19.3.3 Table representations of ⊥ and >
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The empty cartesian product ⊗〈〉 = {〈〉} has an empty set of
attributes. If we write ⊥ and > in graph table notation, we
have the problem that the table “disappears”.

Written as boolean tables, we suggest the following notation
for ⊥ and >:

0 = ⊥ and 1 = >

according to the construction rules for boolean tables.

19.3.4 Remark

In 17.7.3 we defined to call a relation R = [X,Γ] empty, if

Γ = ∅, and full, if Γ = ⊗Γ. In terms of our new notation,
this can be expressed by: R is empty, if R = ⊥X , and full, if
R = >X .

19.3.5 Remark

If X = [Xi|i ∈ I] is a schema, then exactly one of the three
following statements is true:
(1) X is empty, i.e. X = 〈〉.

Then ⊥X = ⊥ = [〈〉, ∅] 6= [〈〉, {〈〉}] = > = >X and
Rel(X) = {⊥,>}.

(2) X is not proper, i.e. Xi = ∅ for at least one i ∈ I.
Then ⊗X = ∅ and ⊥X = [X, ∅] = [X,⊗X] = >X and
Rel(X) = {⊥X} = {>X}.

(3) X is proper and not empty.

Then ⊗X 6= ∅, ⊥X 6= >X , and Rel(X) ⊇ {⊥X ,>X}.

We obtain the following result:

(4) ⊥X 6= >X iff X is proper

19.4 Complement

19.4.1 Definition complement

For every relation R = [X,Γ], we define

¬R :=

264 X

⊗X\Γ

375
the complement or negation of R or “not R”.

The symbolic “deletion” of R, i.e.

6 R
is an often used alternative notation for ¬R.

19.4.2 Boolean table representations

Recall 5.8.4, that for each β ∈ B := {0, 1} we defined:

−β :=

(
0 if β = 1

1 if β = 0

If a relation R is completely finite and its boolean table has
the form

i1 . . . in

. . . . . . . . . β1

. . . . . . . . . β2

. . . . . . . . . β3

.

.

.
.
.
.

.

.

.

. . . . . . . . . βm

then ¬R is given by

i1 . . . in

. . . . . . . . . −β1

. . . . . . . . . −β2

. . . . . . . . . −β3

.

.

.
.
.
.

.

.

.

. . . . . . . . . −βm

19.4.3 Example

If R =

a b

p r 0

q r 1

p s 0

q t 0

p t 1

q s 1

then ¬R =

a b

p r 1

q r 0

p s 1

q t 1

p t 0

q s 0

19.4.4 Remark

If R = [X,Γ] is a table, then ¬R = [X,⊗X \ Γ] is not neces-
sarily a table anymore, because the new graph ⊗X\Γ might be
infinite. So ¬R might not be representable by a graph table,
even if R is.

19.4.5 Remark

For every R ∈ Rel(X) and each x ∈ ⊗X holds: ¬R(x) iff R(x)
is not true. In other words, x ∈ ¬R iff x 6∈ R.
The deletion notation is more convenient and common for bi-
nary endorelations. For example, if ≤ is the usual linear order
(say on the integers), we usually write � rather than ¬ ≤. So

for every two integers n and m we have n � m iff n ≤ m is
not true.
For a linear order like the ≤ on Z, there is also the option to
use > for �. But note the difference between the conversion
(or inversion) of a binary relation, where R : X ! Y turns
into

264 Y ! X

〈y, x〉 〈x, y〉 ∈ R

375
and the complement. Complementation (or negation) and con-
version (or inversion) are different operations. Besides, this
turn of the symbol direction doesn’t work for non–linear rela-
tions. Take the class inclusion ⊆. Its complement * is different

to ⊃. For example, {1, 2} * {2, 3}, but {1, 2} ⊃ {2, 3} is not
correct.
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19.4.6 Lemma

¬¬R = R for every relation R.

19.4.7 Proof of 19.4.6

If R = [X,Γ], then

¬¬R = ¬
"

X

⊗X \ Γ

#
=

"
X

⊗X \ (⊗X \ Γ)

#
=

"
X

Γ

#
= R

19.4.8 Lemma

(1) ¬⊥ = >
(2) ¬> = ⊥

19.4.9 Proof of 19.4.8

(1) ¬⊥ = ¬
"
〈〉
∅

#
=

"
〈〉

{〈〉} \ ∅

#
=

"
〈〉
{〈〉}

#
= >

(2) ¬> = ¬
"
〈〉
{〈〉}

#
=

"
〈〉

{〈〉} \ {〈〉}

#
=

"
〈〉
∅

#
= ⊥

19.5 Boolean operations on equi–
schematic relations

19.5.1 Definition boolean operations

For two relations R = [X,Γ] and S = [X,Σ] with identical
schema X we define:

R ⊆ S :iff Γ ⊆ Σ (inclusion)

R ∩ S :=

"
X

Γ ∩ Σ

#
((small) intersection)

R ∪ S :=

"
X

Γ ∪ Σ

#
((small) union)

19.5.2 Definition

As usual, there is a whole range of relations that come
along with ⊆, namely:

©1 6⊆ ©2 is not ©1 ⊆ ©2

©1 ⊂ ©2 is ©1 ⊆ ©2 and ©2 6⊆ ©1

©1 ⊇ ©2 is ©2 ⊆ ©1
etc.

19.5.3 Definition big junctions

For every schema X and R ⊆ Rel(X) we define

T
R :=

T
R∈R

R :=

8>>>>>>>><>>>>>>>>:

>X if R = ∅

2664
XT

R∈R
gr(R)

3775 if R 6= ∅

the (big) intersection of R

S
R :=

S
R∈R

R :=

8>>>>>>>><>>>>>>>>:

⊥X if R = ∅

2664
XS

R∈R
gr(R)

3775 if R 6= ∅

the (big) union of R

19.5.4 Remark

The definition of
T

depends on the schema X, so we should
carry this information in the notation to avoid ambiguities and

write, say
T
X instead of just

T
for the big intersection. How-

ever, most of the times X can be reconstructed from the ex-
pression

T
R via X =

W
{gr(R) | R ∈ R}. Unless R is empty.

In that case,
T
R = >X is not well–defined, if X is not ob-

vious from the context. So in doubtful circumstances, let us
keep in mind to write

T
X ©1 and

S
X ©2

for the big intersection and big union.

19.5.5 Remark graph table representations

The just defined operations on relations resemble the class op-
erations on their graphs. In particular, the union and inter-
section of relations in graph table notation is the union and
intersection of their rows. And as usual in class notation, mul-
tiple occuring elements of the union are only mentioned once.
For example, for

R =

a : N b : N
1 2

3 4

5 6

7 8

and S =

a : N b : N
5 6

7 8

9 10

we obtain

R ∩ S =

a : N b : N
5 6

7 8
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and

R ∪ S =

a : N b : N
1 2

3 4

5 6

7 8

5 6

7 8

9 10

=

a : N b : N
1 2

3 4

5 6

7 8

9 10

Furthermore, we have R 6⊆ S, because not every row of R is
also a row of S.

19.5.6 Repetition

Recall 5.8.4, that B := {0, 1} is the set of bit values, and
together with ∧,∨,

V
,
W

and ¬ it makes a complete boolean
algebra. For example, ¬0 = 1, 0 ∧ 1 = 0 and

V
{0, 1} = 0.

19.5.7 Remark Boolean table representations

If X is completely finite, given by

X =

2664
i1 7→ X1

.

.

.
.
.
.

in 7→ Xn

3775
and if R,S ∈ Rel(X) are given by their boolean tables

R =

i1 . . . in

. . . . . . . . . β1

. . . . . . . . . β2

. . . . . . . . . β3

.

.

.
.
.
.

.

.

.

. . . . . . . . . βm

and S =

i1 . . . in

. . . . . . . . . β′1

. . . . . . . . . β′2

. . . . . . . . . β′3
.
.
.

.

.

.
.
.
.

. . . . . . . . . β′m

then
R ⊆ S iff βi ≤ β′i for all i ∈ {1, . . . ,m}

and

R ∩ S =

i1 . . . in

. . . . . . . . . β1 ∧ β′1

. . . . . . . . . β2 ∧ β′2

. . . . . . . . . β3 ∧ β′3
.
.
.

.

.

.
.
.
.

. . . . . . . . . βm ∧ β′m

R ∪ S =

i1 . . . in

. . . . . . . . . β1 ∨ β′1

. . . . . . . . . β2 ∨ β′2

. . . . . . . . . β3 ∨ β′3
.
.
.

.

.

.
.
.
.

. . . . . . . . . βm ∨ β′m

19.5.8 Example

Let X =

"
a 7→ {p, q}
b 7→ {r, s, t}

#
and R,S ∈ Rel(X), given by

R =

a b

p r 0

q r 0

p s 1

q s 1

p t 1

q t 0

and S =

a b

p r 0

q r 1

p s 1

q s 1

p t 0

q t 0

then R 6⊆ S and

R ∩ S =

a b

p r 0

q r 0

p s 1

q s 1

p t 0

q t 0

and R ∪ S =

a b

p r 0

q r 1

p s 1

q s 1

p t 1

q t 0

19.5.9 Definition

For every schema X, we define

Rel (X) :=
˙
Rel(X),⊆,⊥X ,>X ,∩,∪,

T
,
S
,¬
¸

the equi–schematic relation algebra over X or

the algebra (on) Rel(X).

19.5.10 Lemma

Rel (X) is a complete boolean algebra, for every schema
X.

19.5.11 Remark

Recall (see 7 for the full characterization of complete boolean
algebras), that theorem 19.5.10 is defined to mean:
♣ ⊆ is a (partial) order on Rel(X) which determines all the

other operations

♣ ⊥X is the least element

♣ >X is the greatest element

♣ R ∩ S is the greatest lower bound of R,S ∈ Rel(X)

♣ R ∪ S is the least upper lower bound of R,S ∈ Rel(X)

♣ ∩ and ∪ are mutually distributive

♣
T
R is the greatest lower bound of R ⊆ Rel(X)

♣
S
R is the least upper bound of R ⊆ Rel(X)

♣ ¬ is the complementation, i.e. ¬R∩R = ⊥X and ¬R∪R =
>X , for every R ∈ Rel(X).

19.5.12 Proof of 19.5.10

Recall (see 6 ), that for every given C, the power class algebra
over C

P (C) =
˙
P(C),⊆, ∅, C,∩,∪,

T
,
S
, C \ ©1

¸
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is a complete boolean algebra. In more detail: The power class
P(C) of C is the carrier class, ⊆ is the (partial) order relation,
∅ is the bottom and C the top element, ∩ and ∪ are the meet
and join with completions

T
,
S

: P(P(C)) −→ P(C) (whereT
∅ := C), and C \ ©1 : P(C) −→ P(C) is the complementa-

tion.

Now let X be a given schema. We define

ϕ :=

264 P(⊗X) −→ Rel(X)

Γ 7→ [X,Γ]

375

Obviously, ϕ is a bijection and its inverse ϕ−1 is

ϕ
−1

=

264 Rel(X) −→ P(⊗X)

[X,Γ] 7→ Γ

375

i.e. ϕ−1(R) = gr(R), for all R ∈ Rel(X).

It is easy to see that
♣ Γ ⊆ Σ iff ϕ(Γ) ⊆ ϕ(Σ) for all Γ,Σ ∈ P(⊗X)

♣ ϕ(∅) = ⊥X
♣ ϕ(⊗X) = ⊥X
♣ ϕ(Γ ∩ Σ) = ϕ(Γ) ∩ ϕ(Σ) for all Γ,Σ ∈ P(⊗X)

♣ ϕ(Γ ∪ Σ) = ϕ(Γ) ∪ ϕ(Σ) for all Γ,Σ ∈ P(⊗X)

♣ ϕ(
T
G) =

T
{ϕ(Γ) | Γ ∈ G} for every G ⊆ P(⊗X)

♣ ϕ(
S
G) =

S
{ϕ(Γ) | Γ ∈ G} for every G ⊆ P(⊗X)

♣ ϕ(⊗X \ Γ) = ¬ϕ(Γ) for each Γ ∈ P(⊗X)

And that means altogether, that ϕ is an isomorphism from
P(⊗X) into Rel(X), written

ϕ : P(⊗X) ∼= Rel(X)

That implies, that Rel(X) is a complete boolean algebra it-
self.

19.5.13 Example

Consider the schema X from example 17.8.3 again

X =

"
a 7→ B
b 7→ B

#

The complete boolean lattice on Rel(X) has 16 members and
is represented by the following order diagram:

a b
0 0 0
1 0 0
0 1 0
1 1 0

a b
0 0 1
1 0 0
0 1 0
1 1 0

a b
0 0 0
1 0 1
0 1 0
1 1 0

a b
0 0 0
1 0 0
0 1 1
1 1 0

a b
0 0 0
1 0 0
0 1 0
1 1 1

a b
0 0 1
1 0 1
0 1 0
1 1 0

a b
0 0 1
1 0 0
0 1 1
1 1 0

a b
0 0 1
1 0 0
0 1 0
1 1 1

a b
0 0 0
1 0 1
0 1 1
1 1 0

a b
0 0 0
1 0 1
0 1 0
1 1 1

a b
0 0 0
1 0 0
0 1 1
1 1 1

a b
0 0 1
1 0 1
0 1 1
1 1 0

a b
0 0 1
1 0 1
0 1 0
1 1 1

a b
0 0 1
1 0 0
0 1 1
1 1 1

a b
0 0 0
1 0 1
0 1 1
1 1 1

a b
0 0 1
1 0 1
0 1 1
1 1 1

c
c

c
c

cc

A
A
A
AA

�
�

�
��

#
#

#
#

##

A
A
A
AA

Q
Q

Q
Q

Q
QQ

�
�
�
��

�
�

�
��

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
QQ

�
�

�
��

�
�

�
�

�
��

C
C
C
CC

#
#

#
#

##

�
�

�
��

�
�
�
��

#
#

#
#

##

C
C
C
CC

Q
Q

Q
Q

Q
QQ

�
�

�
�

�
��

�
�

�
��

Q
Q

Q
Q

Q
QQ

�
�

�
��

c
c

c
c

cc

�
�
�
��

A
A

A
AA

#
#

#
#

##

�
�
�
��

A
A

A
AA

c
c

c
c

cc

19.5.14 Lemma common properties of complete boolean

algebras

Let X be a proper schema. For all R,S, T ∈ Rel(X) and
all R ⊆ Rel(X) holds:

(1) >X ∩ R = R (>X is neutral element of ∩)

(2) ⊥X ∪ R = R (⊥X is neutral element of ∪)

(3) R ∩ R = R (∩ is idempotent)

(4) R ∪ R = R (∪ is idempotent)

(5) R ∩ (S ∩ T ) = (R ∩ S) ∩ T (∩ is associative)

(6) R ∪ (S ∪ T ) = (R ∪ S) ∪ T (∪ is associative)

(7) R ∩ S = S ∩ R (∩ is commutative)

(8) R ∪ S = S ∪ R (∪ is commutative)

(9) R ∩ S =
T
{R,S} (∩ is special case of

T
)

(10) R ∪ S =
S
{R,S} (∪ is special case of

S
)

(11) S ∩
S
R =

S
{S ∩ R | R ∈ R} (full distributivity)

(12) S ∪
T
R =

T
{S ∪ R | R ∈ R} (full distributivity)

(13) ¬
T
R =

S
{¬R | R ∈ R} (de Morgan’s law)

(14) ¬
S
R =

T
{¬R | R ∈ R} (de Morgan’s law)

(15) ⊥X ∩ R ≡ ⊥X (⊥X cancels ∩)

(16) >X ∪ R ≡ >X (>X cancels ∪)

(17) ⊥X ⊆ R (⊥X is a least element)

(18) R ⊆ >X (>X is a greatest element)

(19)
T
{R} = R (

T
is idempotent)

(20)
S
{R} = R (

S
is idempotent)

19.5.15 Proof of 19.5.14
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These properties hold for complete boolean algebras in general
(see 7). So they all follow from 19.5.10.

19.5.16 Remark

If the schema X is not proper, then ⊗X = ∅ (according to
12.1.12). For such an X, Rel(X) has exactly one member
R = [X, ∅] and R = ⊥X = >X (according to 19.3.5(4)).
Nevertheless, the algebra on Rel(X) still satisfies the prop-
erties of a complete boolean algebra. However, such an one–
element boolean algebra is usually not a very useful one and it
is also called degenerated. In all other case of proper schemas
X, the algebra has at least two elements ⊥X and >X with
⊥X 6= >X .

19.6 Distinct (cartesian) product

19.6.1 Repetition

Two records ξ = [ξi|i ∈ I] and υ = [υj |j ∈ J] are distinct,

written ξ G υ , if I ∩ J = ∅. Their distinct join is

ξ ∨̇ υ := [ζk|k ∈ (I ∪ J)] with ζk :=

(
ξk if k ∈ I
υk if k ∈ J

Two relations R = [X,Γ] and S = [Y,Σ] are distinct, written

R G S , if their schema is distinct, i.e. X G Y . A class R of

relations is (pairwise) distinct, if each two different members

are distinct.
Two graphs (i.e. record classes) Γ and Σ are relatively distinct,

written Γ G Σ , if ξ G υ for all ξ ∈ Γ and υ ∈ Σ. And that is

exactly the case, when there are two distinct schemas X and
Y with Γ ⊆ ~X and Σ ⊆ ~Y .

If Γ and Σ are two relatively distinct graphs, then Γ� Σ :=

{ξ ∨ υ | ξ ∈ Γ, υ ∈ Σ} is their distinct product. The number

of elements in the distinct product is given by card(Γ� Σ) =
card(Γ) · card(Σ).

19.6.2 Definition

For every two distinct relations R = [X,Γ] and S = [Y,Σ]
we define

R� S :=

264 X ∨̇ Y

{x ∨̇ y | x ∈ Γ, y ∈ Σ}

375 =

264 X ∨̇ Y
Γ� Σ

375
the distinct (cartesian) product of R and S

More general, if R = {Rk | k ∈ K} is a (pairwise) distinct
relation class with Rk = [Xk,Γk] for each k ∈ K, then

�R := �
k∈K
Rk :=

266664
Ẇ
k∈K

Xk

�
k∈K

Γk

377775
the distinct (cartesian) product of R

19.6.3 Remark

Obviously, the general distict product on distinct relation

classes is indeed a generalization of the binary ©1 � ©2 in
the usual sense that R� S = �{R,S}, for all relations R and
S with R G S.

19.6.4 Remark Graph table representation

Given two distinct tables, say

R =

a : Z b : Z c : Z
−1 −2 −3

−2 −3 −4

−4 −5 −6

S =

d : Z e : Z
1 2

2 3

Note, that {a, b, c} ∩ {d, e} = ∅, so that R G S is really the
case. So we can produce the distinct product by joining each
of the three records in R with each of the two records in S,
obtaining a relation with 3 · 2 = 6 members in its graph.

R� S =

a : Z b : Z c : Z d : Z e : Z
−1 −2 −3 1 2

−2 −3 −4 1 2

−4 −5 −6 1 2

−1 −2 −3 2 3

−2 −3 −4 2 3

−4 −5 −6 2 3

19.6.5 Lemma

If R,S, T are pairwise distinct relations, then

(1) R� (S � T ) = (R� S)� T (associativity)

(2) R� S = S � R (commutativity)

(3) R�⊥ = ⊥x(R) (canceling element)

(4) R�> = R (neutral element)

19.6.6 Proof of 19.6.5

The distinct product of relations is a “typed version” of the
distinct product of (their) graphs. Their properties are closely
related, the ones here resemble the statements in 16.4.3. Sup-
pose R = [X,Γ], S = [Y,Σ], and T = [Z,Π].
(1) Using 16.4.3(1) we obtain

R� (S � T ) =

"
X

Γ

#
�
"
Y ∨̇ Z
Σ� Π

#

=

"
X ∨̇ Y ∨̇ Z
Γ� Σ� Π

#

=

"
X ∨̇ Y
Γ� Σ

#
�
"
Z

Π

#
= (R� S)� T

(2) Using 16.4.3(2) we obtain

R� S =

"
X ∨̇ Y
Γ� Σ

#
=

"
Y ∨̇X
Σ� Γ

#
= S � R

(3) Using 16.4.3(3) we obtain

R�⊥ =

"
X

Γ

#
�
"
〈〉
∅

#
=

"
X � 〈〉
Γ� ∅

#
=

"
X

∅

#
= ⊥X

(4) Using 16.4.3(4) we obtain

R�> =

"
X

Γ

#
�
"
〈〉
{〈〉}

#
=

"
X ∨̇ 〈〉

Γ� {〈〉}

#
=

"
X

Γ

#
= R
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19.6.7 Lemma

If R and S are two distinct relations, then

(1) ¬(R� S) = (¬R� ¬S) ∪ (¬R� S) ∪ (R� ¬S)

(2) ¬R� ¬S ⊆ ¬(R� S)

19.6.8 Proof of 19.6.7

Let R = [Y,Γ] and S = [Z,Σ]. R and S are distinct, so Y G Z.
Let us put X := Y ∨̇ Z, then

⊗X = ⊗(Y ∨̇ Z) = (⊗Y )� (⊗Z)

according to 16.6.5(4). Furthermore, let us put Γ′ := ⊗Y \ Γ
and Σ′ := ⊗Z \ Σ. So ⊗Y is the disjunct union of Γ and Γ′,
and ⊗Z is the disjunct union of Σ and Σ′. ⊗X is a disjunct
union of the following four components:

⊗X = (⊗Y )� (⊗Z)

= (Γ ∪ Γ′)� (Σ ∪ Σ′)

= (Γ� Σ) ∪ (Γ� Σ′) ∪ (Γ′ � Σ) ∪ (Γ′ � Σ′)

With these definitions we have the following proof of (1):

¬(R� S) = ¬
 "

Y

Γ

#
�
"
Z

Σ

#!

= ¬
"

X

Γ� Σ

#

=

"
X

⊗X \ (Γ� Σ)

#

=

"
X

(Γ� Σ′) ∪ (Γ′ � Σ) ∪ (Γ′ � Σ′)

#

=

"
X

Γ� Σ′

#
∪
"

X

Γ′ � Σ

#
∪
"

X

Γ′ � Σ′

#
= (R� ¬S) ∪ (¬R� S) ∪ (¬R� ¬S)

Since (1) is true, (2) immediately follows:

¬R� ¬S ⊆ (R� ¬S) ∪ (¬R� S) ∪ (¬R� ¬S)

= ¬(R� S)

19.7 Concatenation of ordinary re-
lations

19.7.1 Repetition

Recall 5.4.1, that 〈x1, . . . , xn〉 † 〈y1, . . . , ym〉 =
〈x1, . . . , xn, y1, . . . , ym〉 is the concatenation of two tuples.

19.7.2 Definition

For every two ordinary relations

R =

"
X1 ! . . .! Xn

Γ

#
and S =

"
Y1 ! . . .! Ym

Σ

#

we define

R † S :=

264 X1 ! . . .! Xn! Y1 ! . . .! Ym

{ξ † υ | ξ ∈ Γ, υ ∈ Σ}

375
is the concatenation of R and S.

19.7.3 Example"
N! N

{〈1, 2〉, 〈3, 4〉}

#
†
"

N! N
{〈5, 6〉, 〈7, 8〉}

#

=

"
N! N! N! N

{〈1, 2, 5, 6〉, 〈3, 4, 5, 6〉, 〈1, 2, 7, 8〉, 〈3, 4, 7, 8〉}

#

19.7.4 Lemma

For all ordinary relations R,S, T holds:

(1) (R † S) † T = R † (S † T ) (associativity)

(2) R † > = R (> is neutral element for †)
(3) R † ⊥ = ⊥x(R) (⊥ cancels †)

19.7.5 Proof of 19.7.4

(1) Is an immediate consequence of 10.5.3(1), the associativity
of the concatenation of tuples.

(2) If R = [X1 ! . . .! Xn,Γ], then

R † > = R †
"
〈〉
{〈〉}

#
=

"
X1 ! . . .! Xn

{ξ † 〈〉 | ξ ∈ Γ}

#
= R

(3) Again, if R = [X1 ! . . .! Xn,Γ], then

R † ⊥ = R †
"
〈〉
∅

#
=

"
X1 ! . . .! Xn

∅

#
= ⊥〈X1,...,Xn〉
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20 Schema expansion and the semantic operations

20.1 Schema expansion

20.1.1 Definition expansion

Let R = [X,Γ] be relation and Y a schema with Y ^ X.
We define

R ‖ Y :=

264 X ∨ Y

y  ∃x ∈ Γ . x ^ y

375
the expansion of R by Y

20.1.2 Remark table representations

If R = [X,Γ] is a relation and Y a schema with Y ^ X, there
are two intuitive methods to generate R ‖ Y by means of table
representations:
♣ If R is a table and Y is completely finite, we can use a graph

table representation (see 20.1.6).

♣ If X and Y are both completely finite, we can apply boolean
and double tables (see 20.1.5).

Both methods are based on the following lemma.

20.1.3 Lemma construction

Let X = [Xi|i ∈ I] and Y = [Yj |j ∈ J] be two compatible
schemas and R = [X,Γ]. If we put

Y ′ := Y \X = pr(Y, J \ I)
we have

(1) R ‖ Y = R ‖ Y ′

(2) R ‖ Y =

264 X ∨̇ Y ′

Γ� (⊗Y ′)

375
(3) R ‖ Y = R�>Y ′
(4) The graph of the result has the following size:

card(gr(R ‖ Y )) = card(Γ) · card(⊗Y ′)

= card(Γ) ·
Q

j∈J\I
card(Yj)

20.1.4 Proof of 20.1.3

(1) Obviously, X ∨ Y = X ∨̇ Y ′, so

R ‖ Y = [X ∨ Y, {y ∈ ⊗(X ∨ Y ) | ∃x ∈ Γ . x ^ y}]

=
ˆ
X ∨̇ Y ′, {y ∈ ⊗(X ∨̇ Y ′) | ∃x ∈ Γ . x ^ y}

˜
= R ‖ Y ′

(2) Again we have X ∨ Y = X ∨̇ Y ′. X and Y ′ are dis-

tinct, so every y ∈ ⊗(X ∨ Y ′) can uniquely be recon-
structed by y = x ∨̇ z with x := pr(y, I) ∈ ⊗X and
z := pr(y, J \I) ∈ ⊗Y . For such a y holds: (∃x ∈ Γ .x ^ y)
iff x ∈ Γ. So(

y ∈ ⊗(X ∨ Y )

∃x ∈ Γ . x ^ y

)
=

(
x ∨̇ z
x ∈ Γ, z ∈ ⊗Y ′

)
and thus

R ‖ Y ′ =
ˆ
X ∨̇ Y ′, {x ∨̇ y | x ∈ Γ, y ∈ ⊗Y ′}

˜
=
ˆ
X ∨ Y ′,Γ� (⊗Y ′)

˜
(3) We have

R ‖ Y

=

264 X ∨̇ Y ′

Γ� (⊗Y ′)

375 due to (2)

=

24 X
Γ

35�
264 Y ′

⊗Y ′

375 def. 19.6.2 of �

= R�>Y ′ def. 19.3.1 of >
Y ′

(4) There is

card(gr(R ‖ Y ))

= card(Γ�⊗Y ′) see (2)

= card(Γ) · card(⊗Y ′) due to 16.4.10

= card(Γ) ·
Q

j∈J\I
card(Yj) due to 12.1.9

20.1.5 Boolean and double table representation

If X and Y both completely finite schemas, X ^ Y , and
R = [X,Γ], then R ‖ Y can be constructed intuitively by
means of boolean and double tables.

Based on 20.1.3(3) R ‖ Y = R � >Y \X we obtain R ‖ Y by
performing the following steps:
♣ Given X and Y , say

X =

"
a 7→ {1, 2}
b 7→ {1, 2, 3}

#
Y =

264 b 7→ {1, 2, 3}c 7→ {−1,−2}
d 7→ {−1,−2}

375
and R as boolean table, say

R =

a b

1 1 0

2 1 1

1 2 1

2 2 0

1 3 1

2 3 0

♣ First, generate Y \X. In our example, that is

Y \X =

"
c 7→ {−1,−2}
d 7→ {−1,−2}

#
♣ Write >(Y \X) as a graph table, i.e.
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>(Y \X) =

c : {−1,−2} d : {−1,−2}
−1 −1

−2 −1

−1 −2

−2 −2

For our purposes, it is even more intuitive, if we rotate this
table and write it horizontally as

>(Y \X) =
−1 −2 −1 −2 c : {−1,−2}
−1 −1 −2 −2 d : {−1,−2}

♣ Finally, we take R and >(Y \X), i.e.

a b

1 1 0

2 1 1

1 2 1

2 2 0

1 3 1

2 3 0

and
−1 −2 −1 −2 c : {−1,−2}
−1 −1 −2 −2 d : {−1,−2}

and construct the double table of R�>(Y \X), i.e.

−1 −2 −1 −2 c

−1 −1 −2 −2 d

1 1 0 0 0 0

2 1 1 1 1 1

1 2 1 1 1 1

2 2 0 0 0 0

1 3 1 1 1 1

2 3 0 0 0 0

a b

by placing R on the left, >(Y \X) at the top, and copying
the bit values of R throughout each row of the double table.
The result is the double table representation for R ‖ Y .

As predicted in 20.1.3(4), it has 3 · (2 · 2) = 12 member records
(i.e. twelve 1’s in its boolean and double table).

20.1.6 Graph table representation

If R = [X,Γ] is a table and Y a schema such that Y ^ X
and Y \ X is completely finite, we can apply graph tables to
generate R ‖ Y .

Based on 20.1.3(3) R ‖ Y = R � >Y \X and 19.6.4 the graph
table representation of distinct cartesian products, we obtain
R ‖ Y by performing the following steps:
♣ Given X and Y , say

X =

"
a 7→ N
b 7→ N

#
Y =

264 b 7→ N
c 7→ {−1,−2}
d 7→ {−1,−2}

375
such that Y \X is completely finite, which is indeed the case
here, where

Y \X =

"
c 7→ {−1,−2}
d 7→ {−1,−2}

#
Also given the table R, represented as a graph table

R =

a : N b : N
2 1

1 2

1 3

♣ Generate the graph table representation of >(Y \X)

>(Y \X) =

c : {−1,−2} d : {−1,−2}

−1 −1

−2 −1

−1 −2

−2 −2

♣ Generate the distinct cartesian product by using the graph
table representations

R�>(Y \X) =

a : N b : N c : {−1,−2} d : {−1,−2}

2 1 −1 −1

1 2 −1 −1

1 3 −1 −1

2 1 −2 −1

1 2 −2 −1

1 3 −2 −1

2 1 −1 −2

1 2 −1 −2

1 3 −1 −2

2 1 −1 −2

1 2 −1 −2

1 3 −1 −2

The result is a graph table representation of R ‖ Y .

Again, 20.1.3(4) is verified. The R has 3, >(Y \X) has 2 · 2
members, and thus R ‖ Y has 3 · 4 = 12 members, i.e. rows in
its graph table.

20.1.7 Lemma compatibility

If X and Y are two compatible schemas and R ∈ Rel(X),
then R ‖ Y ^ R.

20.1.8 Proof of 20.1.7

X and Y are compatible, so X∨Y ^ X, implying x(R ‖ Y ) ^
x(R), so that R ‖ Y ^ R.

20.1.9 Lemma unification

If R = [X,Γ] and S = [Y,Σ] are two compatible relations,
then

R ‖ Y = R ‖ (X ∨ Y ) , S ‖ (X ∨ Y ) = S ‖ X
More general, if R is a class of (pairwise) compatible rela-
tions, Z :=

W
{x(R) | R ∈ R} is well–defined and

R ‖ Z , S ‖ Z for all R,S ∈ R

20.1.10 Proof of 20.1.7

x (R ‖ Y ) = X ∨ Y = x (S ‖ X), so R ‖ Y = R ‖ (X ∨ Y ) ,
S ‖ (X ∨ Y ) = S ‖ X. And because R ∈ R implies x(R) ≤ Z,
we have x(R ‖ Z) = X ∨Z = Z = Y ∨Z = x(S ‖ Z) and thus

R ‖ Z , S ‖ Z, for all R,S ∈ R.

20.1.11 Lemma

Let R = [X,Γ] be a relation.

(1) If X,Y, Z are pairwise compatible schemas, then
(R ‖ Y ) ‖ Z = R ‖ (Y ∨ Z) (schema accumulation)

(2) If Y is a schema such that Y ^ X, then
(R ‖ Y ) ‖ Y = R ‖ Y (idempotency)

(3) If Y ≤ X, then
R ‖ Y = R (neutral expansions)

20.1.12 Proof of 20.1.11
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(1) We put

Y ′ := pr(Y,@(Y ) \@(X))

Z′ := pr(Z,@(Z) \ (@(X) ∪@(Y )))

so that

X ∨ Y ∨ Z = X ∨̇ Y ′ ∨̇ Z′

We derive

(R ‖ Y ) ‖ Z
= (R�>Y ′ )�>Z′ due to 20.1.3

= R� (>Y ′ �>Z′ ) due to 19.6.5

= R�>(Y ′ ∨̇ Z′)

= R ‖ (Y ′ ∨̇ Z′) due to 20.1.3(3)

= R ‖ (Y ∨ Z) due to 20.1.3(1)

(2) Applying (1), we obtain

(R ‖ Y ) ‖ Y = R ‖ (Y ∨ Y ) = R ‖ Y
(3) Y ≤ X implies Y \X = 〈〉. So applying 20.1.3 gives us

R ‖ Y = R�>〈〉 = R�> = R

where the last step is due to 19.6.5(4).

20.2 Semantic operations on com-
patible relations

20.2.1 Remark introduction

Let R = [X,Γ] and S = [Y,Σ] be two relations. We already
have the operations ⊆,∩,∪ available to compare and combine
R and S. But they are only defined in case X = Y , i.e. if

R , S.

We will now generalize the definition of ⊆,∩,∪ to more power-
ful operations v,u,t, which are defined for the more general
case X ^ Y , i.e. R ^ S.

We use the unification lemma 20.1.9, which tells us that

R ‖ Y , S ‖ X. This way we introduce the new operations by
means of the already existing ones. For example

R u S := (R ‖ Y ) ∩ (S ‖ X) = (R ‖ X ∨ Y ) ∩ (S ‖ X ∨ Y )

20.2.2 Definition boolean operations, extended

Let R = [X,Γ] and S = [Y,Σ] be two compatible relations.
With Z := X ∨ Y we define

R v S :iff (R ‖ Z) ⊆ (S ‖ Z) (subvalence)

R ≡ S :iff (R ‖ Z) = (S ‖ Z) (equivalence)

R u S := (R ‖ Z) ∩ (S ‖ Z) (conjunction)

R t S := (R ‖ Z) ∪ (S ‖ Z) (disjunction)

20.2.3 Definition

As usual, there is a whole range of relations mutating from
v and ≡, namely:

©1 6v ©2 is not ©1 v ©2

©1 6≡ ©2 is not ©1 ≡ ©2

©1 @ ©2 is ©1 v ©2 and ©1 6≡ ©2

©1 w ©2 is ©2 v ©1
etc.

20.2.4 Definition

Let R be a compatible relation class. Then
Z :=

W
{x(R) | R ∈ R}

is a well–defined schema and

Q
R :=

Q
R∈R

R :=

8>><>>:
> if R = ∅

T
R∈R

(R ‖ Z) if R 6= ∅

is the (big) conjunction of R

‘
R :=

‘
R∈R

R :=

8>><>>:
⊥ if R = ∅

S
R∈R

(R ‖ Z) if R 6= ∅

is the (big) disjunction of R

20.2.5 Remark Various table representations

The various table representations for v,≡,u,t are con-
structed according to the given definitions in two steps: first,
calculate R ‖ Y and S ‖ X, then perform the method for
⊆,=,∩,∪, respectively.

As there is nothing really new in this two–step method, we
put the discussion of the graph and boolean table method in
a separate subsection (see 20.3) that may safely be skipped.

20.3 Digression: performing se-
mantic operations with tables

20.3.1 Remark introduction

We now take two tables R and S and perform the new oper-
ations, first in graph table notation and second by means of
boolean table representations.

20.3.2 Graph table representation

Given two relations R = [X,Γ] and S = [Y,Γ] in graph table
notation as

R =

a : {p, q, r} b : {s, t}
p s

q t

and
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S =

b : {s, t} c : {u, v} d : {w}
s u w

s v w

t v w

Note, that R and S are compatible, because @(R)∩@(S) = {b}
and domb(R) = {s, t} = domb(S).
We first join the schemas and obtain

Z := X ∨ Y =

26664
a 7→ {p, q, r}
b 7→ {s, t}
c 7→ {u, v}
d 7→ {w}

37775
We expand R and S with Z according to the method in 20.1.6.
So

R ‖ Z = R�>Z\X

where

Z \X =

"
c 7→ {u, v}
d 7→ {w}

#

so that

R ‖ Z =
a : {p, q, r} b : {s, t}

p s

q t

�
c : {u, v} d : {w}

u w

v w

=

a : {p, q, r} b : {s, t} c : {u, v} d : {w}

p s u w

q t u w

p s v w

q t v w

With the same method for S ‖ Z we obtain

S ‖ Z = S �>Z\Y

= S �>[a 7→{p,q,r}]

=

b : {s, t} c : {u, v} d : {w}

s u w

s v w

t v w

�

a : {p, q, r}

p

q

r

=

a : {p, q, r} b : {s, t} c : {u, v} d : {w}

p s u w

q s u w

r s u w

p s v w

q s v w

r s v w

p t v w

q t v w

r t v w

The relations are made equi–schematic and we construct RuS
as the intersection of the rows in R ‖ Z and S ‖ Z, i.e.

R u S =

a : {p, q, r} b : {s, t} c : {u, v} d : {w}

p s u w

p s v w

q t v w

Accordingly, the union of rows gives us

R t S =

a : {p, q, r} b : {s, t} c : {u, v} d : {w}

p s u w

q s u w

r s u w

q t u w

p s v w

q s v w

r s v w

p t v w

q t v w

r t v w

And comparing the graph tables of R ‖ Z and S ‖ Z, we see
that not every row of the first is a member of the second, so
R 6v S and R 6≡ S.

20.3.3 Boolean table representation

We use the same example relations R = [X,Γ] and S = [Y,Σ]
from 20.3.2 again, but this time in boolean table representa-
tion:

R =

a b

p s 1

q s 0

r s 0

p t 0

q t 1

r t 0

S =

b c d

s u w 1

t u w 0

s v w 1

t v w 1

We join the schemas and again

Z := X ∨ Y =

26664
a 7→ {p, q, r}
b 7→ {s, t}
c 7→ {u, v}
d 7→ {w}

37775
According to the method in 20.1.5 for the double table con-
struction of R ‖ Z, we have

>Z\X =

c d

u w

v w

=
u v c

w w d

so that
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R ‖ Z = R�>Z\X

=

a b

p s 1

q s 0

r s 0

p t 0

q t 1

r t 0

�
u v c

w w d

=

u v c

w w d

p s 1 1

q s 0 0

r s 0 0

p t 0 0

q t 1 1

r t 0 0

a b

=

a b c d

p s u w 1

q s u w 0

r s u w 0

p t u w 0

q t u w 1

r t u w 0

p s v w 1

q s v w 0

r s v w 0

p t v w 0

q t v w 1

r t v w 0

We follow the same procedure for S ‖ Z:

Z \ Y =
h
a 7→ {p, q, r}

i
and

>Z\Y =

a

p

q

r

= p q r a

so that

S ‖ Z = S �>Z\Y

=

b c d

s u w 1

t u w 0

s v w 1

t v w 1

� p q r a

=

p q r a

s u w 1 1 1

t u w 0 0 0

s v w 1 1 1

t v w 1 1 1

b c d

=

a b c d

p s u w 1

q s u w 1

r s u w 1

p t u w 0

q t u w 0

r t u w 0

p s v w 1

q s v w 1

r s v w 1

p t v w 1

q t v w 1

r t v w 1

Finally, we obtain R u S = (R ‖ Z) ∩ (S ‖ Z), i.e.

R u S =

a b c d

p s u w 1 ∧ 1

q s u w 0 ∧ 1

r s u w 0 ∧ 1

p t u w 0 ∧ 0

q t u w 1 ∧ 0

r t u w 0 ∧ 0

p s v w 1 ∧ 1

q s v w 0 ∧ 1

r s v w 0 ∧ 1

p t v w 0 ∧ 1

q t v w 1 ∧ 1

r t v w 0 ∧ 1

=

a b c d

p s u w 1

q s u w 0

r s u w 0

p t u w 0

q t u w 0

r t u w 0

p s v w 1

q s v w 0

r s v w 0

p t v w 0

q t v w 1

r t v w 0

and

R t S =

a b c d

p s u w 1 ∨ 1

q s u w 0 ∨ 1

r s u w 0 ∨ 1

p t u w 0 ∨ 0

q t u w 1 ∨ 0

r t u w 0 ∨ 0

p s v w 1 ∨ 1

q s v w 0 ∨ 1

r s v w 0 ∨ 1

p t v w 0 ∨ 1

q t v w 1 ∨ 1

r t v w 0 ∨ 1

=

a b c d

p s u w 1

q s u w 1

r s u w 1

p t u w 0

q t u w 1

r t u w 0

p s v w 1

q s v w 1

r s v w 1

p t v w 1

q t v w 1

r t v w 1

and we can see that R 6@ S, because (R ‖ Z) 6v (S ‖ Z), which
is evident from their graph table comparison:

R ‖ Z =

a b c d

p s u w 1

q s u w 0

r s u w 0

p t u w 0

q t u w 1

r t u w 0

p s v w 1

q s v w 0

r s v w 0

p t v w 0

q t v w 1

r t v w 0

6v

a b c d

p s u w 1

q s u w 1

r s u w 1

p t u w 0

q t u w 0

r t u w 0

p s v w 1

q s v w 1

r s v w 1

p t v w 1

q t v w 1

r t v w 1

= S ‖ Z

There is one row, where the left table has a 1 and the right
one has a 0, but 1 6≤ 0.

20.4 Properties of semantic opera-
tions

20.4.1 Lemma

For two distinct relations R and S holds

R� S = R u S
For every pairwise distinct relation class R holds

�R =
Q
R

20.4.2 Proof of 20.4.1

First of all let us note that conjunctions are defined for compat-
ible relations and distinct products for (pairwise) distinct rela-
tions. This is a proper generalization, because distinct records
are compatible, according to 19.1.8(1).

Since R�S = �{R,S}, we only need the proof for �R =
Q
R.
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So suppose R = {Rk | k ∈ K} with Rk = [Xk,Γk] for each

k ∈ K. We put X :=
Ẇ
k∈K

Xk and

Γlk :=

(
Γk if l = k

⊗Xl if l 6= k
for all k, l ∈ L

Then, for each k ∈ K, the graph record {Γlk | l ∈ K} is rela-
tively distinct with a well–defined distinct product

�
l∈K

Γlk = Γk �
 

�
l∈K\{k}

⊗Xl

!
= Γk �⊗(X \Xk)

according to 16.6.5(2). And since Γlk ⊆ ⊗Xl for all k, l ∈ K,
we obtain

T
k∈K

Γlk = Γl

for each l ∈ L. The distributivity law of 16.6.1 gives us

T
k∈K

„
�
l∈K

Γlk

«
= �
l∈K

 T
k∈K

Γlk

!
= �
l∈K

Γl

We put things together and obtain

Q
R

=
T
k∈K

(Rk ‖ X) def. 20.2.2 of
Q

=
T
k∈K

“
Rk �>(X\Xk)

”
due to 20.1.3(3)

=
T
k∈K

264 Xk ∨̇ (X \Xk)

Γk �⊗(X \Xk)

375 due to 20.1.3(2)

=
T
k∈K

2664
X

�
l∈K

Γlk

3775

=

26664
X

T
k∈K

„
�
l∈K

Γlk

«
37775 def. 19.5.3 of

T

=

2664 X

�
k∈K

Γk

3775
= �R

20.4.3 Remark generalization

Note, that Rel(X) ⊆ Prel(X), for every schema X.

And in a certain sense, the algebra on Rel(X)

(Rel(X),⊆,⊥X ,>X ,∩,∪,
T
,
S
,¬)

is a kind of subalgebra or “quasi–subalgebra” of the structure

(Prel(X),v,⊥,>,u,t,
Q
,
‘
,¬)

“Quasi” means “up to equivalence”. The precise details of
the resemblence between these two structures is given in the
following lemma.

20.4.4 Lemma generalization

Let X be a schema. For all R,S ∈ Rel(X) and every
R ⊆ Rel(X) holds:

(1) ⊥X ≡ ⊥
(2) >X ≡ >
(3) R ⊆ S iff R v S
(4) R = S iff R ≡ S
(5) R ∩ S = R u S
(6) R ∪ S = R t S
(7)

T
R ≡

Q
R

(8)
S
R ≡

‘
R

(9)
T
R =

Q
R iff (R 6= ∅ or X = 〈〉)

(10)
S
R =

‘
R iff (R 6= ∅ or X = 〈〉)

20.4.5 Proof of 20.4.4

(1) ⊥X ‖ X = ⊥ ‖ X, so ⊥X ≡ ⊥, and the same holds for (2)

>X ≡ >.

For R,S ∈ Rel(X), there is x(R) ∨ x(S) = X ∨ X = X, so
R ‖ X = R and S ‖ X = S. Therefore, (3) R ⊆ S iff R v S,
(4) R = S iff R ≡ S, (5) R∩S = RuS, and (6) R∪S = RtS.

For R ⊆ Rel(X), there is

W
{x(R) | R ∈ R} =

(
X if R 6= ∅
〈〉 if R = ∅

(a) If R 6= ∅, then
Q
R =

T
{(R ‖ Z) | R ∈ R} =

T
R.

(b) If R = ∅ and X = 〈〉, then
Q
R = > = >X =

T
R.

(c) If R = ∅ and X 6= 〈〉, then
Q
R = > 6= >X =

T
R, but

still
Q
R ≡

T
R, due to (2).

So, (a),(b),(c) together proof (7) and (9).
(8) and (10) are proved similary.

20.4.6 Remark accumulation

As a general rule, we can say that: junctions accumulate the
according schemas and attribute classes. The following lemma
20.4.7 is a more precise version of this rule.

20.4.7 Lemma accumulation

Let X be a schema. Let R,S, T ∈ Prel(X) and R ⊆
Prel(X).

(1) x(⊥) = 〈〉
(2) x(>) = 〈〉
(3) x(¬R) = x(R)

(4) x(R u S) = x(R) ∨ x(S)

(5) x(R t S) = x(R) ∨ x(S)

(6) x(
Q
R) =

W
{x(R) | R ∈ R}

(7) x(
‘
R) =

W
{x(R) | R ∈ R}

20.4.8 Proof of 20.4.7

All these statements are immediate consequences of the ac-
cording operation definition.
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20.4.9 Lemma equivalence

(1) For every two compatible relations R and S,

R ≡ S iff R v S and S v R
(2) If R = [Y,Γ] is a relation and Z a schema with Z ^ Y ,

then

R ≡ R ‖ Z
(3) Let Y and Z be two schemas, such that Z is proper

and Y G Z. For all R,S ∈ Prel(Y ) holds:

(a) R ⊆ S iff R ‖ Z ⊆ S ‖ Z
(b) R = S iff R ‖ Z = S ‖ Z

(4) For every proper schema X and all R,S ∈ Prel(X)

(a) R v S iff R ‖ X ⊆ S ‖ X
(b) R ≡ S iff R ‖ X = S ‖ X

(5) For every schema X and all R,S ∈ Prel(X):

R = S iff R ≡ S and R , S

20.4.10 Proof of 20.4.9

(1) Let Z = x(R) ∨ x(S). There is R ≡ S iff R ‖ Z = S ‖ Z
iff (R ‖ Z ⊆ S ‖ Z and R ‖ Z ⊆ S ‖ Z) iff (R v S and
S v R).

(2) x(R) ∨ x(R ‖ Z) = Y ∨ Z, so R ≡ R ‖ Z iff R ‖
Y ∨ Z = (R ‖ Z) ‖ Y ∨ Z. According to lemma 20.1.11(1),
(R ‖ Z) ‖ Y ∨ Z = R ‖ (Z ∨ (Y ∨ Z)) = R ‖ Y ∨ Z. Thus
R ≡ R ‖ Z.

(3) Note, that distinct schemas are compatible, so R ‖ Z and
S ‖ Z are well–defined. Z is a proper schema, so ⊗Z 6= ∅,
according to 12.1.12(1). Let R = [Y,Γ] and S = [Y,Σ], then

R ‖ Z =
ˆ
Y ∨ Z, {y′ ∨ z | y′ ∈ Γ, z ∈ ⊗Z}

˜
S ‖ Z =

ˆ
Y ∨ Z, {y′′ ∨ z | y′′ ∈ Σ, z ∈ ⊗Z}

˜
For the proof of (a) we distinguish two cases:

♣ Suppose, R ⊆ S. Then Γ ⊆ Σ and thus {y′ ∨ z |
y′ ∈ Γ, z ∈ ⊗Z} ⊆ {y′′ ∨ z | y′′ ∈ Σ, z ∈ ⊗Z} and
R ‖ Z ⊆ S ‖ Z.

♣ Suppose, R 6⊆ S. Then Γ 6⊆ Σ, and because ⊗Z 6= ∅,
{y′ ∨ z | y′ ∈ Γ, z ∈ ⊗Z} 6⊆ {y′′ ∨ z | y′′ ∈ Σ, z ∈ ⊗Z}
and thus R ‖ Z 6⊆ S ‖ Z.

Thus R ⊆ S iff R ‖ Z ⊆ S ‖ Z.

(b) can be proved similarly with “=” instead of “⊆”, but it
is also an immediate consequence of (a) and (1).

(4) (a) Let Y := x(R) ∨ x(S) and Z := X \ Y . Then Y G Z,
and Z is proper, because X is proper. We derive

R v S
⇔ R ‖ Y ⊆ S ‖ Y def. 20.2.2

⇔ (R ‖ Y ) ‖ Z ⊆ (S ‖ Y ) ‖ Z due to (3)(a)

⇔ R ‖ Y ∨ Z ⊆ S ‖ Y ∨ Z due to 20.1.3(1)

⇔ R ‖ X ⊆ S ‖ X

(b) can be proved similarly, but it is also an immediate con-
sequence of (a) and (1).

(5) Let R = [Y,Γ] and S = [Z,Σ].

Suppose, R = S. Then Y = Z and Γ = Σ, and thus R , S
and R ≡ S.
On the other hand, suppose, R , S and R ≡ S. R , S
means Y = Z. Therefore R ‖ Z = R and S ‖ Y = S. So
R ≡ S implies R = S.

20.4.11 Repetition quasi–ordered class

A structure
˙
Q,v,≡

¸
is a quasi–ordered class, if

(1) Q is a class

(2) v is a quasi–order on Q in the sense that

(a) a v b and b v c implies a v c, for all a, b, c ∈ Q (tran-
sitivity)

(b) a v a, for all a ∈ Q (reflexivity)

(3) ≡ is the equivalence (relation) of v in the sense that

a ≡ b iff (a v b and b v a) for all a, b ∈ Q

In that case, ≡ is indeed an equivalence relation (i.e. transi-
tive, reflexive and symmetric).

Because ≡ is given by v through (3), a quasi–ordered class is

more often simply given by
˙
Q,v

¸
only.

20.4.12 Lemma quasi–order˙
Prel(X),v,≡

¸
is a quasi–ordered class, for every proper

schema X.

20.4.13 Proof of 20.4.12

We need to show that, for a given schema X,
˙
Prel(X),v,≡

¸
satisfies the properties of 20.4.11.
Well, v certainly is reflexive. And by applying 20.4.9 we have

R v S and S v T

implies R ‖ X ⊆ S ‖ X and S ‖ X ⊆ T ⊆ X

implies R ‖ X ⊆ T ‖ X

implies R v T

for all R,S, T ∈ Prel(X), i.e. v is transitive, too.
And from 20.4.9(1), we already know that ≡ is the equivalence
relation of v.

20.4.14 Remark Remark

It is important to note, that
˙
Prel(X),v,≡

¸
is usually not a

quasi–ordered class anymore, if the schema X is not proper.

Suppose, X is not proper, say

X =

264 a 7→ {p, q}b 7→ ∅
c 7→ {r, s}

375
and R,S, T ∈ Prel(X) are given by

R =

a : {p, q}
p

q

S = b : ∅ T =
c : {r, s}

r

then

R ‖ x(S) = a : {p, q} b : ∅ = S ‖ x(R)
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T ‖ x(S) = b : ∅ c : {r, s} = S ‖ x(T )

R ‖ x(T ) =

a : c :

{p, q} {r, s}
p r

q r

p s

q s

6=

a : c :

{p, q} {r, s}
p r

q r

= T ‖ x(R)

and so

R ≡ S and S ≡ T but R 6≡ T

The transitivity of ≡ is violated and ≡ is not an equivalence
relation anymore. Neither is v a quasi–order on this example
Prel(X).

20.4.15 Lemma distributivity of expansion over boolean

junctions

Let X be a proper schema and Y ∈ Proj(X).

(1) ⊥ ‖ Y ≡ ⊥
(2) > ‖ Y ≡ >
(3) (¬R) ‖ Y = ¬(R ‖ Y ) for every R ∈ Prel(X)

(4) (R u S) ‖ Y = (R ‖ Y ) u (S ‖ Y ) for all
R,S ∈ Prel(X)

(5) (R t S) ‖ Y = (R ‖ Y ) t (S ‖ Y ) for all
R,S ∈ Prel(X)

(6) R v S iff R ‖ Y v S ‖ Y for all R,S ∈ Prel(X)

(7) R ≡ S iff R ‖ Y ≡ S ‖ Y for all R,S ∈ Prel(X)

(8) For every R ⊆ Prel(X)

(
Q
R) ‖ Y ≡

Q
R∈R

(R ‖ Y )

(
Q
R) ‖ Y =

Q
R∈R

(R ‖ Y ) iff (R 6= ∅ or Y = 〈〉)

(9) For every R ⊆ Prel(X)

(
‘
R) ‖ Y ≡

‘
R∈R

(R ‖ Y )

(
‘
R) ‖ Y =

‘
R∈R

(R ‖ Y ) iff (R 6= ∅ or Y = 〈〉)

20.4.16 Proof of 20.4.15

First of all, let us note that U ^ Y , for every R = [U,Γ] ∈
Prel(X) and Y ∈ Proj(X). So all operations, in particular all
expansions, occuring in this lemma, are well–defined.
(1) ⊥ = [〈〉, ∅], 〈〉 ^ Y , and so ⊥ ‖ Y ≡ ⊥, according to

20.4.9(2).

(2) similar to (1)

(3) If R = [U,Γ], we put Y ′ := Y \ U and obtain

(¬R) ‖ Y

=

"
U

⊗U \ Γ

#
‖ Y def. 19.4.1 of ¬

=

"
U

⊗U \ Γ

#
‖ Y ′ due to 20.1.3(1)

=

264 U ∨̇ Y ′

(⊗U \ Γ)�⊗Y ′

375 due to 20.1.3(2)

=

264 U ∨̇ Y ′

(⊗U �⊗Y ′) \ (Γ�⊗Y ′)

375 due to 16.6.1(3)

=

264 U ∨̇ Y ′

(⊗(U ∨̇ Y ′)) \ (Γ�⊗Y ′)

375 due to 16.6.5(4)

= ¬
"
U ∨̇ Y ′

Γ�⊗Y ′

#
due to 19.4.1 again

= ¬
 "

U

Γ

#
‖ Y ′

!
due to 20.1.3(2)

= ¬
`
R ‖ Y ′

´
definition of R

= ¬ (R ‖ Y ) due to 20.1.3(1)

We now first proof (8) and (9), which turn out to be general-
izations of (4) and (5), respectively.

(8) Let R = {Ri | i ∈ I} ⊆ Prel(X) with Ri = [Xi,Γi] for
i ∈ I. We put

Z :=
W
{Xi | i ∈ I}

Y ′ := Y \ Z

Zi := Z \Xi for each i ∈ I

Yi := Y \Xi for each i ∈ I

Z′i := Z \ (Y ∨Xi) for each i ∈ I

so that

(a) Z ∨ Y = Z ∨̇ Y ′

(b) Z ∨ Y = Yi ∨̇ Z′i ∨̇Xi for each i ∈ I
(c) Z ∨ Y = Y ′i ∨̇ Zi ∨̇Xi for each i ∈ I
(d) Γi� (⊗Yi)� (⊗Z′i) = Γi� (⊗Y ′i )� (⊗Zi) for each i ∈ I

as the following diagrams illustrate:

Z

Y

Y ′

Zi

Y ′

Xi���� Z′i

Yi

Xi����

First, let us suppose that R 6= ∅, i.e. I 6= ∅, then

(
Q
R) ‖ Y

=

 T
i∈I

(Ri ‖ Z)

!
‖ Y def. 20.2.4 of

Q

=

 T
i∈I

(Ri ‖ Z)

!
‖ Y ′ due to 20.1.3(1)

=

 T
i∈I

(Ri ‖ Zi)
!
‖ Y ′ again 20.1.3(1)

=

0BB@ T
i∈I

264 Xi ∨̇ Zi

Γi � (⊗Zi)

375
1CCA ‖ Y ′ 20.1.3(2)

=

2664
ZT

i∈I
(Γi � (⊗Zi))

3775 ‖ Y ′ def. 19.5.3 of
T



Theory algebras on relations www.bucephalus.org 130

=

266664
Z ∨̇ Y ′ T

i∈I
(Γi � (⊗Zi))

!
� (⊗Y ′)

377775 due to 20.1.3(2)

=

2664
Z ∨̇ Y ′T

i∈I

`
Γi � (⊗Zi)� (⊗Y ′)

´
3775 due to 16.6.1(5)

=

2664
Z ∨̇ Y ′T

i∈I

`
Γi � (⊗Yi)� (⊗Z′i)

´
3775 due to (d)

=
T
i∈I

264 Z ∨̇ Y ′`
Γi � (⊗Yi)� (⊗Z′i)

´
375 due to 19.5.3

=
T
i∈I

264 (Xi ∨̇ Yi) ∨̇ Z′i`
(Γi � (⊗Yi))� (⊗Z′i)

´
375 due to (b)

=
T
i∈I

0BB@
264 (Xi ∨̇ Yi)

((Γi � (⊗Yi)))

375
1CCA ‖ Z′i due to 20.1.3(2)

=
T
i∈I

(Ri ‖ Yi) ‖ Z′i due to 20.1.3(2) again

On the other hand, if R = ∅, then

(
Q
R) ‖ Y

= > ‖ Y definition 20.2.4 of
Q

≡ > due to (2)

=
Q
∅ again, def. 20.2.4 of

Q
=
Q
i∈∅

(Ri ‖ Y )

And obviously, this equivalence

(
Q
R) ‖ Y ≡

Q
{R ‖ Y | R ∈ R}

turns into the identity

(
Q
R) ‖ Y =

Q
{R ‖ Y | R ∈ R}

exactly in case Y = 〈〉.
So putting things together we have, for everyR ⊆ Prel(X),

(
Q
R) ‖ Y ≡

Q
R∈R

(R ‖ Y )

and

(
Q
R) ‖ Y =

Q
R∈R

(R ‖ Y ) iff (R 6= ∅ or Y = 〈〉)

(9) Proof similar to (8). The central step in (8) is the applica-
tion of the distributivity lemma 16.6.1(5) for distinct prod-
ucts over intersections. A similar statement 16.6.1(4) is true
for unions (even including the empty class case). The rest
of the proof is very much the same.

(4) We put Z := x(R) ∨ x(S) and obtain

R u S = (R ‖ Z) ∩ (S ‖ Z)

=
T
{(R ‖ Z), (S ‖ Z)}

=
Q
{R,S}

so (3) is just a special case of (8) with R = {R,S}.
(5) Similar to (5).

(6) For arbitrary R,S ∈ Prel(X) holds R ≡ R ‖ Y , due to
20.4.9(2), and thus R v R ‖ Y and R ‖ Y v R, due to
20.4.11(3). So, R v S implies R ‖ Y v R v S v S ‖ Y
implies R ‖ Y v S ‖ Y , since v is transitive. On the other
hand, R ‖ Y v S ‖ Y implies R v R ‖ Y v S ‖ Y v S
implies R v S. Thus R v S iff R ‖ Y v S ‖ Y .

(7) Follows from (6) with 20.4.11(3).

20.4.17 Lemma

For every schema Y holds:

(1) ⊥ ‖ Y = ⊥Y
(2) > ‖ Y = >Y
And if R = [X,Γ] is a relation with Y ^ X, then

(3) R ‖ Y = R u >Y
(4) R ‖ Y = R t ⊥Y

20.4.18 Proof of 20.4.17

(1) We obtain

⊥ ‖ Y =

"
〈〉
∅

#
‖ Y =

"
〈〉 ∨̇ Y
∅ � ⊗Y

#
=

"
Y

∅

#
= ⊥Y

by applying 20.1.3 and definition 19.3.1 of ⊥ and ⊥Y .

(2) Similar to (1) we obtain

> ‖ Y =

"
〈〉
{〈〉}

#
‖ Y =

"
〈〉 ∨̇ Y
{〈〉} � ⊗Y

#
=

"
Y

⊗Y

#
= >Y

(3) We obtain

R u >Y
= (R ‖ (X ∨ Y )) ∩ (>Y ‖ (X ∨ Y ))

def. ?? of u

= (R ‖ (Y \X)) ∩ (>Y ‖ (X \ Y ))
due to 20.1.3(1)

=

0BB@
24 X

Γ

35 ‖ (Y \X)

1CCA ∩
0BB@
24 Y

⊗Y

35 ‖ (X \ Y )

1CCA
def. of R and >Y

=

264 X ∨̇ (Y \X)

Γ�⊗(Y \X)

375 ∩
264 Y ∨̇ (X \ Y )

⊗Y �⊗(X \ Y )

375
due to 20.1.3(2)

=

264 X ∨̇ (Y \X)

Γ�⊗(Y \X)

375 ∩
264 Y ∨̇ (X \ Y )

⊗(Y ∨̇ (X \ Y ))

375
due to 16.6.5(4)

=

264 X ∨ Y

Γ�⊗(Y \X)

375 ∩
264 X ∨ Y

⊗(X ∨ Y )

375

=

264 X ∨ Y

(Γ�⊗(Y \X)) ∩ ⊗(X ∨ Y )

375
def. 19.5.1 of ∩

=

264 X ∨ Y

Γ�⊗(Y \X)

375
because (Γ � ⊗(Y \X)) ⊆ ⊗(X ∨ Y )

= R ‖ (Y \X) due to 20.1.3(2), again

= R ‖ Y due to 20.1.3(1), again

(4) The proof is similar to (3) and we may skip some steps

R t ⊥Y

=

0BB@
24 X

Γ

35 ‖ (Y \X)

1CCA ∪
0BB@
264 Y
∅

375 ‖ (X \ Y )

1CCA
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=

264 X ∨̇ (Y \X)

Γ�⊗(Y \X)

375 ∪
264 Y ∨̇ (X \ Y )

∅ � ⊗(X \ Y )

375
due to 20.1.3(2)

=

264 X ∨ Y

Γ�⊗(Y \X)

375 ∪
264 Y ∨X
∅

375
due to 16.4.3(3)

=

264 X ∨ Y

Γ�⊗(Y \X)

375
= R ‖ Y

20.4.19 Lemma

Let X be a proper schema. In
˙
Prel (X) ,v

¸
holds for

every R ⊆ Prel (X) and all R,S ∈ Prel (X)

(1)
Q
R is a greatest lower bound of R

(2)
‘
R is a least upper bound of R

(3) R u S is a greatest lower bound of R and S

(4) R t S is a least upper bound of R and S

20.4.20 Proof of 20.4.19

(1) Let R ∈ P(Prel(X)). Then

♣
Q
R is a lower bound of R:

According to 19.1.10, R is compatible and Y :=
W
{x(R) |

R ∈ R} is well defined. If S ∈ R, then
Q
R =

T
{R ‖ Y |

R ∈ R} ⊆ S ‖ Y , so
Q
R v S.

♣
Q
R is a greatest lower bound of R:

Let T ∈ Prel(X) with
Q
R v T v S for all S ∈ R. Ac-

cording to lemma 20.4.9(4)(a), this implies
Q
R ‖ X ⊆

T ‖ X ⊆ S ‖ X for all S ∈ R, so that
T
{R ‖ X |

R ∈ R} ⊆ T ‖ X ⊆ S ‖ X for all S ∈ R. ThusT
{R ‖ X | R ∈ R} = T ‖ X, i.e.

Q
R ≡ T , due to

lemma 20.4.9(4)(b).

(2) Proof similar to (1).

(3) Is true because R u S ≡
Q
{R,S} (see 20.4.21(9)) and

statement (1).

(4) This is true due to RtS ≡
‘
{R,S} (see 20.4.21(10)) and

(2).

20.4.21 Lemma

Let X be a proper schema. For all R,S, T ∈ Prel(X) and
all R ⊆ Prel(X) holds:

(1) > u R = R (> is neutral element of u)

(2) ⊥ t R = R (⊥ is neutral element of t)

(3) R u R = R (u is idempotent)

(4) R t R = R (t is idempotent)

(5) R u (S u T ) = (R u S) u T (u is associative)

(6) R t (S t T ) = (R t S) t T (t is associative)

(7) R u S = S u R (u is commutative)

(8) R t S = S t R (t is commutative)

(9) R u S =
Q
{R,S} (u is special case of

Q
)

(10) R t S =
‘
{R,S} (t is special case of

‘
)

(11) S u
‘
R =

‘
{S u R | R ∈ R} (full distributivity)

(12) S t
Q
R =

Q
{S t R | R ∈ R} (full distributivity)

(13) ¬
Q
R =

‘
{¬R | R ∈ R} (de Morgan’s law)

(14) ¬
‘
R =

Q
{¬R | R ∈ R} (de Morgan’s law)

(15) ⊥ u R ≡ ⊥ (⊥ quasi–cancels u)

(16) > t R ≡ > (> quasi–cancels t)

(17) ⊥ v R (⊥ is a least element)

(18) R v > (> is a greatest element)

(19)
Q
{R} = R (

Q
is idempotent)

(20)
‘
{R} = R (

‘
is idempotent)

(21) R u ¬R ≡ ⊥ (u–quasi–complement)

(22) R t ¬R ≡ > (t–quasi–complement)

20.4.22 Proof of 20.4.21

Suppose R,S, T ∈ Prel(X) and R ⊆ Prel(X) are given by
R = [Y,Γ], S =

ˆ
Y ′,Γ′

˜
, T =

ˆ
Y ′′,Γ′′

˜
, and R = {Rk | k ∈

K} with Rk = [Yk,Γk] for each k ∈ K.

(1) >uR =

 "
〈〉
{〈〉}

#
‖ Y

!
∩
 "

Y

Γ

#
‖ Y

!
=

"
Y

⊗Y

#
∩
"
Y

Γ

#
="

Y

Γ

#
= R

(2) ⊥ t R =

 "
〈〉
∅

#
‖ Y

!
∪
 "

Y

Γ

#
‖ Y

!
=

"
Y

∅

#
∪
"
Y

Γ

#
="

Y

Γ

#
= R

(3) RuR = (R ‖ Y )∩(R ‖ Y ) = R∩R =

"
Y

Γ ∩ Γ

#
=

"
Y

Γ

#
= R

(4) RtR = (R ‖ Y )∪(R ‖ Y ) = R∪R =

"
Y

Γ ∪ Γ

#
=

"
Y

Γ

#
= R

(5) Let us put Z := Y ∨Y ′ ∨Y ′′. There is x(RuS) = Y ∨Y ′
and x(S u T ) = Y ′ ∨ Y ′′, so that
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R u (S u T )

= R ‖ (Y ∨ (Y ′ ∨ Y ′′)) ∩ ((S u T ) ‖ (Y ∨ (Y ′ ∨ Y ′′)))

= R ‖ Z ∩ ((S u T ) ‖ Z)

= R ‖ Z ∩ (S ‖ Z u T ‖ Z)

= R ‖ Z ∩ (S ‖ Z ∩ T ‖ Z)

= (R ‖ Z ∩ S ‖ Z) ∩ T ‖ Z

= (R ‖ Z u S ‖ Z) ∩ T ‖ Z

= ((R u S) ‖ Z) ∩ T ‖ Z

= ((R u S) ‖ ((Y ∨ Y ′) ∨ Y ′′)) ∩ T ‖ ((Y ∨ Y ′) ∨ Y ′′)

= (R u S) u T

(6) Same as (5) with “u” and “∩” replaced by “t” and “∪”,
respectively.

(7) Obvious by now.

(8) See (7).

(9) R u S = (R ‖ (Y ∨ Y ′)) ∩ (S ‖ (Y ∨ Y ′)) =T˘
(R ‖ (Y ∨ Y ′)), (S ‖ (Y ∨ Y ′))

¯
=
Q
{R,S}

(10) Similar to (9).

(11) We define Z :=
W
{Yk | k ∈ K} and obtain

S u
‘
R

= (S ‖ Y ′ ∨ Z) ∩ (
‘
R ‖ Y ′ ∨ Z)

def. 20.2.2 of u

= (S ‖ Y ′ ∨ Z) ∩
‘
k∈K

`
Rk ‖ Y ′ ∨ Z

´
due to 20.4.15(9)

= (S ‖ Y ′ ∨ Z) ∩
S
k∈K

`
Rk ‖ Y ′ ∨ Z ‖ Y ′ ∨ Z

´
def. 20.2.4 of

‘
= (S ‖ Y ′ ∨ Z) ∩

S
k∈K

`
Rk ‖ Y ′ ∨ Z

´
due to 20.1.11(1)

=
S
k∈K

`
(S ‖ Y ′ ∨ Z) ∩ (Rk ‖ Y ′ ∨ Z)

´
due to the distributivity of

S
and ∩

=
S
k∈K

`
(S ‖ Y ′ ∨ Z) u (Rk ‖ Y ′ ∨ Z)

´
due to 20.4.4(5)

=
S
k∈K

`
(S u Rk) ‖ Y ′ ∨ Z

´
due to 20.4.15(4)

=
‘
k∈K

(S u Rk)

again def. 20.2.4 of
‘

(12) Similar to (11).

(13) Let Z :=
W
{x(R) | R ∈ R}, then

¬
Q
R

= ¬
T
R∈R

(R ‖ Z)

=
S
R∈R
¬(R ‖ Z) due to 19.5.14(13)

=
S
R∈R

(¬R ‖ Z) due to ??(3)

=
‘
R∈R

(¬R)

(14) Proof similar to (13).

(15) ⊥ u R =

 "
〈〉
∅

#
‖ Y

!
∩
 "

Y

Γ

#
‖ Y

!
=

"
Y

∅

#
∩
"
Y

Γ

#
="

Y

∅

#
= ⊥Y ≡ ⊥

(16) >tR =

 "
〈〉
{〈〉}

#
‖ Y

!
∪
 "

Y

Γ

#
‖ Y

!
=

"
Y

⊗Y

#
∪
"
Y

Γ

#
="

Y

⊗Y

#
= >Y ≡ >

(17) ⊥ v R iff ⊥ ‖ Y ⊆ R iff [Y, ∅] ⊆ [Y,Γ] iff ∅ ⊆ Γ, which is

always the case.

(18) R v > iff R ⊆ > ‖ Y iff [Y,Γ] ⊆ [Y,⊗Y ] iff Γ ⊆ ⊗Y ,
which is always the case.

(19) We apply (3) and obtain
Q
{R} =

Q
{R,R} = RuR = R

(20) Similar to (19).

(21) We have

R u ¬R =

"
Y

Γ

#
u
"

Y

(⊗Y ) \ Γ

#

=

"
Y

Γ ∩ ((⊗Y ) \ Γ)

#

=

"
Y

∅

#

= ⊥Y

≡ ⊥

(22) We have

R t ¬R =

"
Y

Γ

#
t
"

Y

(⊗Y ) \ Γ

#

=

"
Y

Γ ∪ ((⊗Y ) \ Γ)

#

=

"
Y

⊗Y

#

= >Y

≡ >

20.4.23 Definition notation

The monoid-properties of u and t, i.e. the associativity
(20.4.21(5) and (6)) and the existence of neutral elements
(20.4.21(1) and (2)), allow us to use the following abbrevi-
ating notations:

R1 u . . . u Rn :=

(
> if n = 0

R1 u (R2 u . . . u Rn) if n > 0

R1 t . . . t Rn :=

(
⊥ if n = 0

R1 t (R2 t . . . t Rn) if n > 0

for every list R1, . . . , Rn of (pairwise) compatible rela-
tions.

20.4.24 Lemma

For every proper schema X and all R,S ∈ Prel(X), the
following statements are equivalent:

(1) R v S
(2) ¬S v ¬R
(3) R t S ≡ S
(4) R u S ≡ R
(5) R u ¬S ≡ ⊥
(6) ¬R t S ≡ >

20.4.25 Proof of 20.4.24

Suppose, R and S are given as R = [Y,Γ] and S = [Z,Σ].
Below we will provide the proof by showing, that (1) is equiv-
alent to (2),...,(6), each. But first let us recall, that for every
class C and all A,B ∈ P(C),
(a) A ⊆ B iff C \ B ⊆ C \ A
(b) A ⊆ B iff A ∪ B = B

(c) A ⊆ B iff A ∩ B = A

(d) A ⊆ B iff A ∩ (C \ B) = ∅
(e) A ⊆ B iff (C \ B) ∪ A = C
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Furthermore, we have

R ‖ Y ∨ Z

=

"
Y

Γ

#
‖ (Z \ Y ) due to 20.1.3(1)

=

"
Y ∨̇ (Z \ Y )

Γ�⊗(Z \ Y )

#
due to 20.1.3(2)

=

"
Y ∨ Z

Γ�⊗(Z \ Y )

#

and

(¬R) ‖ Y ∨ Z

=

"
Y

⊗Y \ Γ

#
‖ Y ∨ Z

def. 19.4.1 of ¬

=

"
Y ∨̇ (Z \ Y )

(⊗Y \ Γ)�⊗(Z \ Y )

#
due to 20.1.3

=

"
Y ∨ Z

(⊗Y �⊗(Z \ Y )) \ (Γ�⊗(Z \ Y ))

#
due to 16.6.1(3)

Similarly, we find that

S ‖ Y ∨ Z =

"
Y ∨ Z

Σ�⊗(Y \ Z)

#

(¬S) ‖ Y ∨ Z =

"
Y ∨ Z

(⊗Z �⊗(Y \ Z)) \ (Σ�⊗(Y \ Z))

#

Now, a proof of “(1) iff (2)” is given by

R v S
iff R ‖ Y ∨ Z ⊆ S ‖ Y ∨ Z def. ?? of v

iff

"
Y ∨ Z

Γ�⊗(Z \ Y )

#
⊆
"

Y ∨ Z
Σ�⊗(Y \ Z)

#
iff Γ�⊗(Z \ Y ) ⊆ Σ�⊗(Y \ Z)

iff

0@ ⊗(Y ∨ Z) \ (Σ�⊗(Y \ Z))

⊆ ⊗(Y ∨ Z) \ (Γ�⊗(Z \ Y ))

1A due to (a)

iff

0@ ⊗(Z ∨̇ (Y \ Z)) \ (Σ�⊗(Y \ Z))

⊆ ⊗(Y ∨̇ (Z \ Y )) \ (Γ�⊗(Z \ Y ))

1A
iff

0@ (⊗Z �⊗(Y \ Z)) \ (Σ�⊗(Y \ Z))

⊆ (⊗Y �⊗(Z \ Y )) \ (Γ�⊗(Z \ Y ))

1A
due to 16.6.5(4)

iff

0@ (⊗Z \ Σ)�⊗(Y \ Z)

⊆ (⊗Y \ Γ)�⊗(Z \ Y )

1A due to 16.6.1(3)

iff

"
Y ∨ Z

(⊗Z \ Σ)�⊗(Y \ Z)

#
⊆
"

Y ∨ Z
(⊗Y \ Γ)�⊗(Z \ Y )

#
iff (¬S) ‖ Y ∨ Z ⊆ (¬R) ‖ Y ∨ Z
iff ¬S v ¬R

A proof of “(1) iff (3)” is given by

R t S ≡ S
iff (R t S) ‖ Y ∨ Z = S ‖ Y ∨ Z

def. 20.2.2 of ≡

iff (R ‖ Y ∨ Z) t (R ‖ Y ∨ Z) = S ‖ Y ∨ Z
due to 20.4.15(5)

iff (R ‖ Y ∨ Z) ∪ (S ‖ Y ∨ Z) ⊆ (S ‖ Y ∨ Z)
def. 20.2.2 of t

iff

"
Y ∨ Z

Γ�⊗(Z \ Y )

#
∪
"

Y ∨ Z
Σ�⊗(Y \ Z)

#
⊆
"

Y ∨ Z
Σ�⊗(Y \ Z)

#
iff (Γ�⊗(Z \ Y )) ∪ (Σ�⊗(Y \ Z)) ⊆ (Σ�⊗(Y \ Z))

iff (Γ�⊗(Z \ Y )) ⊆ (Σ�⊗(Y \ Z)) due to (b)

iff R v S

A proof of “(1) iff (4)” is similarly given by

R u S ≡ S
iff (Γ�⊗(Z \ Y )) ∩ (Σ�⊗(Y \ Z)) ⊆ (Σ�⊗(Y \ Z))

iff (Γ�⊗(Z \ Y )) ⊆ (Σ�⊗(Y \ Z)) due to (c)

iff R v S

A proof of “(1) iff (5)” is similar by using (d).
Finially, (e) can be used to show “(1) iff (6)”.

20.4.26 Lemma congruence

Let X be a proper schema.
If R,R′, S, S′ ∈ Prel(X) with R ≡ S and R′ ≡ S′, then

(1) R v R′ iff S v S′

(2) R u S ≡ R′ u S′

(3) R t S ≡ R′ t S′

(4) ¬R ≡ ¬S
IfR,S ⊆ Prel(X) such that each R ∈ R has an equivalent
S ∈ S and vice versa, then

(5)
T
R ≡

T
S

(6)
S
R ≡

S
S

20.4.27 Proof of 20.4.26

Should be clear by now.

20.4.28 Lemma total distributivity

Let X = [Xi|i ∈ I] be a proper schema. Let L = [Lk|k ∈
K] also be a proper schema and Rkl ∈ Prel(X), for each
k ∈ K and l ∈ Lk. Then

(1)
Q
k∈K

‘
l∈Lk

Rkl =
‘

λ∈⊗L

Q
k∈K
Rkλ(k)

(2)
‘
k∈K

Q
l∈Lk

Rkl =
Q

λ∈⊗L

‘
k∈K
Rkλ(k)

20.4.29 Proof of 20.4.28

Left as exercise.

20.4.30 Lemma

Let X be a proper schema, R ∈ Prel(X), and R = {Rk |
k ∈ K} ⊆ Prel(X). Then

(1) ¬R ≡ ⊥ iff R ≡ >
(2) ¬R ≡ > iff R ≡ ⊥
(3) (∀k ∈ K .Rk ≡ >) iff

Q
R ≡ >

(4) (∀k ∈ K .Rk ≡ ⊥) iff
‘
R ≡ ⊥

(5) (∃k ∈ K .Rk ≡ ⊥) implies
Q
R ≡ ⊥

(6) (∃k ∈ K .Rk ≡ >) implies
‘
R ≡ >
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20.4.31 Proof of 20.4.30

Left as exercise.

20.5 More derived semantic opera-
tions

20.5.1 Remark

In section 8 we introduced additional junctors derived from
quasi–boolean algebras, in particular the multiary subjunctor
“→” and equijunctor “↔” (8.2.2). Here in our final subsec-
tion 20.5 of section 20 , we introduce these junctors for our
(quasi–boolean algebra) of compatible relations. At least the
simple binary versions “©1 → ©2 ” and “©1 ↔ ©2 ”. We also
add the subtraction (or difference) “©1 − ©2 ”.

In the introductory remark 8.0.5 of section 8 , we discouraged
the reader to study that section. So we introduce these new
junctors here along with some lemmata and proofs, that don’t
refer to section 8 .

20.5.2 Definition

For all compatible relations R and S we define:

R− S := R u ¬S (subtraction or difference)

R→ S := ¬R t S (subjunction)

R↔ S := (¬R u ¬S) t (R u S) (equijunction)

20.5.3 Lemma properties of sub– and equijunction

For every proper schema X and all R,S ∈ Prel(X) holds:

(1) x(R→ S) = x(R) ∨ x(S) (subj. schema)

(2) x(R↔ S) = x(R) ∨ x(S) (equij. schema)

(3) R↔ S = (R→ S) u (S → R) (double subj.)

(4) R v S iff R→ S ≡ > (subvalence criterion)

(5) R ≡ S iff R↔ S ≡ > (equivalence criterion)

(6) ⊥ → R ≡ > (left bottom)

(7) > → R = R (left top)

(8) R→ ⊥ = ¬R (right bottom)

(9) R→ > ≡ > (right top)

(10) R↔ ⊥ = ¬R (negative literal)

(11) R↔ > = R (positive literal)

(12) R− S = ¬(R→ S) (subtraction and subjunction)

20.5.4 Proof of 20.5.3

Suppose R = [Y,Γ] and S = [Z,Σ]. R,S ∈ Prel(X) implies
the compatibility of R and S, so all the sub– and equijunction
terms of the lemma are well–defined.
(1) We have

x(R→ S)

= x(¬R t S) def. 20.5.2

= x(¬R) ∨ x(S) due to 20.4.7(5)

= x(R) ∨ x(S) due to 20.4.7(3)

(2) Similar to (1), we have

x(R↔ S) = (x(R) ∨ x(S)) ∨ (x(R) ∨ x(S))

= x(R) ∨ x(S)

(3) Applying definition 20.5.2 of → and ↔ and the boolean
laws from 20.4.21 we obtain

R↔ S

= (¬R u ¬S) t (R u S)

= (¬R t R) u (¬R t S) u (¬S t R) u (¬S t S)

= >Y u (¬R t S) u (¬S t R) u >Z
= (¬R t S) u (¬S t R)

= (R→ S) u (S → R)

(4) We have

R v S
⇔ ¬R t S ≡ > due to 20.4.24

⇔ R→ S ≡ > def. 20.5.2 of →

(5) If R ≡ S, then ¬R u ¬S ≡ ¬R and R u S ≡ R, so that
R↔ S = (¬R u ¬S) t (R u S) ≡ ¬R t R ≡ >.
On the other hand, if R ↔ S ≡ >, then (R → S) u (S →
R) ≡ > according to (3), so R → S ≡ > and S → R ≡ >,
so that R v S and S v R according to (4), which means
R ≡ S according to 20.4.9(1).

(6) We have

⊥ → R

= ¬⊥ t R def. 20.5.2

= > t R due to 19.4.8(1)

≡ > due to 20.4.21(16)

(7) Similar to (6) we have

> → R = ¬> t R = ⊥ t R = R

(8) We have

R→ ⊥
= ¬R t ⊥ def. 20.5.2

= ¬R due to 20.4.21(2)

(9) Similar to (8) we have

R→ > = ¬R t > ≡ >
(10) We have

R↔ ⊥
= (¬R u ¬⊥) t (R u ⊥) def. 20.5.2

= (¬R u >) t ⊥ in particular due to 20.4.21(15)

= ¬R t ⊥ due to 20.4.21(1)

= ¬R due to 20.4.21(2)

(11) Similar to (10) we obtain

R↔ > = (¬R u ¬>) t (R u >)

= (¬R u ⊥) t R

= ⊥ t R

= R

(12) We have

R− S
= R u ¬S def. 20.5.2

= ¬¬(R u ¬S) due to 19.4.6

= ¬(¬R t ¬¬S) due to 20.4.21(13),(9), and (10)

= ¬(¬R t S) due to 19.4.6

= ¬(R→ S) def. 20.5.2
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21 Decreasing the schema of relations

21.1 Introduction and overview

21.1.1 Remark Various operations to decrease the schema

We already have an operation available to increase the schema
of a relation, namely the expander ‖. Decreasing the schema
is a more subtle process and we will present six or seven dif-
ferent operations to do the job. One reason for this variety is
the diversity of possible operation types to express the idea.

Let X = [Xi|i ∈ I] be a schema, R ∈ Rel(X) and Y ≤ X, i.e.
Y = pr (X, J) for some J ⊆ I. Suppose we want to decrease
the schema X of R and Y schall be the schema of the resulting
relation R′. We call this
♣ a reduction of R onto Y , or

♣ a (co)projection of R onto J, or

♣ an elimination of K := I \ J from R

That is already a lot of terminology for basically the same
thing. Nevertheless, the variety is useful. In particular, as
their actual formalizations uses very different approaches.

A reduction of R onto Y is the attempt to find a R′ ∈ Rel(Y )
equivalent to R. But such a R′ exists only in rare cases. In
general, we only have two closest results: the maximal subva-
lent member of Rel(Y ), called the infimum reduction of R onto

Y and written R ⇑ Y , and the minimal supervalent element,

called the supremum reduction of R onto Y , noted as R ⇓ Y .

It is very important to understand the arguments that lead to
these concepts. In 21.1.2 and 21.1.3, we use double tables to
motivate and introduce these reductions.

A projection of R onto J, written pr (R, J) , is an often used

operation on relations and seems the most obvious way of
schema decreasing when we look at the graph table of R: to ob-
tain pr (R, J), simply delete all the columns whose attributes
are not in J.

It will turn out (in 21.6.4(1)(a)), that the projection resem-
bles the supremum reduction: pr (R, J) = R ⇓ Y . In
order to have its dual concept available as well, we intro-

duce the coprojection of R onto J, written cpj (R, J) , with

cpj (R, J) = R ⇑ Y .

Finally, eliminations come in two flavors, accordingly:

R � K := pr (R, J), the supremum elimination, read “the

upper R without K”, and R � K := cpj (R, J), the

infimum elimination, read as “the lower R without K”.

21.1.2 Remark Equivalent reduction and redundant attributes

In the sequel, let a relation R = [X,Γ] and a schema Y with
Y ^ X be given.

We already defined a method to expand the schema X of R by
Y , the resulting relation is R ‖ Y and its expanded schema is
X ∨ Y . R ‖ Y is distinguished from all the other elements of

Rel(X ∨ Y ) by the fact that it is the only one equivalent to
R. We could have defined

R ‖ Y := the S ∈ Rel(Y ) with S ≡ R

Let us now define the inverse operation: a reduction, i.e. an
operation that reduces the schema of relations. For now we
take this term literally and restrict the definition to the case
Y ≤ X. So, in case Y ≤ X, we define the equivalent reduction
of R onto Y as

R m Y := the S ∈ Rel(Y ) with S ≡ R

If such an R m Y exists, it is unique. However, in most cases
it does not exist.

Double tables provide a nice and intuitive way to demonstrate
the situation. We consider the example whereX,Y,R are given
by

X =

26664
a 7→ {1, 2}
b 7→ {2, 3, 4}
c 7→ {1, 2}
d 7→ {2, 3, 4}

37775 Y =

"
a 7→ {1, 2}
b 7→ {2, 3, 4}

#

R =

264 X

x x(a) · x(b) < x(c) + x(d)

375
The double table of R (according to 17.6.1) with Y as left and
X \ Y as top schema is

R =

1 2 1 2 1 2 c

2 2 3 3 4 4 d

1 2 2 < 3 2 < 4 2 < 4 2 < 5 2 < 5 2 < 6
2 2 4 < 3 4 < 4 4 < 4 4 < 5 4 < 5 4 < 6
1 3 3 < 3 3 < 4 3 < 4 3 < 5 3 < 5 3 < 6
2 3 6 < 3 6 < 4 6 < 4 6 < 5 6 < 5 6 < 6
1 4 4 < 3 4 < 4 4 < 4 4 < 5 4 < 5 4 < 6
2 4 8 < 3 8 < 4 8 < 4 8 < 5 8 < 5 8 < 6
a b

=

1 2 1 2 1 2 c

2 2 3 3 4 4 d

1 2 1 1 1 1 1 1

2 2 0 0 0 1 1 1

1 3 0 1 1 1 1 1

2 3 0 0 0 0 0 0

1 4 0 0 0 1 1 1

2 4 0 0 0 0 0 0

a b

Let us try to construct R m Y . The schema of R m Y is Y , so
R m Y can be represented by a boolean table
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R m Y =

a b

1 2 β1

2 2 β2

1 3 β3

2 3 β4

1 4 β5

2 4 β6

It remains to define the β1, . . . , β6 ∈ B. We want R m Y to
satisfy R m Y ≡ R, and that means R m Y ‖ X = R. In double
table representation (according to 20.1.5) that is

R m Y ‖ X =

1 2 1 2 1 2 c

2 2 3 3 4 4 d

1 2 β1 β1 β1 β1 β1 β1

2 2 β2 β2 β2 β2 β2 β2

1 3 β3 β3 β3 β3 β3 β3

2 3 β4 β4 β4 β4 β4 β4

1 4 β5 β5 β5 β5 β5 β5

2 4 β6 β6 β6 β6 β6 β6

a b

i.e. in each of the six rows (of the center block), the entries
for all cells must be identical. And R m Y ‖ X = R means
that this double table must coincide with the one for R given
earlier on. Obviously, there are no β1, . . . , β6 ∈ B to make that
happen. The double table for R has rows with mixed values,
e.g. in the second last row (the one for a = 1 and b = 4), both
0 and 1 occur. For this given R and Y , R m Y does not exist.

We will also say that R m Y exists iff each of the deleted at-
tributes (here c and d) is redundant in R.

21.1.3 Remark Infimum and supremum reduction

R m Y , the equivalent reduction onto Y might not always exist.
But there is always:
♣ a maximal lower bound, i.e. the greatest R′ ∈ Rel(Y ) with
R′ v R, called the infimum reduction of R onto Y and writ-

ten R ⇑ Y .

♣ and similarly, a minimal upper bound, written R ⇓ Y , the

supremum reduction of R onto Y .

Let us take the previous example R and Y again. Let us con-
sider a S ∈ Rel(Y ), its general form was

S =

a b

1 2 β1

2 2 β2

1 3 β3

2 3 β4

1 4 β5

2 4 β6

with β1, . . . , β6 ∈ B and so

S ‖ X =

1 2 1 2 1 2 c

2 2 3 3 4 4 d

1 2 β1 β1 β1 β1 β1 β1

2 2 β2 β2 β2 β2 β2 β2

1 3 β3 β3 β3 β3 β3 β3

2 3 β4 β4 β4 β4 β4 β4

1 4 β5 β5 β5 β5 β5 β5

2 4 β6 β6 β6 β6 β6 β6

a b

Now suppose we want the β1, . . . , β6 such that S v R, i.e.
S ‖ X ⊆ R. In double table representation that is

1 2 1 2 1 2 c

2 2 3 3 4 4 d

1 2 β1 β1 β1 β1 β1 β1
2 2 β2 β2 β2 β2 β2 β2
1 3 β3 β3 β3 β3 β3 β3
2 3 β4 β4 β4 β4 β4 β4
1 4 β5 β5 β5 β5 β5 β5
2 4 β6 β6 β6 β6 β6 β6
a b

⊆

1 2 1 2 1 2 c

2 2 3 3 4 4 d

1 2 1 1 1 1 1 1

2 2 0 0 0 1 1 1

1 3 0 1 1 1 1 1

2 3 0 0 0 0 0 0

1 4 0 0 0 1 1 1

2 4 0 0 0 0 0 0

a b

which means, that the βi have to satisfy the following set of
order statements

β1 ≤ 1 β1 ≤ 1 β1 ≤ 1 β1 ≤ 1 β1 ≤ 1 β1 ≤ 1

β2 ≤ 0 β2 ≤ 0 β2 ≤ 0 β2 ≤ 1 β2 ≤ 1 β2 ≤ 1

β3 ≤ 0 β3 ≤ 1 β3 ≤ 1 β3 ≤ 1 β3 ≤ 1 β3 ≤ 1

β4 ≤ 0 β4 ≤ 0 β4 ≤ 0 β4 ≤ 0 β4 ≤ 0 β4 ≤ 0

β5 ≤ 0 β5 ≤ 0 β5 ≤ 0 β5 ≤ 1 β5 ≤ 1 β5 ≤ 1

β6 ≤ 0 β6 ≤ 0 β6 ≤ 0 β6 ≤ 0 β6 ≤ 0 β6 ≤ 0

which is the case exactly if

β1 is either 0 or 1 and β2 = β3 = β4 = β5 = β6 = 0

In parameterized boolean table notation that result goes: For
every S ∈ Rel(Y ),

S v R iff S =

a b

1 2 β1

2 2 0

1 3 0

2 3 0

1 4 0

2 4 0

with β1 ∈ B

In other words, R has two lower bounds in Rel(Y ): one S1
with β1 = 0 and one S2 with β1 = 1. Obviously, the maximum
of these lower bounds is S2, where β1 is put to its maximum
value 1. S2 is our wanted R ⇑ Y .

An alternative way for saying that R ⇑ Y should be the maxi-
mal lower bound of R in Rel(Y ) is the actual definition 21.6.1
of R ⇑ Y as

R ⇑ Y :=
S
{S ∈ Rel(Y ) | S v R}

And indeed, for our example case, R ⇑ Y = S1 ∪ S2.

Using the same line of reasoning for the minimal upper bound,
we find that
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R ⊆ S iff S =

a b

1 2 1

2 2 1

1 3 1

2 3 β4

1 4 1

2 4 β6

with β4, β6 ∈ B

The minimum of these four upper bounds is given by assigning
the minimum value 0 to the free parameters β4, β6. Written
with the new notation that is

R ⇓ Y =

a b

1 2 1

2 2 1

1 3 1

2 3 0

1 4 1

2 4 0

21.1.4 Double table method for supremum and infimum

reduction

Following the arguments you might already have discovered a
faster method to derive R ⇑ Y and R ⇓ Y from the given
double table of R:
♣ For R ⇑ Y perform the boolean conjunction ∧ of all boolean

values in each row.

♣ For R ⇓ Y perform the boolean disjunction ∨ of all boolean
values in each row.

For our example, this means:

R ⇑ Y =

a b

1 2 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1

2 2 0 ∧ 0 ∧ 0 ∧ 1 ∧ 1 ∧ 1

1 3 0 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1

2 3 0 ∧ 0 ∧ 0 ∧ 0 ∧ 0 ∧ 0

1 4 0 ∧ 0 ∧ 0 ∧ 1 ∧ 1 ∧ 1

2 4 0 ∧ 0 ∧ 0 ∧ 0 ∧ 0 ∧ 0

=

a b

1 2 1

2 2 0

1 3 0

2 3 0

1 4 0

2 4 0

and

R ⇓ Y =

a b

1 2 1 ∨ 1 ∨ 1 ∨ 1 ∨ 1 ∨ 1

2 2 0 ∨ 0 ∨ 0 ∨ 1 ∨ 1 ∨ 1

1 3 0 ∨ 1 ∨ 1 ∨ 1 ∨ 1 ∨ 1

2 3 0 ∨ 0 ∨ 0 ∨ 0 ∨ 0 ∨ 0

1 4 0 ∨ 0 ∨ 0 ∨ 1 ∨ 1 ∨ 1

2 4 0 ∨ 0 ∨ 0 ∨ 0 ∨ 0 ∨ 0

=

a b

1 2 1

2 2 1

1 3 1

2 3 0

1 4 1

2 4 0

By the way, the notation “⇑” can be memorized by this method
as “⇑ = ‖ + ∧”. In lattice theory, the term “infimum” is syn-
onymous to “meet” or “conjunction”. Accordingly, think of
“⇓= ‖ + ∨” for the supremum reduction.

21.1.5 Remark overview

Next, we move on to state the proper formal definitions of the

mentioned operations and discuss their properties. We begin
with the (co)projections (21.2) and continue with the elimina-
tions (21.4), reductions (21.6) and redundancies of attributes
(21.8).

So far, we only mentioned proper schema–decreasing opera-
tions in the sense that R′ ≤ R for every R decreased to R′.
But reductions, say a supremum reduction R ⇓ Y , is de-
fined as

T
{S ∈ Rel(Y ) | R v S}. That expression is not

only well–defined for Y ≤ x(R), but more general for every
Y ^ x(R). In this respect, reductions will be more general
than (co)projections and eliminations.

By the way, if R = [X,Γ] and Y ^ X, we will see (in
21.6.4), that e.g. the general supremum reduction R ⇓ Y is
a combined proper reduction and with a subsequent expan-
sion: R ⇓ Y = R ⇓ (Y ∧ X) ‖ Y . We can understand these
generalizations with the already known notions.

We will also see that the duality of, say supremum and in-
fimum reductions is a proper duality indeed: one can be ex-
pressed in terms of the other, e.g. R ⇓ Y = ¬((¬R) ⇑ Y ),
etc. We use this fact for the introduction of the coprojection
as cpj (R, J) := ¬pr (¬R, J).

21.2 Projection and coprojection

21.2.1 Repetition

Recall from 16.5.2, that

pr (Γ, J) := {pr (ξ, J) | ξ ∈ Γ}

for every schema X = [Xi|i ∈ I], each Γ ⊆ ⊗X and all J ⊆ I.

21.2.2 Definition

Let X = [Xi|i ∈ I] be a schema, R = [X,Γ] a relation and
J ⊆ I. We define

pr (R, J) :=

264 pr (X, J)

pr (Γ, J)

375
the projection of R onto J

cpj (R, J) := ¬pr (¬R, J)

the coprojection of R onto J

21.2.3 Table representations

Let X be a schema, R ∈ Rel(X), and J ⊆ dom(X).
♣ If R is a table, we can compute pr (R, J) by simply deleting

all the graph table columns that are not in J. See 21.2.4
for example. This possiblilty is a direct consequence of the
projection definition 21.2.2.

♣ R being a table does in general not mean that ¬R is a
table, too. So the coprojection definition cpj (R, J) :=
¬pr (¬R, J) is not a recipe for a graph table method. Not
in general, anyway.

♣ If R is a completely finite relation, it can be represented by
boolean and double tables and we generate both pr (R, J)
and cpj (R, J) according to the method in 21.1.4. The jus-
tification and formal expression for this method is given in
21.2.9 below.
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21.2.4 Graph table representation for the projection

If R = [X,Γ] is a table, we can represent it by its graph table.
For example

R =

a : N b : N c : N d : N
1 2 3 4

5 6 7 8

9 10 11 12

1 1 3 3

5 5 7 7

9 9 11 11

2 2 4 4

6 6 8 8

10 10 12 12

If we want to compute pr (R, J) with J = {b, d}, we delete all
the columns in this graph table, except the ones for b and d:

pr(R, J) =

b : N d : N
2 4

6 8

10 12

1 3

5 7

9 11

2 4

6 8

10 12

There are some redundancies, and after removing them we ob-
tain

pr(R, J) =

b : N d : N
2 4

6 8

10 12

1 3

5 7

9 11

21.2.5 Lemma

Let X = [Xi|i ∈ I] be a schema, R = [X,Γ] a relation and
J ⊆ I. Then

cpj (R, J) =

264 pr (X, J)

⊗pr (X, J) \ pr (⊗X \ Γ, J)

375

21.2.6 Proof of 21.2.5

cpj (R, J)

= ¬pr (¬R, J) def. 21.2.2 of the coprojection

= ¬pr

 "
X

⊗X \ Γ

#
, J

!
def. 19.4.1 of ¬

= ¬
"

pr (X, J)

pr (⊗X \ Γ, J)

#
def. 21.2.2 of the projection

=

"
pr (X, J)

⊗pr (X, J) \ pr (⊗X \ Γ, J)

#
def. 19.4.1 of ¬, again

21.2.7 Lemma Lemma

Let X = [Xi|i ∈ I] be a proper schema, R = [X,Γ] a
relation and J ⊆ I. We put Y := pr (X, J). Then

(1) pr (R, J) =

264 Y

y  ∃z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

375

(2) cpj (R, J) =

264 Y

y  ∀z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

375

21.2.8 Proof of 21.2.7

Let Y := pr (X, J).
(1) There is

⊗X = ⊗(Y ∨̇ (X \ Y )) = {y ∨̇ z | y ∈ ⊗Y, z ∈ ⊗(X \ Y )}
so that

pr (Γ, J)

= {pr (x, J) | x ∈ ⊗X, x ∈ Γ}
= {pr (y ∨̇ z, J) | y ∈ ⊗Y, z ∈ ⊗(X \ Y ), y ∨̇ z ∈ Γ}
= {y | y ∈ ⊗Y, ∃z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ}

because pr (y ∨̇ z, J) = y

Thus

pr (R, J) =

264 Y

y  ∃z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

375
(2) We have

cpj (R, J)

= ¬pr (¬R, J)

= ¬pr

 "
X

⊗X \ Γ

#
, J

!

= ¬
"

Y

y  ∃z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ (⊗X \ Γ)

#
due to (1)

= ¬
"

Y

y  ¬∀z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

#

=

"
Y

y  ¬¬∀z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

#

=

"
Y

y  ∀z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

#
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21.2.9 Lemma

Let X = [Xi|i ∈ I] be a proper schema, R = [X,Γ] a
relation and J ⊆ I. We put Y := pr (X, J). Then

(1) χpr(R,J) =

264 ⊗Y −→ B

y 7→
W

B{χR(y ∨̇ z) | z ∈ ⊗(X \ Y )}

375

(2) χcpj(R,J) =

264 ⊗Y −→ B

y 7→
V

B{χR(y ∨̇ z) | z ∈ ⊗(X \ Y )}

375

21.2.10 Proof of 21.2.9

These are the characteristic functions of the relations from
21.2.7.

21.3 Properties of projections and
coprojections

21.3.1 Lemma

Let X = [Xi|i ∈ I] be a schema, R = [X,Γ] a relation,
and J ⊆ I. Then

(1) x(pr (R, J)) = pr (x(R), J)

(2) x(cpj (R, J)) = pr (x(R), J)

(3) @(pr (R, J)) = J

(4) @(cpj (R, J)) = J

(5) gr(pr (R, J)) = pr (gr(R), J)

(6) gr(cpj (R, J)) = ⊗pr (X, J) \ pr (⊗X \ gr(R), J)

21.3.2 Proof of 21.3.1

Statements (1)–(5) are immediate consequences of 21.2.2 and
(6) derives from 21.2.5.

21.3.3 Lemma

Let X = [Xi|i ∈ I] be a proper schema and R = [X,Γ] a
relation.

(1) There is

(a) pr (R, I) = R (neutrality)

(b) cpj (R, I) = R (neutrality)

(2) If J ⊆ I, then

(a) pr (pr (R, J) , J) = pr (R, J) (idempotency)

(b) cpj (cpj (R, J) , J) = cpj (R, J) (idempotency)

(3) There is

(a) pr (R, ∅) =

(
⊥ if R is empty

> else
(empty criterion)

(b) cpj (R, ∅) =

(
> if R is full

⊥ else
(full criterion)

(4) If I1, I2 make a partition of I, i.e. I1 ∩ I2 = ∅ and
I1 ∪ I2 = I, then

(a) R ⊆ pr (R, I1)� pr (R, I2)

(b) R ⊇ cpj (R, I1)� cpj (R, I2)

(5) As a generalization of (4) we have: if [Ik|k ∈ K] is a
class partition of I, then

(a) R ⊆ �[pr (R, Ik) |k ∈ K]

(b) R ⊇ �[cpj (R, Ik) |k ∈ K]

(6) If J1 ⊆ J2 ⊆ I then

(a) pr (pr (R, J2) , J1) = pr (R, J1)

(b) cpj (cpj (R, J2) , J1) = cpj (R, J1)

(7) If J1 ⊆ J2 ⊆ I and Y := pr (X, J2 \ J1), then

(a) pr (R, J1)�>Y ⊇ pr (R, J2)

(b) cpj (R, J1)�>Y ⊆ cpj (R, J2)

(8) If J1 ⊆ J2 ⊆ I, then

(a) pr (R, J2) v pr (R, J1) (antitony)

(b) cpj (R, J1) v cpj (R, J2) (isotony)

(9) If J ⊆ I, then

(a) R v pr (R, J) (supervalence of projection)

(b) R w cpj (R, J) (subvalence of coprojection)

(c) cpj (R, J) ⊆ pr (R, J)

(10) If J ⊆ I, Y := pr (X, J) and S = [Y,Σ] is a relation,

(a) R v S iff pr (R, J) ⊆ S
(b) S v R iff S ⊆ cpj (R, J)

(11) If J ⊆ I and S = [X,Σ] is a relation, then

(a) R ⊆ S implies pr (R, J) ⊆ pr (S, J)

(b) R ⊆ S implies cpj (R, J) ⊆ cpj (S, J)

21.3.4 Proof of 21.3.3

(1) There is

(a) pr (R, I) =

"
pr (X, I)

{pr (x, I) | x ∈ Γ}

#
= R

(b) and

cpj (R, I)

=

"
pr (X, I)

⊗pr (X, I) \ pr (⊗X \ Γ, I)

#
due to 21.2.5

=

"
X

⊗X \ (⊗X \ Γ)

#
= R

(2) For J ⊆ I holds

(a) @(pr (R, J)) = J, so we can apply (1)(a) and obtain
pr (pr (R, J) , J) = pr (R, J).

(b) similar proof

(3) Recall, that R = [X,Γ] is empty, if Γ = ∅, i.e. if R = ⊥X ,
and full, if Γ = ⊗X, i.e. if R = >X .

(a) There is pr (ξ, ∅) = 〈〉, for every record ξ. So
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{pr (x, ∅) | x ∈ Γ} =

(
{〈〉} if Γ 6= ∅
∅ if Γ = ∅

Thus

pr (R, ∅) =

264 pr (X, ∅)

{pr (x, ∅) | x ∈ Γ}

375
=

8><>:
[〈〉, ∅] = ⊥ if R is empty

[〈〉, {〈〉}] = > else

(b) We have

cpj (R, ∅)

=

264 pr (X, ∅)

⊗pr (X, ∅) \ pr (⊗X \ Γ, ∅)

375 due to 21.2.5

=

264 〈〉

{〈〉} \ {pr (x, ∅) | x ∈ ⊗X \ Γ}

375

=

8>>>>>><>>>>>>:

"
〈〉

{〈〉} \ ∅

#
= > if Γ = ⊗X

"
〈〉

{〈〉} \ {〈〉}

#
= ⊥ if Γ 6= ⊗X

(4) Let X1 := pr (X, I1) and X2 := pr (X, I2), so X =
X1 ∨̇X2.

(a) There is

Γ = {pr (ξ, I1) ∨̇ pr (ξ, I2) | ξ ∈ Γ}

⊆ {pr (ξ1, I1) ∨̇ pr (ξ2, I2) | ξ1, ξ2 ∈ Γ}

= {pr (ξ1, I1) | ξ1 ∈ Γ} � {pr (ξ2, I2) | ξ2 ∈ Γ}

= pr (Γ, I1)� pr (Γ, I2)

so that

R =

"
X

Γ

#

⊆
"

X1 ∨̇X2

pr (Γ, I1)� pr (Γ, I2)

#

=

"
X1

pr (Γ, I1)

#
�
"

X2

pr (Γ, I2)

#

= pr (R, I1)� pr (R, I2)

(b) We have

cpj (R, I1)� cpj (R, I2)

=

0BBBBBBBBBB@

264 X1

x1  ∀y2 ∈ ⊗X2 . x1 ∨̇ y2 ∈ Γ

375

�

264 X2

x2  ∀y1 ∈ ⊗X1 . y1 ∨̇ x2 ∈ Γ

375

1CCCCCCCCCCA
due to 21.2.7(2)

=

26666664
X8><>: x1 ∨̇ x2

x1 ∈ ⊗X1, x2 ∈ ⊗X2,

∀y2 ∈ ⊗X2 . x1 ∨̇ y2 ∈ Γ,

∀y1 ∈ ⊗X1 . y1 ∨̇ x2 ∈ Γ

9>=>;

37777775

⊆

266664
X(

x1 ∨̇ x2
x1 ∈ ⊗X1, x2 ∈ ⊗X2,

x1 ∨̇ x2 ∈ Γ

)
377775

=

"
X

Γ

#
= R

(5) For every k ∈ K let Xk := pr (X, Ik).

(a) Recall, that for every ξ ∈ ⊗X holds

ξ =
Ẇ
{pr (ξ, Ik) | k ∈ K}

Now

Γ =

 Ẇ
k∈K

pr (ξ, Ik) ξ ∈ Γ
ff

⊆
 Ẇ
k∈K

pr (ξk, Ik) ξk ∈ Γ for each k ∈ K
ff

= �[{pr (ξk, Ik) | ξk ∈ Γ}|k ∈ K]

= �[pr (Γ, Ik) |k ∈ K]

so that

R =

"
X

Γ

#

=

26664
Ẇ
k∈K

Xk

�[pr (Γ, Ik) |k ∈ K]

37775
= �[pr (R, Ik) |k ∈ K]

(b) Let Yk := X \Xk for each k ∈ K, so that X = Xk ∨̇Yk.
There is(

[xk|k ∈ K]
∀k ∈ K . xk ∈ ⊗Xk
∀k ∈ K . ∀yk ∈ ⊗Yk . xk ∨̇ yk ∈ Γ

)

⊆
(

[xk|k ∈ K]
∀k ∈ K . xk ∈ ⊗XkẆ

[xk|k ∈ K] ∈ Γ

)
so that

�[cpj (R, Ik) |k ∈ K]

= �

2666664
266664

Xk(
xk ∈ ⊗Xk
∀yk ∈ ⊗Yk . xk ∨̇ yk ∈ Γ

)
377775 k ∈ K

3777775
due to 21.2.7(2)

=

26666664
X8><>:

Ẇ
[xk|k ∈ K]

∀k ∈ K . xk ∈ ⊗Xk,
∀k ∈ K . ∀yk ∈ ⊗Yk . xk ∨̇ yk ∈ Γ

9>=>;

37777775

⊆

266664
X( Ẇ

[xk|k ∈ K]
∀k ∈ K . xk ∈ ⊗Xk,Ẇ

[xk|k ∈ K] ∈ Γ

)
377775

=

"
X

Γ

#
= R

(6) For every record ξ = [ξi|i ∈ I] ∈ ⊗X holds
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pr (pr (ξ, J2) , J1) = pr (pr ([ξi|i ∈ I], J2) , J1)

= pr ([ξi|i ∈ (I ∩ J2)], J1)

= [ξi|i ∈ ((I ∩ J2) ∩ J1)]

= [ξi|i ∈ J1]

= pr (ξ, J1)

It follows, that for every Σ ⊆ ⊗X,

pr (pr (Σ, J2) , J1) = pr (Σ, J1)

(a) We obtain

pr (pr (R, J2) , J1) = pr

 "
pr (X, J2)

pr (Γ, J2)

#
, J1

!

=

"
pr (pr (X, J2) , J1)

pr (pr (Γ, J2) , J1)

#

=

"
pr (X, J1)

pr (Γ, J1)

#

= pr (R, J1)

(b) By applying 21.2.7(2) twice, we obtain

cpj (cpj (R, J2) , J1)

= cpj

0BBBB@
2664

pr (X, J2)

y  ∀z ∈ ⊗pr (X, I \ J2) .
y ∨̇ z ∈ Γ

3775, J1

1CCCCA

=

266664
pr (pr (X, J2) , J1)

x ∀y′ ∈ ⊗pr (X, J2 \ J1) .
∀z ∈ ⊗pr (X, I \ J2) .

x ∨̇ y′ ∨̇ z ∈ Γ

377775

=

264 pr (X, J1)

x ∀x′ ∈ ⊗pr (X, I \ J1) . x ∨̇ x′ ∈ Γ

375
= pr (R, J1)

(7) J1 and J2 \ J1 make a partition of J2, so we can apply (4)

as follows

(a) We have

pr (R, J2)

⊆ pr (pr (R, J2) , J1)� pr (pr (R, J2) , J2 \ J1) due to

(4)(a)

= pr (R, J1)� pr (R, J2 \ J1) due to (6)(a)

⊆ pr (R, J1)�>Y because pr (R, J2 \ J1) ⊆ >Y

(b) Let X := pr (X, J1), X2 := pr (X, J2) and Z :=
pr (X, I \ J2), so that X2 = X1 ∨̇ Y and X = X2 ∨̇ Z =
X1 ∨̇ Y ∨̇ Z. Now let ξ ∈ ⊗X2, then

ξ ∈ cpj (R, J1)�>Y

⇔ ξ ∈
(
x

x ∈ ⊗X1,

∀x′ ∈ ⊗(Y ∨̇ Z) . x ∨̇ x′ ∈ Γ

)
�⊗Y

due to 21.2.7(2) and def. 19.3.1 of >Y

⇔ ξ ∈
(
x ∨̇ y

x ∈ ⊗X1, y ∈ ⊗Y,
∀x′ ∈ ⊗(Y ∨̇ Z) . x ∨̇ x′ ∈ Γ

)

⇔ ξ ∈
(
x ∨̇ y

x ∈ ⊗X1, y ∈ ⊗Y,
∀y′ ∈ ⊗Y . ∀z ∈ ⊗Z . x ∨̇ y′ ∨̇ z ∈ Γ

)

⇒ ξ ∈
(
x ∨̇ y

x ∈ ⊗X1, y ∈ ⊗Y,
∀z ∈ ⊗Z . z ∨̇ y ∨̇ z ∈ Γ

)
⇔ ξ ∈ {u ∈ ⊗X2 | ∀z ∈ ⊗Z . x ∨̇ z ∈ Γ}
⇔ ξ ∈ cpj (R, J2) due to 21.2.7(2) again

and so

cpj (R, J1)�>Y ⊆ cpj (R, J2)

(8) We put X1 := pr (X, J1), X2 := pr (X, J2) and Y :=
pr (X, J2 \ J1), so X2 = X1 ∨̇ Y .

(a) There is

pr (R, J2) v pr (R, J1)

⇔ pr (R, J2) ‖ X2 ⊆ pr (R, J1) ‖ X2 def. 20.2.2 of v

⇔ pr (R, J2) ⊆ pr (R, J1) ‖ Y due to 20.1.3(1)

⇔ pr (R, J2) ⊆ pr (R, J1)�>Y due to ??(3)

and the last statement is proved to be true in (7)(a).

(b) Similar to (a) we have

cpj (R, J1) ≡ cpj (R, J1) ‖ Y

= cpj (R, J1)�>Y

⊆ cpj (R, J2)

(9) (a) and (b) are immediate consequences of (1) and (8):

R = pr (R, I) v pr (R, J)

R = cpj (R, I) w cpj (R, J)

v is transitive, so (a) and (b) entail cpj (R, J) v pr (R, J).
And because both sides have the same resulting schema,
cpj (R, J) ⊆ pr (R, J).

(10) So let J ⊆ I, Y := pr (X, J) and S = [Y,Σ] be given.

(a) We have

R v S
⇔ R ‖ X ⊆ S ‖ X def. 20.2.2 of v

⇔ R ⊆ S �>X\Y due to 20.1.3

⇔
"
X

Γ

#
⊆
"

X

Σ�⊗(X \ Y )

#
⇔ ∀x ∈ ⊗X . (x ∈ Γ→ x ∈ Σ�⊗(X \ Y ))

⇔

0@∀y ∈ ⊗Y . ∀z ∈ ⊗(X \ Y ) .

(y ∨̇ z ∈ Γ→ y ∨̇ z ∈ Σ�⊗(X \ Y ))

1A
⇔ ∀y ∈ ⊗Y . (∃z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ)→ y ∈ Σ

because X is proper and so is X \ Y

⇔ ∀y ∈ ⊗Y . (y ∈ pr (R, J)→ y ∈ S)

⇔ pr (R, J) ⊆ S

(b) Similar to (a) we obtain

S v R

⇔
"

Y

Σ�⊗(X \ Y )

#
⊆
"
X

Γ

#
⇔ ∀x ∈ ⊗X . (x ∈ Σ�⊗(X \ Y )→ x ∈ Γ)

⇔

0@∀y ∈ ⊗Y . ∀z ∈ ⊗(X \ Y ) .

(y ∨̇ z ∈ Γ�⊗(X \ Y )→ y ∨̇ z ∈ Γ)

1A
⇔ ∀y ∈ ⊗Y . (y ∈ Σ→ ∀z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ)

⇔
"
Y

Σ

#
⊆
"

Y

y  ∀z ∈ ⊗(X \ Y ) . y ∨̇ z ∈ Γ

#
⇔ S ⊆ cpj (R, J) due to 21.2.7(2)

(11) Now J ⊆ I and S = [X,Σ].

(a) R ⊆ S means that Γ ⊆ Σ, and so
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pr (R, J) =

"
pr (X, J)

{pr (x, J) | x ∈ Γ}

#

⊆
"

pr (X, J)

{pr (x, J) | x ∈ Σ}

#

= pr (S, J)

(b) R ⊆ S is equivalent to ¬S ⊆ ¬R. Therefore,
pr (¬S, J) ⊆ pr (¬R, J), according to (a). And applying
the same law again gives us ¬pr (¬R, J) ⊆ ¬pr (¬S, J).
In terms of definition 21.2.2, this is cpj (R, J) ⊆
cpj (S, J).

21.3.5 Remark

The schema X in lemma 21.3.3 was supposed to be proper.
For some of the statements this is essential.

Suppose, X is not proper, e.g.

X :=

"
a 7→ N
b 7→ ∅

#

For such an improper schema the cartesian product ⊗X is
empty and Rel(X) has only one member R = [X, ∅] with
R = ⊥X = >X and ¬R = R (see 19.5.16).

But Y := pr (X, {a}) = [a 7→ N] is a proper schema with
⊗Y = {[a 7→ n] | n ∈ N} 6= ∅ and ⊥Y 6= >Y . The projec-
tion and coprojection of R onto {a} are given by

pr (R, {a}) =

"
pr (X, {a})
pr (∅, {a})

#

= [Y, ∅]

= ⊥Y

cpj (R, {a}) = ¬pr (¬R, {a})

= ¬pr (R, {a})

= ¬⊥Y

= >Y

so that

cpj (⊥X , {a}) 6⊆ pr (⊥X , {a})

in violation with 21.3.3(9)(c).

21.3.6 Lemma

Let X = [Xi|i ∈ I] be a proper schema and R,S ∈
Prel(X). If K := @(R) ∩@(S) then

R v S iff pr (R,K) ⊆ cpj (S,K)

21.3.7 Proof of 21.3.6

Recall from 5.5.11, that for all variables x, y, class symbols
C,D, and formulas ϕ, ψ holds:
(a)If x does not occur free in ψ and y does not occur free in φ,
then

∀x ∈ C . ∀y ∈ D . (ϕ→ ψ) ⇔ (∃x ∈ C . ϕ)→ (∀y ∈ D . ψ)

For the full proof of the lemma, let us put

J1 := @(R) Y1 := x(R) Γ1 := gr(R)

J2 := @(S) Y2 := x(S) Γ2 := gr(S)

so that K = J1 ∩ J2. Furthermore we put

Z := Y1 ∧ Y2

and

J′1 := J1 \K Y ′1 := Y1 \ Z

J′2 := J2 \K Y ′2 := Y2 \ Z

The subclasses of I and the projections of X defined so far are
displayed in the following two diagrams:

I

J1

J′1

J2

J′2

K

X

Y1

Y ′1

Y2

Y ′2

Z

We derive

R v S
⇔ [Y1,Γ1] v [Y2,Γ2]

⇔
"
Y1 ∨̇ Y ′2

Γ1 �⊗Y ′2

#
⊆
"
Y2 ∨̇ Y ′1

Γ2 �⊗Y ′1

#
due to 20.1.3

⇔ Γ1 �⊗Y ′2 ⊆ Γ2 �⊗Y ′1

⇔

0@∀x ∈ ⊗(Y1 ∨ Y2) .`
x ∈

`
Γ1 �⊗Y ′2

´
→ x ∈

`
Γ2 �⊗Y ′1

´´
1A

⇔

0BB@
∀z ∈ ⊗Z . ∀y1 ∈ ⊗Y ′1 . ∀y2 ∈ ⊗Y

′
2 .0@ (z ∨̇ y1 ∨̇ y2) ∈

`
Γ1 �⊗Y ′2

´
→ (z ∨̇ y1 ∨̇ y2) ∈

`
Γ2 �⊗Y ′1

´
1A
1CCA

because ⊗(Y1 ∨ Y2) = (⊗Z) � (⊗Y ′1) � (⊗Y ′2)

⇔

0@∀z ∈ ⊗Z . ∀y1 ∈ ⊗Y ′1 . ∀y2 ∈ ⊗Y ′2 .
((z ∨̇ y1) ∈ Γ1 → (z ∨̇ y2) ∈ Γ2)

1A
because (z ∨̇ y1 ∨̇ y2) ∈

“
Γ1 � ⊗Y

′
2

”
iff (z ∨̇ y1) ∈ Γ1 and (z ∨̇ y1 ∨̇ y2) ∈

“
Γ2 � ⊗Y

′
1

”
iff (z ∨̇ y2) ∈ Γ2

⇔ ∀z ∈ ⊗Z .

0@ `
∃y1 ∈ ⊗Y ′1 . (z ∨̇ y1) ∈ Γ1

´
→
`
∀y2 ∈ ⊗Y ′2 . (z ∨̇ y2) ∈ Γ2

´
1A

due to (a) above

⇔

0@{z ∈ ⊗Z | ∃y1 ∈ ⊗Y ′1 . (z ∨̇ y1) ∈ Γ1}

⊆ {z ∈ ⊗Z | ∀y2 ∈ ⊗Y ′2 . (z ∨̇ y2) ∈ Γ2}

1A

⇔

0BBBB@
"

Z

z  ∃y1 ∈ ⊗Y ′1 . (z ∨̇ y1) ∈ Γ1

#

⊆
"

Z

z  ∀y2 ∈ ⊗Y ′2 . (z ∨̇ y2) ∈ Γ2

#
1CCCCA

⇔ pr (R,K) ⊆ cpj (R,K) due to 21.2.7
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21.3.8 Lemma

Let X = [Xi|i ∈ I] be a proper schema, J ⊆ I and
Y := pr (X, J).

(1) If R ∈ Rel(X) then

(a) pr (R, J) =
T
{S ∈ Rel(Y ) | R v S}

(b) cpj (R, J) =
S
{S ∈ Rel(Y ) | S v R}

(2) If R ∈ Rel(Y ) then

(a)
S
{S ∈ Rel(X) | pr (S, J) ⊆ R} = R�>(X\Y )

(b)
T
{S ∈ Rel(X) | R ⊆ cpj (S, J)} = R�>(X\Y )

21.3.9 Proof of 21.3.8

(1) Let R = [X,Γ].

(a) Let R′ := pr (R, J) and S := {S ∈ Rel(Y ) | R v S}.
So we need to proof that R′ =

T
S.

There is R′ ∈ Rel(Y ) and R v pr (R, J), due to
21.3.3(9)(a), so R′ ∈ S.
If S′ ∈ S, then R v S implies R′ ⊆ S, due to
21.3.3(10)(a).
Thus R′ is the minimal element of S (with respect to the
partial order ⊆ on Rel(Y )) and therefore R′ =

T
S.

(b) Similar to (a) we proof R′ =
S
S, where this time

R′ := cpj (R, J) and S := {S ∈ Rel(Y ) | S v R}.
R′ ∈ Rel(Y ) and cpj (R, J) v R, due to 21.3.3(9)(b), so
R′ ∈ S.
If S′ ∈ S, then S v R implies S ⊆ R′, due to
21.3.3(10)(b).
Thus R′ is the (⊆–) maximal element of S and R′ =

S
S.

(2) Now let R = [Y,Γ].

(a) Let Γ′ := Γ � ⊗(X \ Y ) and S := {Σ | Σ ∈
⊗X,pr (Σ, J) ⊆ Γ}.
There is Γ′ ∈ S, because Γ′ ⊆ ⊗(Y ∨̇ (X \Y )) = ⊗X and

pr
`
Γ′, J

´
= {pr (ξ, J) | ξ ∈ (Γ�⊗(X \ Y )}

= {pr (ξ1 ∨̇ ξ2, J) | ξ1 ∈ Γ, ξ2 ∈ ⊗(X \ Y )}

= {ξ1 | ξ1 ∈ Γ, ξ2 ∈ ⊗(X \ Y )}

= Γ ⊆ Γ

Furthermore, Σ ∈ S implies Σ ⊆ Γ′, because

pr (Σ, J) = {υ ∈ ⊗Y | ∃ζ ∈ ⊗(X \ Y ) . υ ∨̇ ζ ∈ Σ}

so that pr (Σ, J) ⊆ Γ implies Σ ⊆ Γ�⊗(X \ Y ) = Γ′.
From Γ ∈ S and (Σ ∈ S implies Σ ⊆ Γ′) we derive that
Γ′ =

S
S.

So we obtainS
{S ∈ Rel(X) | pr (S, J) ⊆ R}

=
S("X

Σ

#
pr

 "
X

Σ

#
, J

!
⊆
"
Y

Γ

#)

=
S("X

Σ

#
Σ ⊆ ⊗X,pr (Σ, J) ⊆ Γ

)

=

"
XS

{Σ | Σ ⊆ ⊗X,pr (Σ, J) ⊆ Γ}

#

=

"
X

Γ�⊗(X \ Y )

#
because Γ′ =

S
S

=

"
Y ∨̇ (X \ Y )

Γ�⊗(X \ Y )

#
= R�>(X\Y ) due to 20.1.3

(b) Proof is similar to (a).

21.3.10 Lemma

Let X = [X|i ∈ I] be a proper schema, J ⊆ I and
R = {Rk | k ∈ K} ⊆ Rel(X), then

(1) pr (
T
R, J) ⊆

T
k∈K

pr (Rk, J)

(2) pr (
S
R, J) =

S
k∈K

pr (Rk, J)

(3) cpj (
T
R, J) =

T
k∈K

cpj (Rk, J)

(4) cpj (
S
R, J) ⊇

S
k∈K

cpj (Rk, J)

21.3.11 Proof of 21.3.10

Let Y := pr (X, J) and Rk = [X,Γk], for each k ∈ K.
(1) For every k ∈ K holds

T
R ⊆ Rk. Applying 21.3.3(11)(a),

it follows that pr (
T
R, J) ⊆ pr (Rk, J), for every k ∈ K,

so that pr (
T
R, J) ⊆

T
{pr (Rk, J) | k ∈ K}.

(2) We have

pr (
S
R, J)

= pr

0@24 XS
k∈K

Γk

35, J
1A def. 19.5.3 of

S

=

"
Y

{pr (x, J) | x ∈
S
{Γk | k ∈ K}}

#
def. 21.2.2

=

24 YS
k∈K
{pr (x, J) | x ∈ Γk}

35
=

S
k∈K

"
Y

pr (Γk, J)

#
=

S
k∈K

pr (Rk, J)

(3) We have

cpj (
T
R, J)

= ¬pr (¬
T
R, J) def. 21.2.2 of the coprojection

= ¬pr

 S
k∈K

(¬Rk), J
!

de Morgan’s law

= ¬
S
k∈K

pr (¬Rk, J) due to (2)

=
T
k∈K
¬pr (¬Rk, J) de Morgan’s law

=
T
k∈K

cpj (Rk, J) again def. 21.2.2

(4) For every k ∈ K holds Rk ⊆
S
R. Applying 21.3.3(11)(b),

it follows that cpj (Rk, J) ⊆ cpj (
S
R, J), for every k ∈ K,

so that
S
{cpj (Rk, J) | k ∈ K} ⊆ cpj (

S
R, J).

21.3.12 Lemma

Let X = [Xi|i ∈ I] be a proper schema, R = [X,Γ] a
relation and J ⊆ I.
(1) pr (¬R, J) = ¬cpj (R, J)

(2) cpj (¬R, J) = ¬pr (R, J)

21.3.13 Proof of 21.3.12

(1) We have

pr (¬R, J)

= ¬¬pr (¬R, J) due to 19.4.6

= ¬cpj (¬¬R, J) def. 21.2.2
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= ¬cpj (R, J) due to 19.4.6, again

(2) Similarly, cpj (¬R, J) = ¬pr (¬¬R, J) = ¬pr (R, J)

21.3.14 Lemma

For every proper schema X = [Xi|i ∈ I] and every J ⊆ I
holds:

(1) pr (⊥X , J) = ⊥pr(X,J)

(2) cpj (⊥X , J) = ⊥pr(X,J)

(3) pr (>X , J) = >pr(X,J)

(4) cpj (>X , J) = >pr(X,J)

21.3.15 Proof of 21.3.14

Let Y := pr (X, J). We first proof (1) and (3), and use
the result in (2) and (4) by means of definition 21.2.2, (i.e.
cpj (©1 ,©2 ) = ¬pr (¬©1 ,©2 )).

(1) pr (⊥X , J) = pr

 "
X

∅

#
, J

!
=

"
pr (X, J)

pr (∅, J)

#
=

"
Y

∅

#
= ⊥Y

(3) pr (>X , J) = pr

 "
X

⊗X

#
, J

!
=

"
pr (X, J)

pr (⊗X, J)

#
="

Y

⊗Y

#
= >Y

(2) cpj (⊥X , J) = ¬pr (¬⊥X , J) = ¬pr (>X , J) = ¬>Y =
⊥Y

(3) cpj (>X , J) = ¬pr (¬>X , J) = ¬pr (⊥X , J) = ¬⊥Y =
>Y

21.3.16 Lemma

Let R = {Rk | k ∈ K} be a pairwise distinct relation
class and [Jk|k ∈ K] a schema with Jk ⊆ @(Rk) for each
k ∈ K. So [Jk|k ∈ K] is a class partition of the class
J :=

S
k∈K Jk. Then

(1) pr (�R, J) = �
k∈K

pr (Rk, Jk)

(2) cpj (�R, J) = �
k∈K

cpj (Rk, Jk)

21.3.17 Proof of 21.3.16

For each k ∈ K let Rk = [Xk,Γk] and Ik := @(Rk), so
Jk ⊆ Ik. R being pairwise distinct is saying that Il ∩ Im = ∅
and thus Jl ∩ Jm = ∅, for all l,m ∈ K with l 6= m.

If we put X :=
Ẇ
k∈K

Xk and Y := pr (X, J), then

Y = pr

 Ẇ
k∈K

Xk,
S
k∈K

Jk

!
=
Ẇ
k∈k

pr (Xk, Jk)

according to 16.2.10(2).
For each ξ ∈ ⊗X there is

ξ =
Ẇ
k∈K

pr (ξ, Jk)

=
Ẇ
k∈K

(pr (ξ, Jk) ∨̇ pr (ξ, Ik \ Jk))

=

0@ _̇
k∈K

pr (ξ, Jk)

1A
| {z }

∈⊗Y

∨̇

0@ _̇
k∈K

pr (ξ, Ik \ Jk)

1A
| {z }

∈⊗(X\Y )

So for �
k∈K

Γk ⊆ ⊗X we have

pr

„
�
k∈K

Γk, J

«
= {pr (ξ, J) | ξ ∈ �

k∈K
Γk}

=

 Ẇ
k∈K

pr (ξk, Jk) [ξk|k ∈ K] ∈ ⊗
k∈K

Γk
ff

= �
k∈K

pr (Γk, Jk)

(1) We have

pr (�R, J)

= pr

0BBBBB@
266664
Ẇ
k∈K

Xk

�
k∈K

Γk

377775, J
1CCCCCA

=

26664
pr (X, J)

pr

„
�
k∈K

Γk, J

«
37775

=

2664
Yn

pr (ξ, J) ξ ∈ �
k∈K

Γk
o
3775

=

26664
Y Ẇ

k∈K
pr (ξk, J) [ξk|k ∈ K] ∈ ⊗

k∈K
Γk
ff
37775

=

26664
Y Ẇ

k∈K
υk [υk|k ∈ K] ∈ ⊗

k∈K
pr (Γk, Jk)

ff
37775

=

266664
Ẇ
k∈K

pr (Xk, Jk)

�
k∈K

pr (Γk, Jk)

377775
= �

k∈K
pr (Rk, Jk)

(2) We have

cpj (�R, J)

= cpj

0@24 X

�
k∈K

Γk

35, J
1A

=

2664
Yn

υ ∈ ⊗Y ∀υ′ ∈ ⊗(X \ Y ) . υ ∨̇ υ′ ∈ �
k∈K

Γk
o
3775

due to 21.2.7(2)

=

26666666666664

Y8>>>>>>><>>>>>>>:

υ ∈ ⊗
 Ẇ
k∈K

pr (Xk, Jk)

!

∀υ′ ∈ ⊗
 Ẇ
k∈K

pr (Xk, Ik \ Jk)
!
.

υ ∨̇ υ′ ∈ �
k∈K

Γk

9>>>>>>>=>>>>>>>;

37777777777775
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=

26666666666664

�
k∈K

pr (Xk, Jk)

8>>>>><>>>>>:
Ẇ
k∈K

υk

[υk|k ∈ K] ∈ ⊗
k∈K

(⊗pr (Xk, Jk)) ,

∀[υ′k|k ∈ K] ∈ ⊗
k∈K

(⊗pr (Xk, Ik \ Jk)) . Ẇ
k∈K

υk

!
∨̇
 Ẇ
k∈K

υ′k

!
∈ �
k∈K

Γk

9>>>>>=>>>>>;

37777777777775

= �
k∈K

26666664
pr (Xk, Jk)8><>:

υk ∈ ⊗pr (Xk, Jk)

∀υ′k ∈ ⊗pr (Xk, Ik \ Jk) .
υk ∨̇ υ′k ∈ Γk

9>=>;

37777775
= �

k∈K
cpj (Rk, Jk) due to 21.2.7(2)

21.4 (Attribute) Eliminations

21.4.1 Definition

Let X = [Xi|i ∈ I] be a schema and R ∈ Prel(X).

For every J ⊆ I we define

R � J := pr (R,@ (R) \ J)

the (general) supremum elimination of J from R,

or simply the upper R without J

R � J := cpj (R,@ (R) \ J)

the (general) infimum elimination of J from R,

or simply the lower R without J

For every j ∈ I we define

R � j := R � {j}

the (singular) supremum elimination of j from R,

or simply the upper R without j

R � j := R � {j}

the (singular) infimum elimination of j from R,

or simply the lower R without j

21.4.2 Remark

While projection and coprojection specify the remaining at-
tributes, supremum and infimum eliminations specify the at-
tributes to be removed. From a constructive point of view,
there is not much news here.

Eliminations are also similar to reductions. If X = [Xi|i ∈ I]
is a schema, R = [X,Γ] is a relation and J a class, then
(1) R � J = R ⇓ pr (X, I ∩ J)

(2) R � J = R ⇑ pr (X, I ∩ J)

Reductions will be defined and investigated in 21.6. But they
were already introduced in 21.1.1. By means of (1) and (2)

the ideas and table methods from 21.1.1 can be applied to
eliminations as well. So we don’t bother with examples to il-
lustrate the new concepts here and move on to list and proof
some important properties. However similar the eliminations

are to (co)projections and reductions, there are some specific
algebraic specialities for eliminations which are worth to be
mentioned and require a proof.

21.5 Properties of eliminations

21.5.1 Lemma basic properties general eliminations

Let X = [Xi|i ∈ I] be proper schema, R ∈ Prel(X), and
J ⊆ I. Then

(1) x(R � J) = pr (x(R),@ (R) \ J)

(2) x(R � J) = pr (x(R),@ (R) \ J)

(3) @(R � J) = @ (R) \ J
(4) @(R � J) = @ (R) \ J
(5) gr(R � J) = pr (gr(R),@ (R) \ J)

(6) gr(R � J)
= ⊗pr (X,@ (R) \ J) \ pr (⊗X \ gr(R),@ (R) \ J)

21.5.2 Proof of 21.5.1

Let R = [Y,Γ] and Y = [Yl|l ∈ L], so that x(R) = Y ,
@ (R) = dom(Y ) = L, and gr(R) = Γ.
(1) Schema of supremum elimination:

x(R � J)

= x(pr (R,L \ J)) def. 21.4.1 of sup.elim.

= x

 "
pr (Y, L \ J)

pr (Γ, L \ J)

#!
def. 21.2.2 of projection

= pr (Y, L \ J)

(2) Schema of infimum elimination: similar proof..

(3) Attribute class of supremum elimination:

@(R � J)

= dom(x(R � J)) def. 17.2.2 of attribute class

= dom(pr (Y, L \ J)) due to (1)

= L \ J

(4) Attribute class of infimum elimination: similar proof.

(5) Graph of supremum elimination:

gr(R � J)

= gr(pr (R,L \ J)) def. 21.4.1 of sup.elim.

= gr

 "
pr (Y, L \ J)

pr (Γ, L \ J)

#!
def. 21.2.2 of projection

= pr (Γ, L \ J)

(6) Graph of infimum elimination:

gr(R � J)

= gr(cpj (R,L \ J)) def. 21.4.1 of inf.elim.

= gr

 "
pr (Y, L \ J)

⊗pr (Y, L \ J) \ pr (⊗Y \ Γ, L \ J)

#!
due to 21.2.5

= ⊗pr (Y, L \ J) \ pr (⊗Y \ Γ, L \ J)
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21.5.3 Lemma properties of general eliminations

Let X = [Xi|i ∈ I] be proper schema, R,S ∈ Prel(X),
and J,K ⊆ I. Then

(1) R � J � K = R � (J ∪K) (accumulation of sup.elim.)

(2) R � J � K = R � (J ∪K) (accumulation of inf.elim.)

(3) R � J � K = R � K � J (commutativity of sup.elim.)

(4) R � J � K = R � K � J (commutativity of inf.elim.)

(5) R � J � J = R � J (idempotency of sup.elim.)

(6) R � J � J = R � J (idempotency of inf.elim.)

(7) R � ∅ = R (empty sup.elim.)

(8) R � ∅ = R (empty inf.elim.)

(9) R � J = R � (@ (R) ∩ J) (essential att. of sup.elim.)

(10) R � J = R � (@ (R) ∩ J) (essential att. of inf.elim.)

(11) R � J = R iff @ (R) ∩ J = ∅ (neutral sup.elim.)

(12) R � J = R iff @ (R) ∩ J = ∅ (neutral inf.elim.)

(13) J ⊆ K implies R � J w R � K (antitony of sup.elim.)

(14) J ⊆ K implies R � J v R � K (isotony of inf.elim.)

(15) R � J w R (supervalence of sup.elim)

(16) R � J v R (subvalence of inf.elim.)

(17) R � J � K ⊆ R � K � J (non-commutativity of elim.)

(18) R v S implies R � J v S � J (isotony of sup.elim.)

(19) R v S implies R � J v S � J (isotony of inf.elim.)

21.5.4 Proof of 21.5.3

Let R = [Y,Γ] and Y = [Yl|l ∈ L], so that x(R) = Y and
@ (R) = dom(Y ) = L.
(1) Accumulation of supremum elimiation:

R � J � K

= pr (R,L \ J) � K def. 21.4.1

= pr (pr (R,L \ J) , (L \ J) \K) def. 21.4.1

= pr (R, (L \ J) \K) due to 21.3.3(6)(a)

= pr (R,L \ (J ∪K))

= R � J ∪K def. 21.4.1, again

(2) Accumulation of infimum elimination: similar proof.

(3) Commutativity of supremum elimination:

R � J � K

= R � (J ∪K) due to (1)

= R � (K ∪ J)

= R � K � J due to (1), again

(4) Commutativity of infimum elimination: similar proof.

(5) Idempotency of supremum elimination:

R � J � J

= R � J ∪ J due to (1)

= R � J

(6) Idempotency of infimum elimination: similar proof.

(7) Empty supremum elimination:

R � ∅
= pr (R,L \ ∅) def. 21.4.1

= pr (R,L)

= R due to 21.3.3(1)(a)

(8) Empty infimum elimination: similar proof.

(9) Essential attributes of supremum elimination:

R � J

= pr (R,L \ J) def. 21.4.1

= pr (R,L \ (L ∩ J))

= R � L ∩ J def. 21.4.1, again

(10) Essential attributes of infimum elimination: similar proof.

(11) Neutral supremum eliminations: If L ∩ J 6= ∅, then
L \ J 6= L, so x(R) = L 6= L \ J = x(R � J) and R 6= R � J.
On the other hand, if L ∩ J = ∅, then R � J = R � L ∩ J =
R � ∅ = R, due to (9) and (7).

(12) Neutral infimum eliminations: similar proof.

(13) Antitony of supremum elimination: If J ⊆ K, then
L \ J ⊇ L \K, so that

R � J

= pr (R,L \ J)

w pr (R,L \K) due to 21.3.3(8)(a)

= R � K

(14) Isotony of infimum elimination: similar proof.

(15) Supervalence of supremum elimination: R � J =
pr (R,L \ J) w R, due to 21.3.3(9)(a).

(16) Subvalence of infimum elimination: similar proof.

(17) Recall, that R = [Y,Γ] with Y = [Yl|l ∈ L]. We partition
L into the following four distinct classes:

L′ := L \ (J ∪K)

L′′ := L ∩ J ∩K
J′ := (L ∩ J) \K
K′ := (K ∩ L) \ J &%

'$
&%
'$

&%
'$L

J K

L′

J′ K′

L′′

Accordingly, we partition Y into four distinct schemas:

Y ′ := pr
`
Y, L′

´
Y ′′ := pr

`
Y, L′′

´
U := pr

`
Y, J ′

´
V := pr

`
Y,K′

´ &%
'$

&%
'$

&%
'$Y

Y ′

U V

Y ′′

We will use the following general logical rules (see. 5.5.11).
If v and w are variables, C and D class symbols, and ϕ a
formula, then

(a) ∃v ∈ C . ∀w ∈ D . ϕ⇒ ∀w ∈ D . ∃v ∈ C . ϕ

(b) If C denotes a non–empty class, then
∀v ∈ C . ϕ⇒ ∃v ∈ C . ϕ

We now give the full proof:

R � J � K

= pr
`
cpj

`
R,L′ ∪K′

´
, L′
´

def 21.4.1

= pr

0BB@
264 Y ′ ∨̇ V

ξ  ∀ζ ∈ ⊗(U ∨̇ Y ′′) . ξ ∨̇ ζ ∈ Γ

375, L′
1CCA

due to 21.2.7(2)

=

264 Y ′

y′  ∃v ∈ ⊗V . ∀ζ ∈ ⊗(U ∨̇ Y ′′) . y′ ∨̇ v ∨̇ ζ ∈ Γ

375
due to 21.2.7(1)

=

26664
Y ′

y′  ∃v ∈ ⊗V . ∀u ∈ ⊗U . ∀y′′ ∈ ⊗Y ′′ .
y′ ∨̇ v ∨̇ u ∨̇ y′′ ∈ Γ

37775
due to 16.6.5(4)
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⊆

26664
Y ′

y′  ∀u ∈ ⊗U . ∃v ∈ ⊗V . ∀y′′ ∈ ⊗Y ′′ .
y′ ∨̇ u ∨̇ v ∨̇ y′′ ∈ Γ

37775
due to (a)

⊆

26664
Y ′

y′  ∀u ∈ ⊗U . ∀v ∈ ⊗V . ∃y′′ ∈ ⊗Y ′′ .
y′ ∨̇ u ∨̇ v ∨̇ y′′ ∈ Γ

37775
due to (b), with ⊗Y ′′ 6= ∅

⊆

26664
Y ′

y′  ∀u ∈ ⊗U . ∃ζ ∈ ⊗(V ∨̇ Y ′′) .
y′ ∨̇ u ∨̇ ζ ∈ Γ

37775
due to 16.6.5(4),again

= cpj

0BB@
264 Y ′ ∨̇ V

ξ  ∃ζ ∈ ⊗(V ∨̇ Y ′′) . ξ ∨̇ ζ ∈ Γ

375, L′
1CCA

due to 21.2.7(2), again

= cpj
`
pr
`
R,L′ ∪ J′

´
, L′
´

due to 21.2.7(1), again

= R � K � J def. 21.4.1, again

(18) Recall, that Y = x(R) and L = @(R). So let Y ′ = x(S)
and L′ = @(S).

R v S
⇔ R ‖ (Y ∨ Y ′) ⊆ S ‖ (Y ∨ Y ′)

def. 20.2.2

⇔ R�>(Y ′\Y ) ⊆ S �>(Y \Y ′)
due to 20.1.3(3)

⇒

0@ pr
“
R�>(Y ′\Y ), (L ∪ L

′) \ J
”

⊆ pr
“
S �>(Y \Y ′), (L ∪ L

′) \ J
”1A

due to 21.3.3(11)

⇔

0@ pr (R,L \ J)� pr
“
>(Y ′\Y ), L

′ \ (L ∪ J)
”

⊆ pr
`
S,L′ \ J

´
� pr

“
>(Y \Y ′), L \ (L′ ∪ J)

”1A
due to 21.3.16(1)

⇔

0@ pr (R,L \ J)�>pr(Y ′,L′\(L∪J))

⊆ pr
`
S,L′ \ J

´
�>pr(Y,L\(L′∪J))

1A
due to 21.3.14(3)

⇔

0@ (R � J)�>pr(Y ′,L′\(L∪J))

⊆ (S � J)�>pr(Y,L\(L′∪J))

1A
def. 21.4.1(1)

⇔

0@ (R � J) ‖ pr
`
Y ∨ Y ′, (L ∪ L′) \ J

´
⊆ (S � J) ‖ pr

`
Y ∨ Y ′, (L ∪ L′) \ J

´
1A

due to 20.1.3

⇔ R � J v S � J def. 20.2.2

(19) Proof similar to (18).

21.5.5 Lemma

Let X = [Xi|i ∈ I] be a proper schema.

(1) If J ⊆ I and R ⊆ Prel(X) is pairwise distinct, then

(a)

„
�
k∈K
R
«
� J = �

k∈K
(Rk � J)

(b)

„
�
k∈K
R
«
� J = �

k∈K
(Rk � J)

(2) If J ⊆ I, Y ≤ X, and if we put

Y ′ := pr (Y,dom(Y ) \ J)

then

(a) >Y � J = >Y ′
(b) >Y � J = >Y ′
(c) ⊥Y � J = ⊥Y ′
(d) ⊥Y � J = ⊥Y ′

(3) If R ∈ Prel(X) and J ⊆ I, then

(a) R � J = ¬((¬R) � J)

(b) R � J = ¬((¬R) � J)

(4) If J ⊆ I, Y ≤ X, R ∈ Prel(X), and if we put

Y ′ := pr (Y,dom(Y ) \ J)

then

(a) (R ‖ Y ) � J = (R � J) ‖ Y ′

(b) (R ‖ Y ) � J = (R � J) ‖ Y ′

21.5.6 Proof of 21.5.5

(1) Let Lk = @(Rk), for each k ∈ K. R being pairwise dis-
tinct means that for all k, k′ ∈ K with k 6= k′, Lk∩Lk′ = ∅,
and that implies (Lk \ J) ∩ (Lk′ ∩ J) = ∅.

(a) ( �
k∈K
Rk) � J

= pr

„
�
k∈K
Rk,@( �

k∈K
Rk) \ J

«
def. 21.4.1

= pr

 
�
k∈K
Rk,

 S
k∈K

Lk

!
\ J
!

= pr

 
�
k∈K
Rk,

S
k∈K

(Lk \ J)

!
= �

k∈K
pr (Rk, Lk \ J) due to 21.3.16(1)

= �
k∈K

(Rk � J)

(b) Has a similar proof.

(2) These four statements are a translation of the four
(co)project statements in 21.3.14 in term of eliminations.
By using 21.3.14(1), we obtain a proof of (a)

>Y � J = pr (>Y ,dom(Y ) \ J)

= >pr(Y,dom(Y )\J)

= >Y ′

The proofs for (b),(c), and (d) are likewise.

(3) Definition 21.2.2 of the coprojection and lemma 21.3.12 are
the main tools in the following proofs for (a) and (b)

R � J = pr (R,@ (R) \ J)

= pr (¬¬R,@ (R) \ J)

= ¬cpj (¬R,@ (R) \ J)

= ¬((¬R) � J)
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R � J = cpj (R,@ (R) \ J)

= ¬pr (¬R,@ (R) \ J)

= ¬((¬R) � J)

(4) Let us point out the following subclasses of I

L := dom(Y )

K := @ (R)

K′ := K \ L
L1 := L \ (K ∪ L)

L2 := (L ∩ J) \K
L3 := (L ∩K) \ J
L4 := L ∩ J ∩K

&%
'$

&%
'$

&%
'$L

J KK′

L1

L2 L3

L4

I

so that L is the disjunct union of the L1, L2, L3, L4. We
also split up the schema X accordingly

Yi := pr (Y, Li)
for i = 1, 2, 3, 4

&%
'$

&%
'$

&%
'$Y

Y1

Y2 Y3

Y4

X

so that Y = Y1 ∨̇ Y2 ∨̇ Y3 ∨̇ Y4 and Y ′ = Y1 ∨̇ Y3.

(a) We can now see that

(R ‖ Y ) � J

= (R�>(Y1 ∨̇ Y2)) � J due to 20.1.3(3)

= pr
“
R�>(Y1 ∨̇ Y2), (K ∪ L1 ∪ L2) \ J

”
def. 21.4.1

= pr
“
R�>(Y1 ∨̇ Y2), K

′ ∪ L3 ∪ L1

”
= pr

`
R,K′ ∪ L3

´
� pr

“
>(Y1 ∨̇ Y2), L1

”
due to 21.3.16(1)

= pr (R,K \ J)�>Y1

= (R � J)�>Y1 def. 21.4.1, again

= (R � J) ‖ Y1 due to 20.1.3

= ((R � J) ‖ Y3) ‖ Y1 due to 20.1.11(3)

= R � J ‖ (Y3 ∨ Y1) due to 20.1.11(1)

= R � J ‖ Y ′

(b) Quite similar we obtain

(R ‖ Y ) � J

= cpj (R ‖ Y, (L ∪K) \ J) def. 21.4.1

= cpj
`
R ‖ Y,K′ ∪ L3 ∪ L1

´
= ¬pr

`
¬(R ‖ Y ), K′ ∪ L3 ∪ L1

´
def. 21.2.2

= ¬pr
`
(¬R) ‖ Y,K′ ∪ L3 ∪ L1

´
due to 20.4.15(3)

= ¬pr
“
(¬R)�>(Y1 ∨̇ Y2), K

′ ∪ L3 ∪ L1

”
due to 20.1.3

= ¬
“
pr
`
¬R,K′ ∪ L3

´
� pr

“
>(Y1 ∨̇ Y2), L1

””
due to 21.3.16(1)

= ¬
`
pr (¬R,K \ J)�>Y1

´
= ¬

`
((¬R) � J)�>Y1

´
def. 21.4.1

= ¬
`
((¬R) � J) ‖ Y ′

´
as in the proof of (a)

= (¬((¬R) � J)) ‖ Y ′ due to 20.4.15(3)

= R � J ‖ Y ′ due to (3)(b)

21.5.7 Lemma general eliminations over junctions

Let X = [Xi|i ∈ I] be a proper schema. For each
R = {Rk | k ∈ K} ⊆ Prel(X), all R,S ∈ Prel(X),
and every J ⊆ I holds:

(1) ⊥ � J = ⊥
(2) ⊥ � J = ⊥
(3) > � J = >
(4) > � J = >
(5) (¬R) � J = ¬(R � J)

(6) (¬R) � J = ¬(R � J)

(7) (R u S) � J ⊆ (R � J) u (S � J)

(8) (R u S) � J = (R � J) u (S � J)

(9) (R t S) � J = (R � J) t (S � J)

(10) (R t S) � J w (R � J) t (S � J)

(11) (
Q
R) � J ⊆

Q
{Rk � J | k ∈ K}

(12) (
Q
R) � J =

Q
{Rk � J | k ∈ K}

(13) (
‘
R) � J =

‘
{Rk � J | k ∈ K}

(14) (
‘
R) � J ⊇

‘
{Rk � J | k ∈ K}

21.5.8 Proof of 21.5.7

(1) We have

⊥ � J
= pr (⊥,@ (⊥) \ J) def. 21.4.1

= pr (⊥, ∅)
= ⊥pr(〈〉,∅) due to 21.3.14(1)

= ⊥〈〉
= ⊥ def. 19.3.1

(2),(3),(4) Proof similar to (1).

(5) We obtain

(¬R) � J

= pr (¬R,@ (R) \ J) def. 21.4.1

= ¬cpj (R,@ (R) \ J) due to 21.3.12(1)

= ¬(R � J) def. 21.4.1, again

(6) Proof similar to (5).

(7) This statement is just a special case of (11) proved below,
because R u S =

Q
{R,S}, due to 20.4.21(9).

(8) Special case of (12).

(9) Special case of (13).

(10) Special case of (14).

For the last four statements we need some preparations. The
relation class R ⊆ Prel(X) was given by R = {Rk | k ∈ K}.
Now, for every k ∈ K let

Ak = @(Rk) Xk = x(Rk) Γk = gr(Rk)

so that Rk = [Xk,Γk]. Furthermore, let

A :=
S
{Ak | k ∈ K} Z :=

W
{Xk | k ∈ K}

So @(
Q
R) = A and x(

Q
R) = Z. Finally, let us put

Z′ := pr (Z,A \ J)

Note, that



Theory algebras on relations www.bucephalus.org 149

x (
Q
{Rk � J | k ∈ K}) =

x (
Q
{Rk � J | k ∈ K}) =

x (
‘
{Rk � J | k ∈ K}) =

x (
‘
{Rk � J | k ∈ K}) = Z′

And due to 21.5.5(4), we have for every k ∈ K,

(a) (Rk ‖ Z) � J = (Rk � J) ‖ Z′

(b) (Rk ‖ Z) � J = (Rk � J) ‖ Z′

We now obtain the proofs for (11) to (14)as follows

(11) We have

(
Q
R) � J

= pr (
Q
R, A \ J) due to 21.4.1

= pr (
T
{Rk ‖ Z | k ∈ K}, A \ J)

def. 20.2.4 of
Q

⊆
T
{pr (Rk ‖ Z,A \ J) | k ∈ K}

due to 21.3.10(1)

=
T
{(Rk ‖ Z) � J | k ∈ K} def. 21.4.1

=
T
{(Rk � J) ‖ Z′ | k ∈ K} due to (a)

=
Q
{Rk � J | k ∈ K} def. 20.2.4 of

Q
, again

(12) We have

(
Q
R) � J

= cpj (
Q
R, A \ J) def. 21.4.1

= cpj (
T
{(Rk ‖ Z) | k ∈ K}, A \ J) def. 20.2.4

=
T
{cpj ((Rk ‖ Z), A \ J) | k ∈ K}

due to 21.3.10(3)

=
T
{(Rk ‖ Z) � J | k ∈ K} def. 21.4.1

=
T
{(Rk � J) ‖ Z′ | k ∈ K} due to (b)

=
Q
{Rk � J | k ∈ K} def. 20.2.4

(13) Using the justifications of the proof for (11), we obtain

(
‘
R) � J

= pr (
S
{Rk ‖ Z | k ∈ K}, A \ J)

=
S
{pr (Rk ‖ Z,A \ J) | k ∈ K}

due to 21.3.10(2)

=
‘
{Rk � J | k ∈ K}

(14) Finally and similar to (12)we obtain

(
S
R) � J

= cpj (
S
{(Rk ‖ Z) | k ∈ K}, A \ J)

⊇
S
{cpj (Rk ‖ Z,A \ J) | k ∈ K}

due to 21.3.10(4)

=
‘
{Rk � J | k ∈ K}

21.5.9 Lemma

Let X = [Xi|i ∈ I] be a proper schema, R ∈ Prel(X) and
J ⊆ I. The following statements are equivalent:

(1) R � J ≡ R
(2) R � J ≡ R
(3) R � j ≡ R for every j ∈ J
(4) R � j ≡ R for every j ∈ J

21.5.10 Proof of 21.5.9

Suppose, R = [Y,Γ] with Y = [Yl|l ∈ L].
(1)⇒(3) For every j ∈ J holds:

♣ R v R � j due to 21.5.3(15)

♣ R � j v R � J due to ??(13)

so that

R � J ≡ R implies R � j ≡ R

¬(1)⇒ ¬(3) We derive

R � J 6≡ R
⇔ R @ R � J due to 21.5.3(15)

⇔ R ⊂ (R � J) ‖ Y def. 20.2.2

⇔ R ⊂ (R � J)�>pr(Y,J∩L) due to 20.1.3

⇔
"
Y

Γ

#
⊂
"
pr (Y, L \ J)

pr (Γ, L \ J)

#
�
"

pr (Y, J ∩ L)

⊗pr (Y, J ∩ L)

#
⇔ Γ ⊂ pr (Γ, L \ J)�⊗pr (Y, J ∩ L)

⇔ ∃ξ ∈ Γ . ∃υ ∈ ⊗pr (Y, J ∩ L) . pr (ξ, L \ J) ∨̇ υ 6∈ Γ

In that case and for such ξ and υ we put J′ := {j ∈ (J∩L) |
ξj 6= υj}. J′ is not empty, because then pr (ξ, L \ J) ∨̇ υ =
ξ ∈ Γ. So there must be at least one j ∈ J′. And for
this j we would have ξ ∈ R, but ξ 6∈ R � j ‖ Y , and thus
R 6≡ R � j.

(1)⇔(2) We have

R � J ≡ R
⇔ R � J v R

because R � J w R, due to 21.5.3(15)

⇔ pr (R � J, L \ J) ⊆ cpj (R,L \ J)
due to 21.3.6

⇔ R � J ⊆ R � J
due to 21.3.3(1)(a) and def. 21.4.1(1)

⇔ pr (R,L \ J) ⊆ cpj (R � J, L \ J)
def. 21.4.1(1) and due to 21.3.3(1)(b)

⇔ R v R � J due to 21.3.6 again

⇔ R � J ≡ R
because R � J v R is due to 21.5.3(16)

(3)⇔(4) We just showed that R � J ≡ R iff R � J ≡ R. As
special case this implies R � j ≡ R iff R � j ≡ R.

21.6 Reductions

21.6.1 Definition

Let X be a schema, R ∈ Prel(X) and Y ∈ Proj(X). We
define

R m Y := the S ∈ Rel(Y ) with S ≡ R

the equivalent reduction of R onto Y

R ⇓ Y :=
T
{S ∈ Rel(Y ) | R v S}

the supremum reduction of R onto Y

R ⇑ Y :=
S
{S ∈ Rel(Y ) | S v R}

the infimum reduction of R onto Y
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21.6.2 Lemma

If X is a relation, R ∈ Prel(X) and Y ∈ Proj(X), then

(1) If R m Y exists, then x(R m Y ) = Y

(2) x(R ⇓ Y ) = Y

(3) x(R ⇑ Y ) = Y

21.6.3 Proof of 21.6.2

(1) is obvious. (2) and (3) are due to definition 19.5.3 of
T

andS
, which are operations on Rel(Y ).

Besides, there is no ambiguity here, which might occur for the
expressions

T
∅ and

S
∅, because this empty class situation

never occurs. There is always at least one S ∈ Rel(Y ) which
is subvalent (or supervalent, respectively) to R.

21.6.4 Lemma

Let X = [Xi|i ∈ I] and Y = [Yj |j ∈ J] be two schemas
and R = [X,Γ] a relation.

(1) If Y ≤ X then

(a) R ⇓ Y = pr (R, J)

(b) R ⇑ Y = cpj (R, J)

(c) R ⇓ Y = R � (I \ J)

(d) R ⇑ Y = R � (I \ J)

(2) If X ≤ Y then

(a) R ⇓ Y = R ‖ Y
(b) R ⇑ Y = R ‖ Y

(3) If Y ^ X, then

(a) R ⇓ Y = pr (R, J ∩ I)�>Y \X
(b) R ⇑ Y = cpj (R, J ∩ I)�>Y \X
(c) R ⇓ Y = R � (I \ J)�>Y \X
(d) R ⇑ Y = R � (I \ J)�>Y \X

21.6.5 Proof of 21.6.4

Recall, that for every class C and A ∈ P(C).
(i)

T
{B ∈ P(C) | A ⊆ B} = A

(ii)
S
{B ∈ P(C) | B ⊆ A} = A

Similar statements hold on Rel(Y ) as well, i.e. for every
T = [Y,Γ] ∈ Rel(Y ) holds:

(i) We haveT
{S ∈ Rel(Y ) | T ⊆ S}

=
T("Y

Σ

#
Σ ⊆ ⊗Y,Γ ⊆ Σ

)

=

264 YT
{Σ ∈ P(⊗Y ) | Γ ⊆ Σ}

375
= [Y,Γ] due to (i) above

= T

and similarly, we also have

(ii)
S
{S ∈ Rel(Y ) | S ⊆ T} = T

Now we proof in detail:

(1) If Y ≤ X, then J ⊆ I.
(a) We obtain

R ⇓ Y

=
T
{S ∈ Rel(Y ) | R v S}

def. 21.6.1 of ⇓

=
T
{S ∈ Rel(Y ) | pr (R, J) ⊆ cpj (S, J)}

due to 21.3.6

=
T
{S ∈ Rel(Y ) | pr (R, J) ⊆ S}

due to 21.3.3(1)(b)

= pr (R, J) due to the initial remarks

(b) Similar to (a) we obtain

R ⇑ Y =
S
{S ∈ Rel(Y ) | S v R}

=
S
{S ∈ Rel(Y ) | pr (S, J) ⊆ cpj (R, J)}

=
S
{S ∈ Rel(Y ) | S ⊆ cpj (R, J)}

= cpj (R, J)

(c) We have

R ⇓ Y
= pr (R, J) due to (a)

= R � (I \ J) def. 21.4.1(1)

(d) Similar to (c), R ⇑ Y = cpj (R, J) = R � (I \ J).

(2) Now X ≤ Y .

(a) We have

R ⇓ Y
=
T
{S ∈ Rel(Y ) | R v S}

def. 21.6.1 of ⇓

=
T
{S ∈ Rel(Y ) | R ‖ (X ∨ Y ) ⊆ S ‖ (X ∨ Y )}

def. 20.2.2 of v

=
T
{S ∈ Rel(Y ) | R ‖ Y ⊆ S ‖ Y }

because X ∨ Y = Y

=
T
{S ∈ Rel(Y ) | R ‖ Y ⊆ S}

because S ‖ Y = S

= R ‖ Y due to (i)

(b) Proof similar to (a).

(3) Now Y ^ X.

(a) We have

R ⇓ Y
=
T
{S ∈ Rel(Y ) | R v S}

def. 21.6.1 of ⇓

=
T
{S ∈ Rel(Y ) | pr (R, J ∩ I) ⊆ cpj (S, J ∩ I)}

due to 21.3.6

= pr (R, J ∩ I)�>Y \X
due to 21.3.8(2)(b)

(b) Similar to (a) we obtain

R ⇑ Y
=
S
{S ∈ Rel(Y ) | S v R}

=
S
{S ∈ Rel(Y ) | pr (S, J ∩ I) ⊆ cpj (R, J ∩ I)}

= cpj (R, J ∩ I)�>Y \X due to 21.3.8(2)(a)

(c) We have

R ⇓ Y
= pr (R, J ∩ I)�>Y \X due to (a)

= pr (R, I \ (J ∩ I))�>Y \X def. 21.4.1(1)

= pr (R, I \ J)�>Y \X

(d) Proof similar to (c).



Theory algebras on relations www.bucephalus.org 151

21.6.6 Lemma

Let X be a proper schema, R ∈ Prel(X) and Y ∈
Proj(X).

(1) R ⇑ Y v R v R ⇓ Y
(2) The following statements are equivalent:

(a) R m Y is defined

(b) R ⇑ Y = R ⇓ Y

(3) In case R m Y is actually defined, then

R m Y = R ⇑ Y = R ⇓ Y

21.6.7 Proof of 21.6.6

Suppose, R = [U,Γ] with U = [Uk|k ∈ K] and Y = [Yj |j ∈ J].

(1) We have

R ⇑ Y
= pr (R,K ∩ J)�>(Y \U) due to 21.6.4(3)(b)

= pr (R,K ∩ J) ‖ (Y \ U) due to 20.1.3

≡ pr (R,K ∩ J) due to 20.4.9(2)

v R due to 21.3.3(9)(b)

v cpj (R,K ∩ J) due to 21.3.3(9)(a)

≡ cpj (R,K ∩ J) ‖ (Y \ U) due to 20.4.9(2)

= cpj (R,K ∩ J)�>(Y \U) due to 20.1.3

= R ⇓ Y due to 21.6.4(3)(a)

(2) R m Y is defined iff there is a S ∈ Rel(Y ) with S ≡ R. In
that case,

R ⇓ Y =
T
{S ∈ Rel(Y ) | R v S}

≡ R m Y

≡
S
{S ∈ Rel(Y ) | S v R}

= R ⇑ Y

(3) Immediate consequence of (1) and (2).

21.6.8 Remark

The construction of the various reductions by means of double
tables was already introduced in 21.1.1. At this point we have
all the justifications available, so let us summarize the method
for the general case.

Let X = [Xi|i ∈ I] and Y = [Yj |j ∈ J] be two completely
finite schemas with X ^ Y and R = [X,Γ] a relation.

For the construction of R ⇓ Y and R ⇑ Y we use lemma
21.6.4(3)

R ⇓ Y = pr (R, J ∩ I)�>Y \X

R ⇑ Y = cpj (R, J ∩ I)�>Y \X

So we make two steps:
♣ We first construct the R′ := pr (R, J ∩ I) (or R′′ :=

cpj (R, J ∩ I)) according to the method 21.2.3.

♣ Then we generate R′ � >Y \X (or R′′ � >Y \X) according
to 20.1.5.

The contructions for R ⇓ Y and R ⇑ Y also give us a criterion
for the existence of R m Y . Due to 21.6.6(2), R m Y is defined
iff R ⇓ Y = R ⇑ Y . And in that case, all these reductions are

identical according to 21.6.6(2).

21.7 Properties of the reductions

21.7.1 Lemma

Let X be a proper schema.

(1) For R = [U,Γ] ∈ Prel(X) and Y ∈ Proj(X)

(a) R ⇓ Y = R ⇓ (U ∧ Y ) ‖ Y
(b) R ⇑ Y = R ⇑ (U ∧ Y ) ‖ Y

(2) For R ∈ Prel(X) and Y ∈ Proj(X) holds:

(a) R ⇑ Y = ¬((¬R) ⇓ Y )

(b) R ⇓ Y = ¬((¬R) ⇑ Y )

(3) For R ∈ Prel(X) and Y, Z ∈ Proj(X) holds:

(a) R ⇓ Y = R ‖ Z ⇓ Y
(b) R ⇑ Y = R ‖ Z ⇑ Y

(4) For R,S ∈ Prel(X) and Y ∈ Proj(X) holds:

(a) R ≡ S implies R ⇓ Y = S ⇓ Y
(b) R ≡ S implies R ⇑ Y = S ⇑ Y

(5) For R,S ∈ Prel(X) and Y ∈ Proj(X) holds:

(a) R v S implies R ⇓ Y v S ⇓ Y
(b) R v S implies R ⇑ Y v S ⇑ Y

(6) For R ∈ Prel(X) and Y ∈ Proj(X) holds:

(a) R ⇓ Y w R
(b) R ⇑ Y v R

(7) For R = [U,Γ] ∈ Prel(X) and Y ∈ Proj(X) holds:

(a) U G Y implies R ⇓ Y =

(
⊥Y if R ≡ ⊥
>Y else

(b) U G Y implies R ⇑ Y =

(
>Y if R ≡ >
⊥Y else

(8) For every R ∈ Prel(X) holds:

(a) R ⇓ 〈〉 =

(
⊥ if R is empty

> else

(b) R ⇑ 〈〉 =

(
> if R is full

⊥ else

(9) For R ∈ Prel(X) and Y, Z ∈ Proj(X) holds:

(a) Y ≤ Z implies R ⇓ Y w R ⇓ Z
(b) Y ≤ Z implies R ⇑ Y v R ⇑ Z

(10) For R ∈ Prel(X) and Y ∈ Proj(X) holds:

R ⇑ Y ⊆ R ⇓ Y
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(11) For every R ∈ Prel(X) and all Y, Z ∈ Proj(X)
holds:

R ⇑ Y ⇓ Z v R ⇓ Z ⇑ Y

(12) For all R ∈ Prel(X) holds:

R m X = R ‖ X = R ⇓ X = R ⇑ X

(13) For all R ∈ Prel(X) and Y1, . . . , Yn ∈ Proj(X) with
n ≥ 1 holds

(a) R ⇓ Y1 ⇓ . . . ⇓ Yn = R ⇓
„
n
∧
i∈1

Yi

«
‖ Yn

(b) R ⇑ Y1 ⇑ . . . ⇑ Yn = R ⇑
„
n
∧
i∈1

Yi

«
‖ Yn

21.7.2 Proof of 21.7.1

(1) (a) Recall, that U, Y ∈ Proj(X) implies U ^ Y and that
U ∧ Y ≤ U . Now if J := dom(U) and K := dom(Y ) then

R ⇓ Y
= pr (R, J ∩K)�>Y \U due to 21.6.4(3)(a)

= (R ⇓ (U ∧ Y ))�>Y \U due to 21.6.4(1)(a)

= R ⇓ (U ∧ Y ) ‖ (Y \ U) due to 20.1.3(3)

= R ⇓ (U ∧ Y ) ‖ Y due to 20.1.3(1)

(b) Proof similar to (a).

(2) (a) We have

R ⇑ Y
=
S
{S | S ∈ Rel(Y ), S v R} def. 21.6.1 of ⇑

= ¬¬
S
{S | S ∈ Rel(Y ), S v R} due to 19.4.6

= ¬
T
{¬S | S ∈ Rel(Y ), S v R}

due to de Morgans law on Rel(Y )

= ¬
T
{S | S ∈ Rel(Y ),¬S v R}

= ¬
T
{S ∈ Rel(Y ) | ¬R v S} due to 20.4.24

= ¬((¬R) ⇓ Y ) def. 21.6.1 of ⇓

(b) Proof similar to (a).

(3) (a) We have

R ‖ Z ⇓ Y
=
T
{S ∈ Rel(Y ) | (R ‖ Z) v S} def. 21.6.1 of ⇓

=
T
{S ∈ Rel(Y ) | R v S} because R ‖ Z ≡ R

= R ⇓ Y def. 21.6.1, again

(b) We have

R ⇑ Y
= ¬((¬R) ⇓ Y ) due to (2)(a)

= ¬((¬R) ‖ Z ⇓ Y ) due to (a)

= ¬(¬(R ‖ Z) ⇓ Y ) due to 20.4.15(3)

= R ‖ Z ⇑ Y due to (2)(a), again

(4) (a) We have

R ≡ S
⇒ R ‖ X = S ‖ X due to 20.4.9(4)(b)

⇒ R ‖ X ⇓ Y = S ‖ X ⇓ Y
⇒ R ⇓ Y = S ⇓ Y due to (3)(a)

(b) Proof similar to (a).

(5) (a) Suppose Y = [Yj |j ∈ J], then

R v S
⇒ R ‖ X ⊆ S ‖ X due to 20.4.9(4)(a)

⇒ pr (R ‖ X, J) ⊆ pr (S ‖ X, J) due to 21.3.3(11)(a)

⇒ R ‖ X ⇓ Y ⊆ S ‖ X ⇓ Y due to 21.6.4(1)(a)

⇒ R ⇓ Y v S ⇓ Y due to (3)(a)

(b) Proof similar to (b).

(6) (a) Suppose Y = [Yj |j ∈ J], then

R ⇓ Y
= R ‖ X ⇓ Y due to (3)(a)

= pr (R ‖ X, J) due to 21.6.4(1)(a)

w R ‖ X due to 21.3.3(9)(a)

≡ R

and so R ⇓ Y w R.

(b) Proof similar to (a).

(7) (a) Suppose U = [Ul|l ∈ L] and Y = [Yj |j ∈ J], then

R ⇓ Y
= pr (R,L ∩ J)�>Y \U due to 21.6.4(3)(a)

= pr (R, ∅)�>Y because U G Y

=

(
⊥�>Y = ⊥Y if R is empty, i.e. R ≡ ⊥
>�>Y = >Y else

due to 21.3.3(3)(a)

(b) Proof similar to (a).

(8) For every schema Z holds Z G 〈〉. So (8) is just the special
case of (7), where Y = 〈〉.

(9) (a) Suppose Y = [Yj |j ∈ J] and Z = [Zk|k ∈ K], then
Y ≤ Z means J ⊆ K. Then

R ⇓ Y
= R ‖ X ⇓ Y due to (3)(a)

= pr (R ‖ X, J) due to 21.6.4(1)

⊇ pr (R ‖ X,K) due to 21.3.3(8)(a)

= R ‖ X ⇓ Z
= R ⇓ Z

(b) Proof similar to (a).

(10) From 21.6.6 we obtain R ⇑ Y v R ⇓ Y . And because
x(R ⇑ Y ) = x(R ⇓ Y ) we derive R ⇑ Y ⊆ R ⇓ Y .

(11) Suppose that R = [U,Γ] and U = [Ui|i ∈ I], Y = [Yj |j ∈
J], and Z = [Zk|k ∈ K].
For the left hand side of the subvalence expression holds:

R ⇑ Y ⇓ Z
= R ⇑ (U ∧ Y ) ‖ Y ⇓ Z due to (1)(b)

= R ⇑ (U ∧ Y ) ⇓ Z due to (3)(a)

= R ⇑ (U ∧ Y ) ⇓ (U ∧ Y ∧ Z) ‖ Z due to (1)(a)

≡ R ⇑ (U ∧ Y ) ⇓ (U ∧ Y ∧ Z) due to 20.4.9(2)

And because

@(R) = I

@(R ⇑ (U ∧ Y )) = dom(U ∧ Y )

= I ∩ J

= I \ (I \ J)

@(R ⇑ (U ∧ Y ) ⇓ (U ∧ Y ∧ Z)) = I ∩ J ∩K

= (I \ (I \ J)) \ (I \K)

we obtain

R ⇑ (U ∧ Y ) ⇓ (U ∧ Y ∧ Z) = R � (I \ J) � (I \K)
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by applying 21.6.4(1)(c) and (d).
Performing similar steps on the right hand side of the sub-
valence expression gives us

R ⇓ Z ⇑ Y ≡ R ⇓ (U ∧ Z) ⇑ (U ∧ Y ∧ Z)

= R � (I \K) � (I \ J)

Having translated the reductions into eliminations this way,
we can now apply 21.5.3(17):

R ⇑ Y ⇓ Z ≡ R � (I \ J) � (I \K)

⊆ R � (I \K) � (I \ J)

≡ R ⇓ Z ⇑ Y

and thus

R ⇑ Y ⇓ Z v R ⇓ Z ⇑ Y

(12) Suppose R = [Y,Γ]. Then Y ≤ X and

R ⇓ X = R ‖ X due to 21.6.4(2)(a)

R ⇑ X = R ‖ X due to 21.6.4(2)(b)

Furthermore, R ‖ X ≡ R according to 20.4.9(2). So there is
a (unique) R ∈ Rel(X) equivalent to R, namely R ‖ X, and
so R ‖ X = R m X.

(13) Let R = [Y,Γ] with U = [Ui|i ∈ I] and dom(Yk) = Ji
for k = 1, . . . , n.

(a) We proof by induction on n:

♣ For n = 1 we have

R ⇓ Y1 = R ⇓ Y1 ‖ Y1

which is a true statement according to 20.1.11(3)

♣ For n 7→ n+ 1 we obtain

R ⇓ Y1 ⇓ . . . ⇓ Yn ⇓ Yn+1

= R ⇓
„

n
∧
i=1

Yi

«
‖ Yn ⇓ Yn+1 by induction

= R ⇓
„

n
∧
i=1

Yi

«
⇓ Yn+1 due to (3)(a)

= R ⇓
„
n+1
∧
i=1

Yi

«
‖ Yn+1 due to (1)(a)

(b) Proof similar to (a).

21.7.3 Lemma

For each schema X, all R = {Rk | k ∈ K} ⊆ Prel(X) and
R,S ∈ Prel(X), and every Y ∈ Proj(X) holds:

(1) ⊥ ⇓ Y = ⊥Y
(2) ⊥ ⇑ Y = ⊥Y
(3) > ⇓ Y = >Y
(4) > ⇑ Y = >Y
(5) (¬R) ⇓ Y = ¬(R ⇑ Y )

(6) (¬R) ⇑ Y = ¬(R ⇓ Y )

(7) (R u S) ⇓ Y ⊆ (R ⇓ Y ) ∩ (S ⇓ Y )

(8) (R u S) ⇑ Y = (R ⇑ Y ) ∩ (S ⇑ Y )

(9) (R t S) ⇓ Y = (R ⇓ Y ) ∪ (S ⇓ Y )

(10) (R t S) ⇑ Y ⊇ (R ⇑ Y ) ∪ (S ⇑ Y )

(11) (
Q
R) ⇓ Y ⊆

T
{Rk ⇓ Y | k ∈ K}

(12) (
Q
R) ⇑ Y =

T
{Rk ⇑ Y | k ∈ K}

(13) (
‘
R) ⇓ Y =

S
{Rk ⇓ Y | k ∈ K}

(14) (
‘
R) ⇑ Y ⊇

S
{Rk ⇑ Y | k ∈ K}

21.7.4 Proof of 21.7.3

Let X = [Xi|i ∈ I] and dom(Y ) = J, so that Y = [Xj |j ∈ J].

(1) We obtain

⊥ ⇓ Y
=
T
{T ∈ Rel(Y ) | ⊥ v T} def. 21.6.1 of ⇓

=
T

Rel(Y ) due to 20.4.21(17)

= ⊥Y

(2) Similar to (1) we obtain

⊥ ⇑ Y
=
S
{T ∈ Rel(Y ) | T v ⊥} def. 21.6.1 of ⇑

=
S
{T ∈ Rel(Y ) | T ⊆ ⊥Y }

=
S
{>Y }

= ⊥Y

(3) Similar to (1) and (2).

(4) Similar to (1) and (2).

(5) We have

(¬R) ⇓ Y
= ¬¬((¬R) ⇓ Y due to 19.4.6

= ¬(R ⇑ Y ) due to 21.7.1(2)(b)

(6) Similar to (5).

(7) Due to

R u S =
Q
R,S

(R ‖ Y ) u (S ‖ Y ) =
Q
{(R ‖ Y ), (S ‖ Y )}

this case (7) is just a special case of (11) (proof see below).

(8) Is a special case of (12).

(9) Is a special case of (13).

(10) Is a special case of (14).

(11) We have

(
Q
R) ⇓ Y

= (
Q
R) ‖ X ⇓ Y due to 21.7.1(5)(c)

=
Q
{Rk ‖ X | k ∈ K} ⇓ Y due to 20.4.15(8)

=
T
{Rk ‖ X | k ∈ K} ⇓ Y def. 20.2.4 of

Q
= pr (

T
{Rk ‖ X | k ∈ K}, J) due to 21.6.4(1)(a)

⊆
T
{pr (Rk ‖ X, J) | k ∈ K} due to 21.3.10(1)

=
T
{Rk ‖ X ⇓ Y | k ∈ K} due to 21.6.4(1)(a), again

=
T
{Rk ⇓ Y | k ∈ K} due to 21.7.1(5)(c),again

(12) Similar to (11), we obtain

(
Q
R) ⇑ Y

= (
Q
R) ‖ X ⇑ Y due to 21.7.1(5)(d)

= (
Q
{Rk ‖ X | k ∈ K}) ⇑ Y due to 20.4.15(8)

= (
T
{Rk ‖ X | k ∈ K}) ⇑ Y def. 20.2.4 of

Q
= pr (

T
{Rk ‖ X | k ∈ K}, J) due to 21.6.4(1)(b)

=
T
{pr (Rk ‖ X, J) | k ∈ K} due to 21.3.10(1)

=
T
{Rk ‖ X ⇑ Y | k ∈ K} due to 21.6.4(1)(b), again

=
T
{Rk ⇑ Y | k ∈ K} due to 21.7.1(5)(d), again

(13) Similar to (11) and (12), by applying 21.3.10(3).

(14) Similar to (11) and (12), by applying 21.3.10(4).
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21.7.5 Lemma

Let R = [X,Γ] and S = [Y,Σ] be two compatible relations.
We put Z := X ∧ Y .

(1) The following statements are equivalent:

(a) R v S
(b) R ⇓ Z ⊆ S ⇑ Z
(c) R ⇓ Y v S ⇑ X

(2) The following statements are equivalent as well:

(a) R ≡ S
(b) R ⇓ Z = R ⇑ Z = S ⇓ Z = S ⇑ Z
(c) R m Z and S m Z both exist and they are equal.

21.7.6 Proof of 21.7.5

Suppose, X = [Xi|i ∈ I] and Y = [Yj |j ∈ J].
(1) (a) and (b) are equivalent, because

R v S
⇔ pr (R, I ∩ J) ⊆ cpj (S, I ∩ J) due to 21.3.6

⇔ R ⇓ Z ⊆ S ⇑ Z due to 21.6.4(1)(a) and (b)

(b) and (c) are equivalent, because

R ⇓ Y
= R ⇓ Z ‖ Y due to 21.7.1(1)(a)

≡ R ⇓ Z due to 20.4.9(2)

S ⇑ X
= S ⇑ Z ‖ X due to 21.7.1(1)(b)

≡ S ⇑ Z due to 20.4.9(2)

and thus

R ⇓ Z ⊆ S ⇑ Z iff R ⇓ Y v S ⇑ X

(2) (a) and (b) are equivalent, because

R ≡ S
iff R v S and S v R

due to 20.4.9(1)

iff R ⇓ Z ⊆ S ⇑ Z and S ⇓ Z ⊆ R ⇑ Z
due to (1)

iff R ⇓ Z = R ⇑ Z = S ⇓ Z = S ⇑ Z
because R ⇑ Z ⊆ R ⇓ Z
and S ⇑ Z ⊆ S ⇓ Z
according to 21.7.1(10)

(b) and (c) equivalent, due to 21.6.6

♣ R m Z is defined iff R ⇑ Z = R ⇓ Z (then also = R m Z).

♣ S m Z is defined iff S ⇑ Z = S ⇓ Z (then also = S m Z).

and that entails the equivalence of (b) and (c).

21.7.7 Lemma

Let X = [Xi|i ∈ I] be a proper schema, [σk|k ∈ K]
a schema partition of X, and for each k ∈ K let Rk ∈
Prel(σk) and Yk ∈ Proj(σk). Then

(a)

„
�
k∈K

Rk

«
‖
 Ẇ
k∈K

Yk

!
= �
k∈K

(Rk ‖ Yk)

(b)

„
�
k∈K

Rk

«
⇓
 Ẇ
k∈K

Yk

!
= �
k∈K

(Rk ⇓ Yk)

(c)

„
�
k∈K

Rk

«
⇑
 Ẇ
k∈K

Yk

!
= �
k∈K

(Rk ⇑ Yk)

21.7.8 Proof of 21.7.7

First, let us state that every distinct product expression of
21.7.7 is well defined: the Rk are pairwise distinct by defini-
tion. And with Rk ‖ Yk ∈ Prel(σk) and pairwise distinct σk,
the Rk ‖ Yk are pairwise distinct as well and their distinct
product is well–defined. The same holds for the supremum
and infimum reduction expressions.

For the subsequent proof we will use the following fact from
the algebra of classes:
(i) Let C and K be classes, {Ak | k ∈ K} ⊆ P(C), and
{Bk | k ∈ K} ⊆ P(C), such that k1 6= k2 implies
Ak1 ∩ Bk2 = ∅, for all k1, k2 ∈ K. Then S

k∈K
Ak

!
∩
 S
k∈K

Bk

!
=

S
k∈K

(Ak ∩ Bk)

Now, for each k ∈ K, let Uk = x(Rk), Lk = @(Rk) =
dom(Uk), and Jk = dom(Yk).

(a) The given statements is„
�
k∈K

Rk

«
‖
 Ẇ
k∈K

Yk

!
= �

k∈K
(Rk ‖ Yk)

According to 20.4.9(5), both sides of the stated equation are
equal iff they are both equivalent and have the same schema.
Now the equivalence holds due to„

�
k∈K

Rk

«
‖
 Ẇ
k∈K

Yk

!
≡
„
�
k∈K

Rk

«
≡ �

k∈K
(Rk ‖ Yk)

and for the schemas holds

x

 „
�
k∈K

Rk

«
‖
 Ẇ
k∈K

Yk

!!
=

 Ẇ
k∈K

Uk

!
∨
 Ẇ
k∈K

Yk

!
=

W
k∈K

(Uk ∨ Yk)

= x

„
�
k∈K

(Rk ‖ Yk)
«

(b) We have„
�
k∈K

Rk

«
⇓
 Ẇ
k∈K

Yk

!

= pr

 
�
k∈K

Rk,

 S
k∈K

Lk

!
∩
 S
k∈K

Jk

!!
‖
 Ẇ
k∈K

Yk

!
due to 21.6.4(3)(a) and 20.1.3(3)

= pr

 
�
k∈K

Rk,
S
k∈K

(Lk ∩ Jk)
!
‖
 Ẇ
k∈K

Yk

!
due to (i)

=

„
�
k∈K

pr (Rk, Lk ∩ Jk)
«
‖
 Ẇ
k∈K

Yk

!
due to 21.3.16(1)

=

„
�
k∈K

(Rk ⇓ (Uk ∧ Yk))
«
‖
 Ẇ
k∈K

Yk

!
due to 21.6.4(1)(a)

= �
k∈K

(Rk ⇓ (Uk ∧ Yk) ‖ Yk) due to (a)

= �
k∈K

(Rk ⇓ Yk) due to 21.7.1(1)(a)

(c) Similar to the proof of (b) we have„
�
k∈K

Rk

«
⇑
 Ẇ
k∈K

Yk

!

= cpj

 
�
k∈K

Rk,

 S
k∈K

Lk

!
∩
 S
k∈K

Jk

!!
‖
 Ẇ
k∈K

Yk

!
due to 21.6.4(3)(b) and 20.1.3(3)

= cpj

 
�
k∈K

Rk,
S
k∈K

(Lk ∩ Jk)
!
‖
 Ẇ
k∈K

Yk

!
due to (i)

=

„
�
k∈K

cpj (Rk, Lk ∩ Jk)
«
‖
 Ẇ
k∈K

Yk

!
due to 21.3.16(2)

=

„
�
k∈K

(Rk ⇑ (Uk ∧ Yk))
«
‖
 Ẇ
k∈K

Yk

!
due to 21.6.4(1)(b)

= �
k∈K

(Rk ⇑ (Uk ∧ Yk) ‖ Yk) due to (a)
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= �
k∈K

(Rk ⇑ Yk) due to 21.7.1(1)(b)

21.8 Redundancy of attributes

21.8.1 Remark introduction

We saw in 21.5.3(15) and (16), that

R � j v R v R � j

for every relation R and attribute j. In fact, the left subvalence
is proper iff the right one is, i.e. exactly one of the following
situations is the case: Either
(a) R � j ≡ R ≡ R � j or

(b) R � j @ R @ R � j.

In case of (a), we say that j is redundant for R. We can elim-
inate j from R without loosing any information, where “same
information” means “being equivalent”. Neither does it matter
how we eliminate j from R — supremum or infimum elimina-
tion, it is all the same in this case.

21.8.2 Definition

Let X = [Xi|i ∈ I] be a proper schema and R ∈
Prel(X).

(1) We call every j ∈ I
(a) redundant for R, iff

R � j = R � j

(b) irredundant for R, iff

R � j 6= R � j

And if j is an attribute of R, we call it (ir)redundant in
R.

(2) Each J ⊆ I is called

(a) redundant for R, if each j ∈ J is redundant for R

(b) irredundant for R, if each j ∈ J is irredundant for
R

And if J ⊆ @(R) we call J (ir)redundant in R, accord-
ingly.

(3) We define

redAt(R) := {j ∈ @(R) | R � j = R � j}

the redundant attribute class of R

irrAt(R) := {j ∈ @(R) | R � j 6= R � j}

the irredundant attribute class of R

21.8.3 Remark Remark

Note that in definition 21.8.2, each single j ∈ I is either re-
dundant or irredundant for R. But a subclass J ⊆ I that
has both redundant and irredundant members, is itself neither
redundant nor irredundant for R.

Another terminology for “redundant” is “negative” and for “ir-
redundant” is “positive”. But we will not use these terms
here.

21.8.4 Example and table methods

Consider a relation R with schema X, where

X =

26664
a 7→ B
b 7→ B
c 7→ B
d 7→ B

37775 and R =

a b c d

0 0 0 0 1

1 0 0 0 1

0 1 0 0 0

1 1 0 0 1

0 0 1 0 0

1 0 1 0 0

0 1 1 0 0

1 1 1 0 0

0 0 0 1 1

1 0 0 1 1

0 1 0 1 0

1 1 0 1 1

0 0 1 1 0

1 0 1 1 0

0 1 1 1 0

1 1 1 1 0

(Actually, R is the truth table of the propositional formula
[ [ a ∨ ¬b ] ∧ ¬c ∧ [ d ∨ ¬d ] ].)

Double tables (introduced in 17.6.1) provide an intuitive tool
to decide, if a certain attribute, say a, is redundant. According
to 21.6.4(1)(c) and (d), an elimination of a is a reduction onto
pr (X, {b, c, d}). And this is done with double tables. We first
represent R as a double table with a as the only attribute in
the top schema:

R =

0 1 a

0 0 0 1 1

1 0 0 0 1

0 1 0 0 0

1 1 0 0 0

0 0 1 1 1

1 0 1 0 1

0 1 1 0 0

1 1 1 0 0

b c d

Boolean conjunction ∧ of the two values in each row produces
the infimum elimination:

R � a =

b c d

0 0 0 1 ∧ 1

1 0 0 0 ∧ 1

0 1 0 0 ∧ 0

1 1 0 0 ∧ 0

0 0 1 1 ∧ 1

1 0 1 0 ∧ 1

0 1 1 0 ∧ 0

1 1 1 0 ∧ 0

=

b c d

0 0 0 1

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 0

0 1 1 0

1 1 1 0

Similarly, we obtain the supremum elimination:
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R � a =

b c d

0 0 0 1 ∨ 1

1 0 0 0 ∨ 1

0 1 0 0 ∨ 0

1 1 0 0 ∨ 0

0 0 1 1 ∨ 1

1 0 1 0 ∨ 1

0 1 1 0 ∨ 0

1 1 1 0 ∨ 0

=

b c d

0 0 0 1

1 0 0 1

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 0

We see here that the two resulting tables are different, so
R � a 6= R � a and thus a is irredundant in R.

On the other hand, if we perform the same process for the
eliminations of d, we find R � d = R � d:

0 1 d

0 0 0 1 1

1 0 0 1 1

0 1 0 0 0

1 1 0 1 1

0 0 1 0 0

1 0 1 0 0

0 1 1 0 0

1 1 1 0 0

a b c

a b c

0 0 0 1

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0

a b c

0 0 0 1

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0

R R � d R � d

So d is redundant. If we do this test for the remaining two
attributes b and c, we will find that the attribute class of R
partitions into the following two subclasses:

redAt(R) = {d}

irrAt(R) = {a, b, c}

21.8.5 Remark

We mentioned, that the table R of the previous example 21.8.4
is the truth table of the propositional formula

ϕ = [ [ a ∨ ¬b ] ∧ ¬c ∧ [ d ∨ ¬d ] ]

This provides us with another clue for the understanding of
the redundancy concept. The subformula [ d ∨ ¬d ] is equiva-
lent to 1. So it is a neutral element of this conjunction and
may be deleted without changing the boolean semantics. In
other words, [ [ a ∨ ¬b ] ∧ ¬c ] is still equivalent to ϕ. That d
is redundant if ϕ is saying that there is an equivalent formula
without d.

21.8.6 Lemma

Let X = [Xi|i ∈ I] be a proper schema, R ∈ Prel(X)
and J ⊆ I. With K := @ (R) and Y := pr (X,K \ J) the
following statements are equivalent:

(1) J is redundant for R

(2) K ∩ J is redundant in R

(3) R � (K ∩ J) = R � (K ∩ J)

(4) R � J = R � J

(5) R � J ≡ R
(6) R � J ≡ R
(7) pr (R,K \ J) = cpj (R,K \ J)

(8) pr (R,K \ J) ≡ R
(9) cpj (R,K \ J) ≡ R
(10) R ⇑ Y = R ⇓ Y
(11) R ⇓ Y ≡ R
(12) R ⇑ Y ≡ R
(13) R m Y is well–defined

(14) Each j ∈ J is redundant for R

(15) Each j ∈ (K ∩ J) is redundant in R

(16) R � j = R � j for each j ∈ J
(17) R � j ≡ R for each j ∈ J
(18) R � j ≡ R for each j ∈ J
(19) K ∩ J ⊆ redAt(R)

21.8.7 Proof of 21.8.6

Our proof pictures the following network of equivalences:

(15) — (2) — (19)

|
(3) (14) — (1)

| |
(10) — (7) — (4) (16)

| |
(11) — (8) — (5) — (17)

| |
(12) — (9) — (6) — (18)

|
(13)

The details of this argumentation:

(14)⇔(16) due to definition 21.8.2(1)(a).

(1)⇔(14) is exactly definition 21.8.2(2)(a).

(2)⇔(15) again due to definition 21.8.2.

(2)⇔(19) due to definition 21.8.2, once again.

(3)⇔(4) holds due to 21.5.3(9) and (10), saying that R � J =
R � (K ∩ J) and R � J = R � (K ∩ J).

(10)⇔(11)⇔(12)⇔(13) is true according to 21.6.6.

(5)⇔(8)⇔(11) due to 21.6.4.

(6)⇔(9)⇔(12) due to 21.6.4.

(4)⇔(7)⇔(10) due to 21.6.4.

(17)⇔(18)⇔(16) Obviously, (16)⇔(17)∧(18). And (17)⇔(18),
as we know by now. Thus (16)⇔(17)and (16)⇔(18).

(5)⇔(17)⇔(18)⇔(6) due to 21.5.9.

(2)⇔(3) By now we have proof for (1)⇔(4). It follows that:
K ∩ J is redundant for R iff (3). And since K ∩ J ⊆ K,
the statements “K ∩ J is redundant for R” and “K ∩ J is
redundant in R” are equivalent.
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22 Attribute translation

22.1 Introduction

22.1.1 Example

Consider an example relation R, given as

R :=

child : H father : H mother : H

c1 f1 m1

c2 f2 m2

c3 f3 m3

where H is the class of human beings (or less suggestive and
more formal, a class of names or strings). Also given a little
translator, i.e. a function (or record) between attributes, by

τ :=

264 child 7→ kind

father 7→ vater

mother 7→ mutter

375
We define tr(R, τ), the (attribute) translation of R by τ , so
that in our particular example

tr(R, τ) :=

kind : H vater : H mutter : H

c1 f1 m1

c2 f2 m2

c3 f3 m3

The result is a “German translation” of the original “English
relation”. In this case, the translation is simply a substitution
of the attributes in the table.

22.1.2 Example

But things are not always that plain. Taking the same relation
R from 22.1.1, but another translator

τ :=

"
father 7→ parent

mother 7→ parent

#

we could argue if tr(R, τ) can be well–defined at all. But we
do want a very general translation concept and we apply the
following principles for its definition.

First of all, if R has an attribute that doesn’t occur in the
domain of τ , we leave the attribute unchanged. In our exam-
ple, child is such an attribute. So at this stage, our example
becomes

tr(R, τ) :=

child : H parent : H parent : H

c1 f1 m1

c2 f2 m2

c3 f3 m3

The result is not a well–defined relation, there cannot be two
columns with the same attributes. So we merge the two parent
columns into one. In order to do that, we treat each of the
three graph records accordingly. For each of the three rows
ξ ∈ R we produce the translation tr(ξ, τ). But for, say the
first member

ξ =

264 child 7→ c1
parent 7→ f1
parent 7→m1

375
the translation tr(ξ, τ) is defined only, if f1 = m1. But we
assume instead, that fathers and mothers are always two dif-
ferent specimen. tr(ξ, τ) is undefined for this ξ and the other
two members as well. Thus we end up with

tr(R, τ) = child : H parent : H

However empty, the result is still well–defined. Nevertheless,
there are also examples of relations R and translators τ , where
tr(R, τ) is not reasonably defineable.

22.1.3 Remark

In general, the τ–translation tr(R, τ) of a relation R = [X,Γ]
is based on the τ–translation of records. The general method
has two steps:
♣ First, produce the τ–translation X′ := tr(X, τ) of the

schema. If X′ is not well defined, the whole translation
of R fails and aborts here. Otherwise:

♣ For each member x ∈ Γ, produce the τ–translation x′ :=
tr(x, τ). If x′ is well–defined, it becomes a member of the
new graph Γ′. Eventually,

ˆ
X′,Γ′

˜
is returned as the overall

result.

In 22.2, we first develop a general definition of record transla-
tions. The translation of relations is fully introduced in 22.4.

22.2 Translation of records

22.2.1 Remark Generalization of images and image classes

Let f : D −→ C be a function.

Recall (5.7.3 and 5.7.18), that
(1) for every d ∈ D,

f(d)

is the f–value of d or f–image of d

(2) for every D′ ⊆ D,

f [D′ ] := {f(d) | d ∈ D′}

is the f–image class of D′

We will now generalize these notions as follows:

(3) For every class A and a ∈ A we define
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f([a]) :=

(
f(a) if a ∈ D
a if a 6∈ D

(4) For every class A we define

f [[A]] := {f([a]) | a ∈ A}

Note, that,

(5) f([a]) and f [[A]] are proper generalizations of f(a) and
f [A ], respecitvely, in the sense that: for every f : D −→ C
and if a ∈ A ⊆ D, then f([a]) = f(a) and f [[A]] = f [A ]. So
we could have used the same notation again.

(6) For every f : D −→ C and each class A we have

f [[A]] = (D \ A) ∪ f [D ∩ A ]

22.2.2 Remark records and pair classes

Recall, that functions can either be given as prescriptions (how
to map given things to another thing) or as left–unique pair
classes (i.e. argument–value pairs). We repeat this relation
here again, but especially for records.
(1) Let A,B be two classes and Π ⊆ A× B. We put

L := {a | 〈a, b〉 ∈ Π}

R := {b | 〈a, b〉 ∈ Π}

and we say that Π is

♣ right unique iff

for each a ∈ L there is exactly one b ∈ R with 〈a, b〉 ∈ Π

♣ left unique iff

for each b ∈ R there is exactly one a ∈ L with 〈a, b〉 ∈ Π

And in case Π is indeed right unique, we define

rec(Π) := [a 7→ the b ∈ Rwith 〈a, b〉 ∈ π|a ∈ L]

the record of Π.

(2) On the other hand, let ξ = [ξi|i ∈ I] is a record, then

gr(ξ) := {〈i, ξi〉 | i ∈ I}

is the graph of ξ.

Obviously, gr(ξ) is a right–unique pair class.

Right–unique pair classes and records can thus be seen as two
representations of the same idea in the sense that

(3) for every right–unique pair class Π holds

gr(rec(Π)) = Π

(4) for every record ξ holds

rec(gr(ξ)) = ξ

In case of finite examples, this is somehow simply another way
of writing:

266664
i1 7→ ξ1
i2 7→ ξ2
.
.
.

.

.

.

in 7→ ξn

377775
gr

�
rec

8>>><>>>:
〈i1, ξ1〉
〈i2, ξ2〉

.

.

.
〈in, ξn〉

9>>>=>>>;
record right–unique

pair class

22.2.3 Definition

Let τ and ξ = [ξi|i ∈ I] be two records. We define

tr(ξ, τ) := rec(Ξ) where Ξ := {〈τ([i]), ξi〉 | i ∈ I}

is the (attribute) translation of ξ by τ

or the τ–translation of ξ.
Note, that tr(ξ, τ) is well–defined iff Ξ is right–unique.
In that case, we say that ξ is translatable by τ (or τ–
translatable).

22.2.4 Example

Let us investigate some examples similar to the situation in
22.1.1 and 22.1.2.
(1) Given

ξ =

264 child 7→ c

father 7→ f

mother 7→m

375 and τ =

264 child 7→ kind

father 7→ vater

mother 7→ mutter

375
we put

Ξ :=

8<: 〈τ([child]), ξ(child)〉〈τ([father]), ξ(father)〉
〈τ([mother]), ξ(mother)〉

9=; =

8<: 〈kind, c〉
〈vater, f〉
〈mutter,m〉

9=;
and obtain

tr(ξ, τ) = rec(Ξ) =

264 kind 7→ c

vater 7→ f

mutter 7→m

375
(2) Given

ξ =

264 child 7→ c

father 7→ f

mother 7→m

375 and τ =

"
father 7→ parent

mother 7→ parent

#
we put

Ξ :=

8<: 〈τ([child]), ξ(child)〉〈τ([father]), ξ(father)〉
〈τ([mother]), ξ(mother)〉

9=; =

8<: 〈child, c〉〈parent, f〉
〈parent,m〉

9=;
Ξ is not right–unique, tr(ξ, τ) is undefined.

(3) If we take the same τ and the schema X of the example
relation R from 22.1.1, i.e.

X =

264 child 7→H

father 7→H

mother 7→H

375 and τ =

"
father 7→ parent

mother 7→ parent

#

We put

Ξ :=

8<: 〈τ([child]), X(child)〉
〈τ([father]), X(father)〉
〈τ([mother]), X(mother)〉

9=; =

8<: 〈child, H〉〈parent, H〉
〈parent, H〉

9=;
This time, Ξ is right–unique and we obtain

tr(X, τ) = rec(Ξ) =

"
child 7→H

parent 7→H

#

22.2.5 Example

Recall from 9.2.1, that a tuple is a special kind of record. We
can use tuples as translators. Let us take τ = 〈3, 2, 1, 4, 4, 6〉
for example. We generate some τ–translations of records ξ
that are tuples as well.
(1) For ξ = 〈ξ1, ξ2, ξ3〉 we obtain

tr(ξ, τ) = rec

0@8<:〈τ([1]), ξ1〉〈τ([2]), ξ2〉
〈τ([3]), ξ3〉

9=;
1A = rec

0@8<:〈3, ξ1〉〈2, ξ2〉
〈1, ξ3〉

9=;
1A

=

264 1 7→ ξ3
2 7→ ξ2
3 7→ ξ1

375 = 〈ξ3, ξ2, ξ1〉

In other words, for a ternary tuple ξ, the τ–translation is a
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reversion of its components.

(2) For ξ = 〈ξ1, ξ2, ξ3, ξ4, ξ5〉 we obtain

tr(ξ, τ) = rec

0BBB@
8>>><>>>:
〈3, ξ1〉
〈2, ξ2〉
〈1, ξ3〉
〈4, ξ4〉
〈4, ξ5〉

9>>>=>>>;
1CCCA

The right hand of this equation is well–defined only, if
ξ4 = ξ5. If that is indeed the case, we obtain

tr(ξ, τ) = 〈ξ3, ξ2, ξ1, c, c〉 with c := ξ4 = ξ5

In other words, for tuples with 5 (or more) components, the
τ–translation is defined only, if the fourth and fifth compo-
nent are equal.

(3) For ξ = 〈a, b, c, d, d, e〉, the constraint ξ(4) = ξ(5) is satis-
fied. We obtain

tr(ξ, τ) = rec

0BBBBB@

8>>>>><>>>>>:

〈3, a〉
〈2, b〉
〈1, c〉
〈4, d〉
〈4, d〉
〈6, e〉

9>>>>>=>>>>>;

1CCCCCA =

2666664
1 7→ c

2 7→ b

3 7→ a

4 7→ d

6 7→ e

3777775
The result is well–defined, but not a tuple anymore. And
that happens to all tuples ξ with more than five compo-
nents.

22.2.6 Lemma

Let τ and ξ = [ξi|i ∈ I] be two records. If ξ′ := tr(ξ, τ) is
well–defined, then

(1) dom(ξ′) = τ [[I]]

(2) cod(ξ′) ⊆ cod(ξ)

22.2.7 Proof of 22.2.6

(1) follows from definition 22.2.3, 22.2, and 22.2.2. (2) is due
to the fact, that the values don’t change during translation.

22.3 Translations in Proj(ξ)

22.3.1 Remark

Recall 9.2.4, that for every two classes I and C,

[C|I] := [i 7→ C|i ∈ I]

is the univalent schema with index class I and value C. It
maps each i ∈ I to the same value: the class C.

Accordingly and for every given class I

~[I|I] = {τ ∈ Rec | dom(τ) ⊆ I, cod(τ) ⊆ I}

That is the class of translations that stay inside I.

22.3.2 Remark and example

For future purposes we need an answer to the following ques-
tion: Given a record ξ = [ξi|i ∈ I]. Which τ ∈ ~[I|I] trans-
lates ξ into one of its projections, i.e. tr(ξ, τ) ∈ Proj(ξ), i.e.
tr(ξ, τ) ≤ ξ?

For example, let

I = {a, b, c, p, q, x, y} and ξ :=

26666666664

a 7→ 2

b 7→ 2

c 7→ 2

p 7→ 4

q 7→ 4

x 7→ 6

y 7→ 6

37777777775
Three members of ~[I|I] are given by

τ1 :=

26664
a 7→ c

b 7→ c

c 7→ c

p 7→ q

37775 τ2 :=

2666664
a 7→ p

b 7→ p

c 7→ p

p 7→ a

q 7→ a

3777775 τ3 :=

264 a 7→ p

b 7→ p

c 7→ p

375

The according translations are

tr(ξ, τ1) = rec

0BBBBBBB@

8>>>>>>><>>>>>>>:

〈c, 2〉
〈c, 2〉
〈c, 2〉
〈q, 4〉
〈q, 4〉
〈x, 6〉
〈y, 6〉

9>>>>>>>=>>>>>>>;

1CCCCCCCA
=

26664
c 7→ 2

q 7→ 4

x 7→ 6

y 7→ 6

37775 ∈ Proj(ξ)

tr(ξ, τ2) = rec

0BBBBBBB@

8>>>>>>><>>>>>>>:

〈p, 2〉
〈p, 2〉
〈p, 2〉
〈a, 4〉
〈a, 4〉
〈x, 6〉
〈y, 6〉

9>>>>>>>=>>>>>>>;

1CCCCCCCA
=

26664
a 7→ 4

p 7→ 2

x 7→ 6

y 7→ 6

37775 6∈ Proj(ξ)

tr(ξ, τ3) = rec

0BBBBBBB@

8>>>>>>><>>>>>>>:

〈p, 2〉
〈p, 2〉
〈p, 2〉
〈p, 4〉
〈q, 4〉
〈x, 6〉
〈y, 6〉

9>>>>>>>=>>>>>>>;

1CCCCCCCA
= undefined

A general answer to the question is the following

22.3.3 Definition

If ξ = [ξi|i ∈ I] is a record and k ∈ I, then

[ k ]ξ := {j ∈ I | ξj = ξk}

the the ξ–equivalence class of k

22.3.4 Lemma

For every record ξ = [ξi|i ∈ I] and τ ∈ ~[I|I], the follow-
ing statements are equivalent:

(1) The τ–translation of ξ is well–defined with tr(ξ, τ) ∈
Proj(ξ)

(2) ξτ(i) = ξi for every i ∈ dom(τ)

(3) τ ∈ ~
ˆ

[ i ]ξ i ∈ I
˜

(4) For every υ ∈ Proj(ξ) the τ–translation of υ is well–
defined with tr(υ, τ) ∈ Proj(ξ).

22.3.5 Proof of 22.3.4

(1)⇔(2) Suppose, ξ′ := tr(ξ, τ) is a well–defined member of
Proj(ξ). That means, ξ′ = [ξj |j ∈ J] for some J ⊆ I. For
each i ∈ I, ξ′τ([i]) is defined as ξ, so ξτ([i]) = ξi. In case
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i 6∈ dom(τ), ξ′τ([i]) = ξ′i = ξi anyway. So tr(ξ, τ) ∈ Proj(ξ)

iff ξτ([ξ]) = ξi for all i ∈ dom(τ).

(2)⇔(3) Due to the the definition of [ i ]ξ, we have ξτ([i]) = ξi
iff τ([i]) ∈ [ i ]ξ. Thus ξτ([i]) = ξi for all i ∈ I iff τ ∈
~
ˆ

[ i ]ξ i ∈ I
˜
.

(1)⇔(4) υ ∈ Proj(ξ) is saying that υ ≤ ξ. An immediate con-
sequence of definition 22.2.3 is the fact that the existence
of tr(ξ, τ) and υ ≤ ξ implies the existence of tr(υ, τ) with
tr(υ, τ) ≤ tr(ξ, τ). So (1)implies (4). And with ξ ≤ ξ, the
other direction holds as well.

22.3.6 Example

Applied to the previous example ξ from ??: The class of all
τ ∈ ~[I|I] such that tr(ξ, τ) is a (well–defined) element of
Proj(ξ) is given by

~
ˆ

[ i ]ξ i ∈ I
˜

= ~

26666666664

a 7→ {a, b, c}
b 7→ {a, b, c}
c 7→ {a, b, c}
p 7→ {p, q}
q 7→ {p, q}
x 7→ {x, y}
y 7→ {x, y}

37777777775

22.4 Translation of relations

22.4.1 Definition (attribute) translation of relations

Let R = [X,Γ] be a relation and τ a record. If tr(X, τ)
is well–defined, we say that R is τ–translatable and we
define

tr(R, τ) :=

264 tr(X, τ)

{tr(x, τ) | x ∈ Γ is τ–translatable}

375
the (attribute) translation of R by τ .

22.4.2 Example

Consider example 22.1.1 again with

R :=

child : H father : H mother : H

c1 f1 m1

c2 f2 m2

c3 f3 m3

=

26666666666666666664

264 child 7→H

father 7→H

mother 7→H

375
8>>>>>>><>>>>>>>:

264 child 7→ c1
father 7→ f1
mother 7→m1

375 ,
264 child 7→ c2

father 7→ f2
mother 7→m2

375 ,264 child 7→ c3
father 7→ f3
mother 7→m3

375

9>>>>>>>=>>>>>>>;

37777777777777777775
and

τ :=

264 child 7→ kind

father 7→ vater

mother 7→ mutter

375
The τ–translation of the schema exists

tr

0B@
264 child 7→H

father 7→H

mother 7→H

375 , τ
1CA =

264 kind 7→H

vater 7→H

mutter 7→H

375
and for each 264 child 7→ ci

father 7→ fi
mother 7→mi

375 ∈ R
we have

tr

0B@
264 child 7→ ci

father 7→ fi
mother 7→mi

375 , τ
1CA =

264 kind 7→ ci
vater 7→ fi

mutter 7→mi

375
so that

tr(R, τ) =

26666666666666666664

264 kind 7→H

vater 7→H

mutter 7→H

375
8>>>>>>><>>>>>>>:

264 kind 7→ c1
vater 7→ f1

mutter 7→m1

375 ,
264 kind 7→ c2

vater 7→ f2
mutter 7→m2

375 ,264 kind 7→ c3
vater 7→ f3

mutter 7→m3

375

9>>>>>>>=>>>>>>>;

37777777777777777775

=

kind : H vater : H mutter : H

c1 f1 m1

c2 f2 m2

c3 f3 m3

as expected.

22.4.3 Example

Consider the common linear order relation on the set of in-
tegers ≤: Z ! Z. In example 22.2.5 we already used tuples
as translators for tuples. Let us now take τ := 〈2, 1〉 as a
translator for R.

In general, the τ–translation of any pair ξ = 〈ξ1, ξ2〉 is

tr(ξ, τ) = rec

„
〈〈2, 1〉([1]), 〈ξ1, ξ2〉(1)〉
〈〈2, 1〉([2]), 〈ξ1, ξ2〉(2)〉

ff«
= rec

„
〈2, ξ1〉
〈1, ξ2〉

ff«
=

"
2 7→ ξ1
1 7→ ξ2

#
= 〈ξ2, ξ1〉

We can use this result now first for the τ–translation of the
schema 〈Z,Z〉 of R and obtain

tr(〈Z,Z〉, τ) = 〈Z,Z〉

This is a well–defined tuple, so R is τ–translatable with

tr(≤, τ) =

264 〈Z,Z〉

{〈b, a〉 | a ≤ b}

375
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and that is ≥, the greater–or–equal relation on Z.

22.4.4 Remark translations in mathematics

The example in 22.1.1 suggests that (attribute) translations
are important operations in relational database applications.
But they are also very useful in traditional mathematics. They
provide the means to assign meanings to formulas of predicate
logic.

A typical situation is a given expression like “R(x, y)” together
with an interpretation I, that turns the relation symbol R into
a proper binary endorelation RI on a certain class CI . By
means of attribute translations, this expression “R(x, y)” has

an own proper meaning: tr(RI , 〈x, y〉). In more detail:
♣ R : C ! C is the given signature, it says that R is the

symbol of a binary endorelation, defined on on a class sym-
bolized by C.

♣ RI : CI ! CI is a concrete binary endorelation on CI ,
given by say

RI =

264 CI! CI

〈a, b〉 ϕ(a, b)

375
♣ If the schema translation tr(〈CI , CI〉, 〈x, y〉) is well–

defined then

tr(RI , 〈x, y〉) =

266664
CI! CI"

x 7→ a

y 7→ b

#
 〈a, b〉 ∈ RI

377775

In traditional predicate logic, interpretations assign meanings
to formulas only, if the formulas are closed. And then, their
meaning is either true (when the interpretation is a model for
the formula) or false. Atomic formulas like R(x, y) are not
closed, x and y are free variables. But with attribute trans-
lations of this kind, we provide a semantics for R(x, y). And
together with the other operations u,t,¬, . . ., we now have
a denotational semantics for all formulas, not only the closed
ones.

22.5 Translations in Prel(X)

22.5.1 Remark introduction

We saw, that a translation of a given relation may or may not
exist. But sometimes it is important to know in advance if
the outcome is well–defined. When we consider a structure
or algebra based on a carrier class R of relations, we want to
know the class T of all the suitable relations for R. “Suitable”
means, that R is the “T –closure” of R in the sense that, for
every τ ∈ T and R ∈ R, the τ–translation of R is well–defined
and again a member of R.

There is one relation class R which is important here, namely
the class Prel(X), for a given schema X. We use Trans(X)
to denote the “suitable” translation class for Prel(X). Given
X = [Xi|i ∈ I], it makes sense to only include translations τ

with arguments and values from I, i.e. τ ∈ ~[I|I].

22.5.2 Definition translator classes

Let X = [Xi|i ∈ I] be a proper schema. We define

Trans(X) :=

(
τ ∈ ~[I|I]

tr(R, τ) ∈ Prel(X)

for each R ∈ Prel(X)

)
the translator class on X

22.5.3 Remark

Note, that in definition 22.5.2 the characterization “tr(R, τ) ∈
Prel(X) for each R ∈ Prel(X)” implies, that tr(R, τ) is ac-
tually well–defined for all R.

22.5.4 Lemma

If X = [Xi|i ∈ I] is a proper schema, then

Trans(X) = ~
ˆ

[ i ]X i ∈ I
˜

22.5.5 Proof of 22.5.4

So let X = [Xi|i ∈ I] be given.
Again (see 22.3.3), [ i ]X := {j ∈ I | Xj = Xi} is the
X–equivalence class of i, for each i ∈ I. Prel(X) is (see
17.8.1) defined to be the class of all relations with a schema
Y ∈ Proj(X). According to 22.4.1, tr(R, τ) is defined iff
tr(Y, τ), the τ–translation of its schema, is defined.
So

Trans(X) =

(
τ ∈ ~[I|I]

tr(Y, τ) ∈ Proj(X)

for each Y ∈ Proj(X)

)

Due to 22.3.4, the right hand side of this equation is equal to
~
ˆ

[ i ]X i ∈ I
˜
.

22.5.6 Lemma

For every proper schema X = [Xi|i ∈ I] the following
statments are equivalent:

(1) X is univalent (i.e. Xi = Xj for all i, j ∈ I)
(2) Trans(X) = ~[I|I]

22.5.7 Proof of 22.5.6

Trans (X) = ~[I|I]
⇔ tr (R, τ) ∈ Prel (X) for all R ∈ Prel (X) and τ ∈ ~[I|I]
⇔ tr (Y, τ) ∈ Proj (X) for all Y ∈ Proj (X) and τ ∈ ~[I|I]
⇔ Xτ(i) = Xi for each i ∈ I and τ ∈ ~[I|I]

due to 22.3.4

⇔ Xj = Xk for all j, k ∈ I
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Theory algebras of relations
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23 Theory algebras on Prel (X)

23.0.8 introduction and overview

In this section we concentrate on the effect of the two relations
v and E on a given relation class Prel (X). We already es-
tablished that each one is a quasi–order relation (19.1.6 and
20.4.12). In fact, and that will be the theme here, each one
turns Prel (X) into a complete quasi–boolean lattice.

Recall (see chapter III ) the difference between a quasi–boolean
lattice in general and a boolean lattice in particular: for a
real boolean lattice, the typical boolean operations (the join of
two elements, the complement, the bottom element etc.) are
unique, a boolean lattice is a boolean algebra. For a quasi–
boolean lattice however, these operations do exists (that is the
very meaning of the term), but they are not necessarily unique.
Take the example (see 6.4) of the formulas Form (A) on some
A, together with the quasi–boolean order ⇒. There is a bot-
tom element 0, but there are different other bottom elements
as well: [ a ∧ ¬a ], [ 0 ∧ 1 ], etc.

The structures imposed by v and E on Prel (X) are indeed
“quasi” in this sense, at least if X is not trivial. We will proof
that they are quasi–boolean lattices, but we also want two
quasi–boolean algebras with an actual and well–defined set of
boolean operators to operate with. The selection of various
opertors we defined so far does provide all we need for the
structure on v: we have a meet u and join t, a negator ¬ and
two extremes ⊥ and >.

For the structure on E, the situation is more complicated.
We have a couple of possibilities available to operate on the
relation schemas: ‖,⇓,⇑, �, �,pr, cpj and some others. But
none of them is defined on relations only, they all have two
different types of arguments. For example, ©1 ⇓ ©2 is de-
fined on ©1 ∈ Prel (X) and ©2 ∈ Proj (Z). For our search
for proper boolean operations we can either modify the do-
main of the available operations, which is quite easy: e.g. for
R,S ∈ Prel (X) we could declare R ⇓ S := R ⇓ x (S). Or
we could create an entire new set of operations. In the se-
quel, we will do both. And in the end, we have a couple of
quasi–boolean algebras defined on

˙
Prel (X) ,E

¸
.35

The whole idea of a theory algebra as a double quasi–ordered
structure is the core idea of this whole text. We have added a
section on the theory algebra of bit value relations, where we
take this simple and important relations and discuss and dis-
play their algebra in detail. In these examples, the important
properties of all the more abstract cases are reflected already
and a contemplation on the order diagrams displayed there
may help to grasp the whole idea.

The structure on E is called syntactic, the structure on v
is called semantic, the specific combination of the two is the
theory structure (see 3.4.1 for the motivation of this terminol-
ogy).

23.1 The semantic structures on
Prel (X)

23.1.1 Definition

If X is a proper schema, then

Prelv(X) :=
˙
Prel (X) ,v,≡,⊥,>,u,t,

Q
,
‘
,¬
¸

is the semantic algebra (on Prel (X)) (of X)

23.1.2 Lemma

Prelv(X) is a complete quasi–boolean algebra, for every
proper schema X.

23.1.3 Proof of 23.1.2

Complete quasi–boolean algebras (see definition 7.6.2(5)), and

Prelv(X) in particular, must have the following properties:

(i)
˙
Prel (X) ,v,≡

¸
is a quasi–ordered class.

That is true according to 20.4.12.

And in this quasi–ordered structure
˙
Prel (X) ,v,≡

¸
,

(ii) ⊥ must be a least element and > a greatest element.
That is true according to 20.4.21(17) and (18).

(iii)
Q

is a big conjunctor and
‘

is a big disjunctor.
In other words,

Q
R is a greatest lower and

‘
R a least upper

bound, for every R ⊆ Prel (X). And that is true according
to 20.4.19(3) and (4).

(iv) u is a meet and t is a join operator.
In other words, RuS is a greatest lower and RtS is a least
upper bound of R and S, for all R,S ∈ Prel (X). And that
means, that RuS ≡

Q
{R,S} and RtS ≡

‘
{R,S}, which

is true according to 20.4.21(9) and (10).

(v) The structure is distributive.
R u (S t T ) ≡ (R u S) t (R u T ) is true, due to 20.4.21(11),
R t (S u T ) ≡ (R t S) u (R t T ) is true, due to 20.4.21(12),
for all R,S, T ∈ Prel (X).

(vi) ¬ is a complement function (7.5.2).
R u ¬R ≡ ⊥ and R t ¬R ≡ > is true for all R ∈ Prel (X),
according to 20.4.21(21) and (22).

23.1.4 Lemma˙
Prel (X) ,v

¸
is a complete quasi–boolean lattice, for ev-

ery proper schema X.

23.1.5 Proof of 23.1.4

This is an immediate consequence of 23.1.2, according to defi-
nition 7.6.2(5).

35The practical applications for theory algebras will probably rather use the original mixed domain operators. For example, in logic, the

quantor ∀©1 . ©2 is very much the infimum eliminator ©2 � ©1 . But from a more theoretical point of view, it is much more elegant to just

have one sort of arguments only.
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23.2 Selective syntactic structures
on Prel (X)

23.2.1 Definition

Let X be a proper schema. A syntactic selector on X is a

function ς : Proj (X) −→ Prel (X) such that x (ς (Y )) =
Y , for all Y ∈ Proj (X).

23.2.2 Example

We already have defined some syntactic selectors: by restrict-
ing⊥©1 and>©1 from 19.3.1 and Id©1 from 19.2.1 to Prel (X)
for a given proper schemaX we obtain three syntactic selectors
on X:

(1) ⊥©1 =

266664
Proj (X) −→ Prel (X)

Y 7→
"
Y

∅

#
377775

(2) >©1 =

266664
Proj (X) −→ Prel (X)

Y 7→
"
Y

⊗Y

#
377775

(3) Id©1 =

266664
Proj (X) −→ Prel (X)

Y 7→
"

Y

υ  ∀i, j ∈ dom (Y ) . υj = υk

#
377775

23.2.3 Definition

Let X be a proper schema and ς a syntactic selector on X.
We define

PrelEς (X) :=

fi
Prel (X) ,

E,,, ∅ς , 1ς ,∧ς ,∨ς ,
V
ς ,
W
ς , -ς

fl
the selective syntactic structure of ς over X

where

∅ς := ς(〈〉) 1ς := ς(X)

©1 ∧ς ©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ ς (x (R) ∧ x (S))

375

©1 ∨ς ©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ ς (x (R) ∨ x (S))

375

V
ς :=

2666666664

P (Prel (X)) −→ Prel (X)

R 7→

8>>><>>>:
ς

 V
R∈R

x (R)

!
if R 6= ∅

ς(X) if R = ∅

3777777775

W
ς :=

266664
P (Prel (X)) −→ Prel (X)

R 7→ ς

 W
R∈R

x (R)

!
377775

-ς :=

264 Prel (X) −→ Prel (X)

R 7→ ς (X \ x (R))

375

23.2.4 Lemma

PrelEς (X) is a complete quasi–boolean algebra, for every
proper schema X and syntactic selector ς on X.

23.2.5 Proof of 23.2.4

Let X = [Xi|i ∈ I] be the given proper schema. Recall, that
for all R,S ∈ Prel (X),

R E S iff x (R) ≤ x (S) iff @ (R) ⊆ @ (S)

We proceed with the same steps as in the proof of 23.1.2.

(i)
˙
Prel (X) ,E,,

¸
is a quasi–ordered class.

That is true, due to 19.1.6.

And in this quasi–ordered class we have:

(ii) ∅ς is a least and 1ς is a top element.
For every R ∈ Prel (X) holds ∅ς E R iff @ (∅ς) ⊆ @ (R)
iff ∅ ⊆ @ (R), and that is always true. On the other hand,
R E 1ς iff x (R) ≤ X, which is true because R ∈ Prel (X).

(iii)
V
ς is a big conjunctor and

W
ς is a big disjunctor.

We proof this for
V
ς , a proof for

W
ς is similar.

V
ς is a big

conjunctor iff
V
ς R is the greatest lower bound (g.l.b.) of

R in
˙
Prel (X) ,E

¸
, for every R ⊆ Prel (X). That is the

case exactly when x
`V

ς R
´

is the g.l.b. of {x (R) | R ∈ R}
in
˙
Proj (X) ,≤

¸
, i.e. iff

V
{x (R) | R ∈ R} is the g.l.b of

{x (R) | R ∈ R} in
˙
Proj (X) ,≤

¸
. Which is true indeed,

for every R (including R = ∅ in particular).

(iv) R ∧ς S ,
V
ς {R,S} and R ∨ς S ,

W
ς {R,S}.

For R,S ∈ Prel (X) we have R∧ς S = ς ((x (R) ∧ x (S))) =
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ς (
V
{x (R) ,x (S)}) =

V
ς {R,S}. And similarly, R ∨ς S ≡W

ς {R,S}.
(v) The distributive laws are satisfied.

If R,S, T ∈ Prel (X) with A = @ (R), B = @ (S), C =
@ (T ), then

R ∧ς (S ∨ς T ) , (R ∧ς S) ∨ς (R ∧ς T )

iff A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

and the latter is a general truth for all classes A,B,C. Sim-

ilarly, we can see that R∨ς (S ∧ς T ) , (R∨ς S)∧ς (R∨ς T ).

(vi) -ς is a complement function (7.5.2).
If R = [Y,Γ] ∈ Prel (X), then -ςR = ς (X \ Y ). We
have R ∧ς (-ςR) = ς (Y ∧ (X \ Y )) = ∅ς and R ∨ς (-ςR) =
ς (Y ∨ (X \ Y )) = 1ς . Thus -ς is indeed a complement func-
tion.

23.2.6 Lemma˙
Prel (X) ,E,,

¸
is a complete quasi–boolean lattice, for

every proper schema X.

23.2.7 Proof of 23.2.6

Immediate consequence of 23.2.4 by means of 7.6.2(5).

23.3 The 3–carrier syntactic struc-
tures on Prel (X)

23.3.1 Repetition

(1) Recall 6.2.2, that the power structure of a given class I

P (I) =
˙
P (I) ,⊆, ∅, 1,∩,∪,

T
,
S
, {
¸

is the usual complete boolean algebra with

1 := I and {©1 :=

"
P (I) −→ P (I)

A 7→ C \ A

#
(2) Recall 11.9.1, that

Proj (X) =
˙
Proj (X) ,≤, 〈〉, X,∧,∨,

V
,
W
, -
¸

is the complete boolean algebra of projections of a record or
schema X, whereV

∅ := X and -©1 :=

"
Proj (X) −→ Proj (X)

Y 7→ X \ Y

#
(3) Recall 5.8.6, that S †S′ is the combination of two struc-

tures S and S′. The result basically is the union of the
carrier classes and the operations.

23.3.2 Definition

For every proper schema X = [Xi|i ∈ I] we define

Prel
E
3 (X) :=

fi
Prel (X) ,Proj (X) ,P (I) ,

E,,,⊥©1 ,>©1 ,@,x, ‖,⇓,⇑, �, �

fl
the 3–carrier syntactic structure of X

PrelE3 (X) := Prel
E
3 (X) †Proj (X) †P (I)

the 3–structure syntactic structure of X

23.3.3 Remark the 3–carrier syntactic structure

The 3–carrier syntactic structure of a given proper schema
X = [Xi|i ∈ I] is the structure made of 3 carrier classes:
relations Prel (X), schemas Proj (X) and attribute (or iden-
tifier) classes P (I). And a couple of operations, all defined in

earlier chapters. Next to E and ,, there are:

A couple of functions that serve as converters between the
three carrier classes:
♣ ⊥©1 ,>©2 : Proj (X) −→ Prel (X) the empty and full re-

lation function (19.3.1) with ⊥〈〉 = ⊥ and >〈〉 = >,

♣ @ : Prel (X) −→ P (I) the attribute class function (??)

♣ x : Prel (X) −→ Proj (X) the schema function (??)

And operations to modify the schema of relations:

♣ ‖,⇓,⇑: Prel (X)×Proj (X) −→ Prel (X) the expander and
the supremum and infimum reductor (20.1.1 and 21.6.1)

♣ �, �: Prel (X) × P (I) −→ Prel (X) the supremum and in-
fimum eliminators (21.4.1)

All these functions are well–defined on their entire domains,
because both Prel (X) and Proj (X) are (pairwise) compati-
ble.

23.3.4 Remark more or less operations

The selection of operations in Prel
E
3 is somewhat arbitrary.

Earlier on we defined a couple of other operations that could
equally well added to the definition of this structure. Most of
these additional operations are definable in terms of the chosen
ones.

Additional schema comparing relations would have been:

♣ G: Prel (X) ! Prel (X) the distinctness relation
(19.1.2(3)), which can be derived by R G S ⇔ (@R∩@S = ∅)

♣ ^: Prel (X)! Prel (X) the compatibility relation; which
is superfluous in this context, because R ^ S holds anyway
for all R,S ∈ Prel (X) (19.1.10(4)).

More carrier class conversions are:

♣ Id©1 : Proj (X) −→ Prel (X) the identity relation con-
structor (19.2.1). This is indeed a converter between two

of the carrier classes in Prel
E
3 , one that cannot be derived

from it in general and adds a whole new dimension. But we
exclude it here for several reasons and treat it as an extra
additional operation.

♣ dom : Proj (X) −→ P (I) is also a converter between two
of the carrier classes. But neither its source nor its tar-
get is the relation class. And besides, it can be derived by
dom (Y ) = @ (⊥Y ) = @ (>Y ).

More relation schema modifiers are:

♣ pr, cpj : Prel (X)×P (I) 99K Prel (X) are only defined as
partial functions in 21.2.2. And for their defined arguments,
they can be derived in PrelE3 (X) by

pr (R, J) = R � (@ (R) \ J) cpj (R, J) = R � (@ (R) \ J)

♣ m: Prel (X)×Proj (X) 99K Prel (X) the equivalent reduc-
tor (21.6.1) is only a partial function. And the restriction
to its defined arguments coincides with both ⇓ and ⇑, i.e. if
R m Y is defined, then R m Y = R ⇑ Y = R ⇓ Y , according
to 21.6.6(3).

23.3.5 Remark the 3–structure syntactic structure
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The 3–structure syntactic structure is fully given by

PrelE3 (X) =

*Prel (X) ,Proj (X) ,P (I) ,

E,,,⊥©1 ,>©1 ,@,x, ‖,⇓,⇑, �, �,
≤, 〈〉, X,∧,∨,

V
,
W
, -,⊆, ∅, 1,∩,∪,

T
,
S
, {

+

The addition of the operations of Proj (X) and P (I) en-
ables us to simulate the full set of boolean operations on˙
Prel (X) ,E

¸
.

More precisely, we e.g. obtain a complete quasi–boolean alge-
bra if we fix some constant T ∈ {⊥,>} and define

Prel
E
T (X) :=

D
Prel (X) ,E,,, ∅̂, 1̂, ∧̂, ∨̂,

Ŵ
,
V̂
, -̂
E

and define

∅̂ := T

1̂ := T ‖ X

R∧̂S := T ‖ (x (R) ∧ x (S))

R∨̂S := T ‖ (x (R) ∨ x (S))V̂
R := T ‖

V
R∈R

x (R)

V̂
R := T ‖

V
R∈R

x (R)

-̂R := T ‖ -x (R)

for all R,S ∈ Prel (X) and R ⊆ Prel (X).

In fact, it is an easy exercise to confirm that

Prel
E
T (X) = PrelEς (X) with ς =

(
⊥©1 if T = ⊥
>©2 if T = >

23.4 The 2–carrier syntactic struc-
tures on Prel (X)

23.4.1 Remark

The 3–structure syntactic structure PrelE3 (X) is somehow re-

dundant, because the two structure Proj (X) and P (I) are
isomorph (11.9.3). Since X is fixed in the context of this
structure, we could represent each Y = [Yj |j ∈ J] ∈ Proj (X)
just by its domain J ∈ P (I), a reconstruction of Y is al-
ways given by Y = pr (X, J). This way, we could re-
place the whole structure Proj (X) by its isomorph coun-
terpart P (I). We just need to replace the operations like
⇓: Prel (X) × Proj (X) −→ Prel (X) by a its according mu-

tation ⇓̈ : Prel (X)×P (I) −→ Prel (X).

We use the two dots on ⇓̈ to explicitely distinguish this “2–
carrier version” from the original ⇓. But in practice it should
be save to write ⇓ again.

23.4.2 Definition

Let X = [Xi|i ∈ I] be a proper schema. We define

⊥̈©1 :=

264 P (X) −→ Prel (X)

J 7→ ⊥pr(X,J)

375

>̈©1 :=

264 P (X) −→ Prel (X)

J 7→ >pr(X,J)

375

©1 ‖̈©2 :=

264 Prel (X)×P (I) −→ Prel (X)

〈R, J〉 7→ R ‖ pr (X, J)

375

©1 ⇓̈©2 :=

264 Prel (X)×P (I) −→ Prel (X)

〈R, J〉 7→ R ⇓ pr (X, J)

375

©1 ⇑̈©2 :=

264 Prel (X)×P (I) −→ Prel (X)

〈R, J〉 7→ R ⇑ pr (X, J)

375

23.4.3 Definition

For every proper schema X = [Xi|i ∈ I] we define

Prel
E
2 (X) :=

fi
Prel (X) ,P (I) ,

E,,, ⊥̈©1 , >̈©1 ,@, ‖̈, ⇓̈, ⇑̈, �, �

fl
the 2–carrier syntactic structure of X

PrelE2 (X) := PrelE2 (X) †P (I)

the 2–structure syntactic structure of X

23.5 The 1–carrier syntactic struc-
tures on Prel (X)

23.5.1 Remark

As yet another variation of the syntactic structure we could
reduce the carrier classes even further and only keep the re-
lation class Prel (X) itself. This way, we derive a “1–carrier
syntactic structure” from the 2–carrier version by e.g. replac-
ing R � J for R ∈ Prel (X) and J ∈ P (I) by R�̇@ (S) where
R,S ∈ Prel (X).

From the E–ordered point of view, there is a great resemblance
between the 1–, 2–, and 3–carrier syntactic structures and it
is easy to change from one to the other, as we demonstrated
in 23.3.5, for example. In other words, operations from one
structure can be simulated by operations of the other up to

,–equivalence.36 With one exception: the 1–carrier syntactic

structure Prel
E
1 (X) is not able to quasi–simulate a complete

quasi–boolean algebra on
˙
Prel (X) ,E

¸
, but only the weaker

generalized quasi–boolean algebra. In general, it might not
have a top element and no complementation, but only the rel-
ative complementation (23.5.4).

Many mathematical surveys, universal algebra for example,

36Yet another criterion for this “equal power” of the structures is to say that, for every given class R of relations, its closure, i.e. the class

of all the relations that can be generated from R with the given operations, is quasi–equal for each structure. We introduce subalgebras

and closures properly at a later point.
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concentrate on algebras as structures with just one carrier
class. With the 1–carrier structures on Prel (X), we can com-
pare and integrate theory algebras in this broader contexts.
This allows us to formulate universal properties like the asso-
ciativity

(R‖̇S)‖̇T = R‖̇(S‖̇T )

(which actually happens to hold for ‖̇, but not for ⇓̇ and ⇑̇),
etc.

Again we distinguish the new version, say ‖̇, of the original
operation ‖ by an additional dot on top. And this notational
distinction again should be superfluous in most practical cir-
cumstances.

23.5.2 Definition

Let X = [Xi|i ∈ I] be a proper schema. We define

⊥̇©1 :=

264 Prel (X) −→ Prel (X)

R 7→ ⊥x(R)

375

>̇©1 :=

264 Prel (X) −→ Prel (X)

R 7→ >x(R)

375

©1 ‖̇©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ R ‖ x (S)

375

©1 ⇓̇©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ R ⇓ x (S)

375

©1 ⇑̇©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ R ⇑ x (S)

375

©1 �̇©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ R � @ (S)

375

©1 �̇©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ R � @ (S)

375

23.5.3 Definition

For every proper schema X = [Xi|i ∈ I] we define

Prel
E
1 (X) :=

D
Prel (X) ,E,,, ⊥̇©1 , >̇©1 , ‖̇, ⇓̇, ⇑̇, �̇, �̇

E
the 1–carrier syntactic structure of X

23.5.4 Lemma

Given a proper schema X = [Xi|i ∈ I] and a syntactic
selector ς on X. As described in 7.6.16 we construct

©1 −ς ©2 :=

264 Prel (X)×Prel (X) −→ Prel (X)

〈R,S〉 7→ R ∧ς (-ςS)

375
the relative complementor in PrelEς (X). Now for all
R,S ∈ Prel (X) the following statements are true:

(1) If ε ∈
n
�̇, �̇
o

and ρ ∈
n
⇓̇, ⇑̇

o
then

(a) ∅ς , RεR
(b) R−ς S , RεS
(c) R ∧ς S , Rε (RεS)

(d) R ∨ς S , R‖̇S , S‖̇R

(2) On the other hand

(a) ⊥̇R , R
(b) >̇R , R
(c) R‖̇S , R ∨ς S

(d) R⇓̇S , S
(e) R⇑̇S , S
(f) R�̇S , R−ς S
(g) R�̇S , R−ς S

23.5.5 Proof of 23.5.4

We need to proof the truth of statements of the form σ1 , σ2.
And obviously, the σ1, σ2 are elements of Prel (X) in each
case, no matter what ε and ρ we choose. Therefore our proof
is given by a demonstration of @ (σ1) = @ (σ2). We repeat,
that
(i) @ (R ‖ S) = @ (R) ∪@ (S)

(ii) @ (RεS) = @ (R) \@ (R) for each ε ∈
n
�̇, �̇
o

(iii) @ (RρS) = @ (S) for each ρ ∈
n
⇓̇, ⇑̇

o
Applying this we derive

(1)(a) @ (∅ς) = dom (〈〉) = ∅ = @ (R) \@ (R) = @ (RεR)

(1)(b) @ (R−ς S) = @ (R ∧ς (-ςS))
= @ (ς (x (R) ∧ x (ς (X \ x (S)))))
= @ (ς (x (R) ∧ (X \ x (S))))
= @ (ς (x (R) \ x (S))) = @ (R) \@ (S) = @ (RεS)

(1)(c) @ (R ∧ς S) = @ (ς (x (R) ∧ x (S)))
= dom (x (R) ∧ x (S)) = @ (R) ∩@ (S)
= @ (R) \ (@ (R) \@ (S)) = @ (Rε (RεS))

(1)(d) @ (R ∨ς S) = @ (ς (x (R) ∨ x (S)))
= dom (x (R) ∨ x (S)) = @ (R) ∪@ (S)

= @
“
R‖̇S

”
= @

“
S‖̇R

”
(2)(a) @

“
⊥̇R
”

= @
`
⊥x(R)

´
= dom (x (R)) = @ (R)

(2)(b) similar to (a).

(2)(c) see (1)(d).

(2)(d) @
“
R⇓̇S

”
= @ (R ⇓ x (S)) = dom (x (S)) = @ (S)

(2)(e) similar to (d).

(2)(f) see (1)(b).

(2)(g) again see (1)(b).

23.6 Theory structures on Prel (X)
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23.6.1 Remark

We now combine the semantic and syntactic structure on
Prel (X) into a single “theory structure”. Formally speaking,
the general idea here is to introduce

Prel(X) := Prelv(X) †PrelE(X)

But since we have several versions of syntactic structures, we
also have several of these theoretic structures as well.

23.6.2 Definition

For every proper schema X = [Xi|i ∈ I] we define:

Prel1(X) := Prelv(X) †PrelE1 (X)

the single–sort projection relation structure of X

Prel2(X) := Prelv(X) †PrelE2 (X)

the two–sort projection relation structure of X

Prel3(X) := Prelv(X) †PrelE3 (X)

the three–sort projection relation structure of X
And if ς is a syntactic selector on X, then

Prelς(X) := Prelv(X) †PrelEς (X)

the ς–selector projection relation structure of X

23.6.3 Remark

Let us repeat these new structures in more detail, assuming
that some proper schema X = [Xi|i ∈ I] is given. In all cases,
we first list the carrier classes, then the syntactic and finally
the semantic operations, where double occuring operations are
only mentioned once.
(1) The single–sort projection relation structure of X is

Prel1(X) =

*Prel (X) ,
v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,, ⊥̇©1 , >̇©1 , ‖̇, ⇓̇, ⇑̇, �̇, �̇

+
(2) The two–sort projection relation structure of X is

Prel2(X) =fi
Prel (X) ,P (I) ,v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,, ⊥̈©1 , >̈©1 ,@, ‖̈, ⇓̈, ⇑̈, �, �,⊆, ∅, I,∩,∪,
T
,
S
, {

fl
(3) The three–sort projection relation structure of X is

Prel3(X) =*Prel (X) ,Proj (X) ,P (I) ,v,≡,⊥,>,u,t,
Q
,
‘
,¬,

E,,,⊥©1 ,>©1 ,@,x, ‖,⇓,⇑, �, �,
≤, 〈〉, X,∧,∨,

V
,
W
, -,⊆, ∅, I,∩,∪,

T
,
S
, {

+
(4) For every syntactic selector ς on X, the selective projection

relation structure of X is

Prelς(X) =

*Prel (X) ,
v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,, ∅ς , 1ς ,∧ς ,∨ς ,
V
ς ,
W
ς , -ς

+
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A Summary of symbols

Chapter I Introduction

Chapter II The language of mathematics

o(ξ1, . . . , ξn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2.4)

default notation for the application of an operator o on arguments

ξ1, . . . , ξn

©1 , ©2 , ©3 , . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2.4 and 5.2.5)

placeholders used in the definition of symbols

ξ[ x/υ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2.8)

substitution of the expression υ for the identifier x in the expression

ξ

ξ := ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.3.5)

assignment

ξ : τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.3.5)

type expression

ξ :=

"
τ

ω

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.3.5)

default notation for an operator definition

let ©1 in ©2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.3.7)

local definition with a let expression

©2 where ©1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.3.7)

local definition with a where expression

〈x1, . . . , xn〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.4.1 and 9.2.1)

n–tuple

〈〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.1, 5.7.6 and 9.2.2)

empty tuple, empty function or empty record

lg (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.1)

the length of a tuple x

x † y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.1 and 10.5.1)

the concatenation of two tuples x and y

if ϕ then θ1 else θ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.3)

conditional expression8>>>><>>>>:
θ1 if ϕ1
θ2 if ϕ2
.
.
.

.

.

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.3)

default notation for nested conditional exressions

the ©1 with ©2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.4)

a description

sing (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.4.4 and 5.6.13)

the unique element of a singelton class C

©1 = ©2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.1)

equation

false or 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.5.2)

zero bit or false value

true or 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.2)

unit bit or true value

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.2 and 17.2.8)

bit value class or boolean value class; also the empty schema rela-

tion class

¬ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.3)

not ϕ or the negation of ϕ

ϕ1 ∧ . . . ∧ ϕn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.3 and 5.5.4)

ϕ1 and ... and ϕn or conjunction

ϕ1 ∨ . . . ∨ ϕn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.3 and 5.5.4)

ϕ1 or ... or ϕn or disjunction

ϕ1 → . . . → ϕn . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.3 and 5.5.4)

the subjunction of ϕ1, . . . , ϕn

ϕ1 ↔ . . . ↔ ϕn . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.3 and 5.5.4)

the equijunction of ϕ1, . . . , ϕn

∃x . ϕ or ∃x : C . ϕ or ∃x ∈ C . ϕ . . . . . . . . . . . . . . . . . (5.5.5)

the existantialization

∀x . ϕ or ∀x : C . ϕ or ∀x ∈ C . ϕ . . . . . . . . . . . . . . . . . (5.5.5)

the generalization

ϕ1 ⇒ ϕ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.7)

means ϕ1 entails ϕ2; the subvalence, entailment or consequence

relation

ϕ1 ⇔ ϕ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.5.7)

the equivalence or ϕ1 and ϕ2

{x | ϕ} or {x ∈ C | ϕ(x)} etc. . . . . . . . . . . . . . . . . . . . . . (5.6.2)

the usual class expressions

∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.6.2)

empty class

e ∈ C or e 6∈ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.3)

the usual membership or its negation, respectively

C1 ⊆ C2 , C1 6⊆ C2 , C1 ⊂ C2 , C1 ⊇ C2 etc. . . . . . (5.6.13)

the usual inclusion relation on classes with its standard variations

C1 ∩ C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the intersection of classes C1 and C2

C1 ∪ C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the union of classes C1 and C2

C1 ] C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the disjunct union of two (disjunct) classes C1 and C2T
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the (big) intersection of KS
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the (big) union of K

C1 \ C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.6.13)

the difference of two clases C1 and C2

C1 O . . . OC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.6)

the opposition or symmetric difference of classes C1, . . . , Cn

∇K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.6)

the (big) opposition of a class

P (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the power class of a class C

Fin (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the finite (sub)classes of a class C

Sg (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the singleton class of a class C

f : D 99K C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.8 and 5.7.15)

f is a partial function from D to C

f : D −→ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.8 and 5.7.3)

f is a function from D to C

R : D1 ! . . .! Dn . . . . . . . . . . . (5.6.8 and 5.7.10 and 17.3.1)

R is a n–ary or ordinary relation on D1, . . . , Dn

R : Pty (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.8)

R is a unary relation or property on D
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R : B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.8 and 5.5.2)

R is a nullary relation, which is one of two values

C1 × . . . × Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.9 and 12.2.2)

the n–ary cartesian product of classes C1, . . . , Cn

Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.9 and 12.5.1)

the n–th (cartesian) power or n–tuple class of a class C

C∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.9 and 12.5.1)

the Kleene closure or tuple class of C

Char = {‘0‘, . . . , ‘9‘, ‘A‘, . . . , ‘a‘, . . .} . . . . . . . . . . . . . . . . . (5.6.10)

some character class

String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.10)

the class of strings or character tuples

”Hallo world” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.10)

an example string

N := {0, 1, . . .} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.11)

the natural number class

Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.11)

the class of integers

Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.6.11)

the class of rational numbers

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(??)

the class of real numbers

0 , 1 , + , − , · , / , ≤ , < , min , max , . . . . . . (5.6.12)

the usual operations on numbers

card (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.6.13)

the cardinality or cardinal number of C

x 7→ θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.1)

map(ping) expression

(x 7→ θ)(σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.1)

the application of a map on a term σ

〈x1, . . . , xn〉 7→ θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.1)

n–ary map(ping) expression

266664
ξ1 7→ θ1

.

.

.

.

.

.
ξn 7→ θn

377775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.1 and 9.1.5)

conditional map expression or finite record expression"
D −→ C

x 7→ θ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.3)

default form of a (total) function

"
D 99K C

x 7→ θ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.15)

default form of a partial function

dom (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.3 and 5.7.15)

the domain of a (partial) function f

cod (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.3 and 5.7.15)

the codomain of a (partial) function f

def (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.7.15)

the defined domain of a partial function f

f |Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.6)

the (domain) restriction of a function f onto Z

g ◦ f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.6 and 5.7.17)

the composition of two (partial) functions

idC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.6)

the identity function of a class C

f−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.17)

the inverse of a (partial) function f

f[A ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.18)

the image class of A for a (partial) function f

f−1[A ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.18)

the coimage class of A for a (partial) function f

x  ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.8)

a predicator expression

(x  ϕ)(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.8)

the application of a predicator on a term θ

〈x1, . . . , xn〉  ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.8)

a n–ary predicator expression

266664
ξ1  ϕ1

.

.

.

.

.

.
ξn  ϕn

377775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.7.8)

conditional predicator expression"
D1 ! . . .! Dn

〈x1, . . . , xn〉  ϕ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.13)

the default form of a n–ary relation

dom (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.10 and 17.2.2)

the domain of a relation R

gr (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.10 and 17.2.2)

the graph of a relation R

x ∈ R (or x 6∈ R ) . . . . . . . . . . . . . . . . . . . . . . . . (5.7.10 and 17.2.5)

tuple or record x is (not) a member of the relation R, or R holds

for x (or not)

R[Z ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.13)

the image class of Z for a binary relation R

R−1[Z ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.7.13)

the coimage class of Z for a binary relation R

S =
˙
K,O

¸
and S =

˙
C1, . . . , c1, . . . , f1, . . . , R1, . . .

¸
(5.8.1)

general forms for (ordinary) structures

B =
˙
B,≤, 0, 1, -,∧,∨

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.8.4)

the boolean (or bit) value algebra

Z =
˙
Z, 0, 1,+,−, ·,≤

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.8.5)

the linearly ordered integer ring

Q =
˙
Q, 0, 1,+,−, ·, /,≤

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . (5.8.5)

the linearly ordered field of rational numbers

S † S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5.8.6)

the combination of two structures S and S′

h : S −→ S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.8.9)

a homomorphism from S into S′

h : S ∼= S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.8.9)

an isomorphism from S into S′

S ∼= S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.8.9)

S and S′ are isomorph

Chapter III Quasi–hierarchies

P (C) :=
˙
P (C) ,⊆, ∅, 1,∩,∪,

T
,
S
, {
¸

. . . . . . . . . . . . . . . . . . .(6.2.2)

the power algebra or subclass algebra of C

Fin (C) :=
˙
Fin (C) ,⊆, ∅,∩,∪, \

¸
. . . . . . . . . . . . . . . . . . . . . . (6.2.2)

the finite power algebra of finite subclass algebra of C˙
C?,⊆?,≡?, 〈〉,∩?,∪?, \?

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . (6.3.1)

the generalized quasi–boolean algebra on tuples over C

Form (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6.4.1)

the propositional formula class on A

Form (A) =
˙
Form(A),⇒,⇔, f, t,u,t,¬

¸
. . . . . . . . . . . . . . . (6.4.3)

the standard quasi–boolean algebra on Form (A)

@(ϕ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6.4.4)

the atom class of a given formula

ϕ E ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.4.5)
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the subatomic relation on formulas

ϕ , ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.4.5)

the equiatomic relation on formulas

ϕ ‖ 〈α1, . . . , αn〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6.4.7)

the atomic expansion of a formula ϕ by atoms α1, . . . , αn

ϕ ⇑ 〈α1, . . . , αn〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.4.8)

the infimum reduction of a formula ϕ onto α1, . . . , αn

ϕ ⇓ 〈α1, . . . , αn〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.4.8)

the supremum reduction of a formula ϕ onto α1, . . . , αn˙
Z∞,≤,−∞,∞,min,max

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.5.2)

the expansion of the linearly ordered integers to a bounded lattice

m | n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.5.4)

m divides n˙
F,-,', 0, 1,+,−, ·,÷

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.6.1)

the quasi–orderd field of fractions

ρ |C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.2.1)

the restriction of a binary endorelation ρ onto C˙
C,v,≡

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.3.2)

one representation of a quasi–ordered class

⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.4.1)

standard symbol for a bottom, zero or least element

> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.4.1)

standard symbol for a top, unit or greatest element

©1 u ©2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(7.4.3)

standard symbol for a meet function or conjunctor

©1 t ©2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(7.4.3)

standard symbol for a join function or disjunctor

min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.4.4)

minimum function

max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.4.4)

maximum functionQ
©1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.4.7)

standard symbol for a infimum function or big conjunctor‘
©1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.4.7)

standard symbol for a supremum function or big disjunctor

¬©1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.5.2)

standard symbol for a negator or complement function

©1 − ©2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.5.5)

standard symbol for a relative complement function˙
Q,v,≡,u,t

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.6.2)

standard form of a quasi–lattice algebra˙
Q,v,≡,⊥,>,u,t

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.6.2)

standard form of a bounded quasi–lattice algebra˙
Q,v,≡,⊥,>,u,t,

Q
,
‘¸

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.6.2)

standard form of a complete quasi–lattice algebra˙
Q,v,≡,⊥,>,u,t,¬

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(7.6.2)

standard form of a quasi–boolean algebra˙
Q,v,≡,⊥,>,u,t,

Q
,
‘
,¬
¸

. . . . . . . . . . . . . . . . . . . . . . . . . . (7.6.2)

standard form of a complete quasi–boolean algebra˙
Q,v,≡,⊥,>,u,t,−

¸
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.6.2)

standard form of a generalized quasi–boolean algebra

(→) or (→ x) or x1 → . . . → xn or
n→
i=1

xi . . . . (8.2.2 and 8.2.3)

subjunctions

(↔) or (↔ x) or x1 ↔ . . . ↔ xn or
n↔
i=1

xi . . . . (8.2.2 and 8.2.3)

equijunctions

Chapter IV Records

[i 7→ ξi|i ∈ I] or

24 i 7→ ξi

i ∈ I

35 . . . . . . . . . . . . . . . (9.1.2 and 9.1.3)

usual form of a record

[ξi|i ∈ I] or

24 ξ

i ∈ I

35 . . . . . . . . . . . . . . . . . . . . . . . (9.1.2 and ??)

also a usual form of a record

dom (ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.1.2)

the domain or index class or attribute class of a record ξ

REC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.1.4)

the overall class of records266664
i1 7→ ξ1
.
.
.

.

.

.

.

.

.
in 7→ ξn

377775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.1.5)

representation for a finite record

〈ξ1, . . . , ξn〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.2.1)

n–ary tuple

[c|I] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.2.4)

representation for a univalent record, which has the same value c

for each index in I

〈c | n〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.2.6)

representation for the univalent n–ary tuple where every component

is c

[Xi|i ∈ I] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.3.1)

a schema is a record, where each value Xi is a class

ξ(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.1.1)

the value at i or i–th component of a record ξ

dom (ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.1.1)

the domain or index class or attribute class of a record ξ

cod (ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.1.1)

the codomain or value class of a record ξ

pr (ξ, J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.2.1)

the projection of a record ξ onto J

Proj (ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(10.2.6)

the class of all projections of a given record ξ

ξ G υ (or ξ 6G υ ) . . . . . . . . . . . . . . . . . . . . . . . . (10.3.2 and 10.3.3)

the records ξ and υ are distinct (or not distinct)

ξ ^ υ (or ξ 6^ υ ) . . . . . . . . . . . . . . . . . . . . . . (10.3.2 and 10.3.3)

the records ξ and υ are compatible (or not compatible)

ξ ≤ υ (or ξ 6≤ υ ) . . . . . . . . . . . . . . . . . . . . . . . (10.3.2 and 10.3.3)

ξ is subrecord or smaller then υ (or not)

ξ < υ (or ξ 6< υ ) . . . . . . . . . . . . . . . . . . . . . . . (10.3.2 and 10.3.3)

ξ is a proper subrecord or strictly smaller than υ (or not)

ξ ∨̇ υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.4.1)

the distinct join of distinct records ξ and υ

Ẇ
Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(10.4.1)

the distinct join of a (pairwise) distinct record class Ξ

ξ1 † . . . † ξn or
n
†
i=1

ξi . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.5.1)

the concatenation of tuples ξ1, . . . , ξn

Rec (I, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.2.2)

the class of all the records with indices from I and values from C

DΞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(11.3.2)

the (total) domain of a record class Ξ

D
6^
Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.3.2)

the incompatible domain of a record class Ξ

D^Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.3.2)

the compatible domain of a record class ξ

ξ \ υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.4.3)

the subtraction of records ξ and υ, or ξ without υ
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ξ ∧ υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.4.3)

the meet of records ξ and υ, or ξ and υ

ξ n υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.4.3)

the rejection of records ξ and υ, or ξ rejected by υ

ξ O υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(11.4.3)

the opposition of records ξ and υ, or ξ opposed to υ

ξ ∨ υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.4.3)

the join of records ξ and υ, or ξ or υ

ξ
√
υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.4.3)

the update of records ξ and υ, or ξ updated with υ

Ξ(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.7.2)

the value of a record class Ξ at kW
Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.7.2)

the supremum or (big) disjunction of a record class ΞV
Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.7.2)

the infimum or (big) conjunction of a record class Ξ

∇Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.7.2)

the (big) opposition of a record class Ξ

REC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.8.1)

the (general) record structure

Proj (η) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.9.1)

the record projection structure of a given record η

Chapter V Schemas and their various products

~X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.1.2)

the star product or the (general) record class of a schema X

⊗X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.1.2)

the (cartesian) product or the expanded record class of a schema X

⊕X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.1.2)

the coproduct or disjunct union or singular record class or

literal record class of a schema X

C1 ? . . . ? Cn or
n
?
i=1

Ci . . . . . . . . . . . . . . . . . . . . . . . . . . (12.2.2)

the (ordinal) star product of classes C1, . . . , Cn

C1 × . . . × Cn or
n
×
i=1

Ci . . . . . . . . . . . . . . . . . . . . . . . . . (12.2.2)

the (ordinal or cartesian) star product of classes C1, . . . , Cn

C1 + . . . + Cn or
n
+
i=1

Ci . . . . . . . . . . . . . . . . . . . . . . . . . (12.2.2)

the (ordinal) coproduct or disjunct union of classes C1, . . . , Cn

L1 † . . . † Ln or
n
†
i=1

Li . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.3.2)

the concatenation of tuple classes L1, . . . , Ln

CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.5.1)

the I–th power (product) of C, where I and C are classes

Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.5.1)

the n–th power (product) or the n–tuple class of C, where C is a

class and n ∈ N

C∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12.5.1)

the Kleene closure or the tuple class of a given class C

⊆ 6⊆ ∩ ∪ \
T S

. . . . . . . . . . . . . . . . . . . . . . . . . . (14.1.1)

inclusion, intersection, union and difference defined on schemas

with identical domains

Incl (X) =
˙
Incl (X) ,⊆, [∅|I], X,∩,∪,

T
,
S
, {
¸

. . . . . . . . (14.3.1)

the inclusion algebra of a given schema X

Chapter VI Graphs and their distinct product

@ (Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15.1.1)

the attribute class of a given record class Ξ

domα(Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15.1.1)

the α–domain of a given record class Ξ and attribute α of Ξ

x (Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15.1.1)

the schema of a given recrod class Ξ

doms (ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.2.1)

the domain–schema or index schema of a record–record ρ

Γ1 G . . . G Γn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.3.1)

the graphs (record classes) Ξ1, . . . ,Ξn are relatively distinct

�Γ or �
k∈K

Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.4.1)

the distinct product or a relatively distinct graph record Γ

Γ1 � . . . � Γn or
n
�
i=1

Γi . . . . . . . . . . . . . . . . . . . . . . . . . . (16.4.1)

the distinct product or relatively distinct graphs Γ1, . . . ,Γn

πΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.4.7)

the bijection from ⊗Γ into �Γ for a relatively distinct graph record

Γ

pr (Γ, J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.5.2)

the projection of a graph onto a class J

Chapter VII Relations"
X

Γ

#
or [X,Γ] . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.1 and 17.3.5)

(the schema–graph form of) a relation with schema X and graph Γ

"
X

x 7→ ϕ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.3.5)

(the schema–predicator form of) a relation

"
Rel (X)

Γ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.3.5)

(the typed–graph form of) a relation with schema X and graph Γ

"
Rel (X)
x 7→ ϕ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.3.5)

(the typed–predicator form of) a relation

"
D1 ! . . .! Dn

〈x1, . . . , xn〉  ϕ

#
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.3.1)

(the typed–predicator form of) an ordinary relation

"
〈D1, . . . , Dn〉

{〈x1, . . . , xn〉 ∈ D1 × . . . ×Dn | ϕ}

#
. . . . . . . . . . . . . . (17.3.1)

(the schema–graph form of) an ordinary relation

χR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.4.2)

characteristic function of a relation R

rel (χ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.4.2)

the relation of a given characteristic function χ

@ (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.2)

the attribute class or index class of a relation R

x (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.2)

the schema of a relation R

gr (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.2)

the graph of a relation R

dom (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.2)

the domain of a relation R

domi(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.2)

the i–domain of a relation R and each attribute i of R

x ∈ R or x 6∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(17.2.5)

a record x is or is not a member of a relation R

REL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.6)

the overall class of relations

Rel (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.6)

the class of all relations with schema X

rngi(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(17.2.11)

the i–th range of a relation R

rng(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.11)

the range of a relation R
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B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.2.8)

the empty schema relation class (B = Rel (〈〉)), but also the bit

value class (5.5.2); both are made of just two members

Tab (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.5.3)

the table class of a given schema X

Prel (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.8.1)

the projection relation class of a given schema X

Brel (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17.8.4)

the bit value relation class of a given class A

"
X

Γ

#
or [X,Γ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18.1.2)

a quasi–relation with schema X and quasi–graph Γ ⊆ ~X

x ‖ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(18.2.3)

the expansion of x by a schema X, where x ∈ ~X

rel (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18.2.6)

the relation of a given quasi–relation Q

R ‖ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18.3.3 and 20.1.1)

the expansion of a relation R by a schema Y

Chapter VIII Operations on relations

R E S (or R 6E S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.1.2)

relation R is sub–schematic to relation S (or not)

R , S (or R 6, S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.1.2)

relation R is equi–schematic to relation S (or not)

R ^ S (or R 6^ S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.1.2)

relations R and S are compatible (or not)

R G S (or R 6G S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.1.2)

relations R and S are (attribute or schema) distinct (or not)

IdX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.2.1)

identity relation of X

⊥X and >X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.3.1)

the emtpy/bottom/zero and full/top/unit relation of a given

schema X

⊥ and > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.3.1)

the empty/bottom/zero and full/top/unit relation

¬R or 6 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.4.1)

the complement or negation of a relation R

R ⊆ S (or R 6⊆ S ) . . . . . . . . . . . . . . . . . . . . . (19.5.1 and 19.5.2)

relation R is included by relation S (or not)

R ⊂ S (or R 6⊂ S ) . . . . . . . . . . . . . . . . . . . . . (19.5.1 and 19.5.2)

relation R is properly included by relation S (or not)

R ∩ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(19.5.1)

the intersection of equi–schematic relations R and S

R ∪ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(19.5.1)

the union of equi–schematic relations R and ST
R or

T
R∈R

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.5.3)

the (big) intersection of a class R of equischematic relationsS
R or

T
R∈R

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.5.3)

the (big) union of a class R of equischematic relations

Rel (X) =
˙
Rel (X) ,⊆,⊥X,>X,∩,∪,

T
,
S
,¬
¸

. . . . . . . (19.5.9)

the equi–schematic relation algebra over a given schema X

R � S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.6.2)

the distinct (cartesian) product of two distinct relations R and S

�R or �
k∈K

Rk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.6.2)

the distinct (cartesian) product of a (pairwise) distinct relation

class R

R † S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19.7.2)

the concatenation of two orinary relations R and S

R ‖ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20.1.1)

the expansion of a relation R by a schema Y

R v S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20.2.2)

the subvalence of R under S, for compatible relations R and S

R ≡ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20.2.2)

the equivalence of R and S, for compatible relations R and S

R 6v S , R w S , R @ S , R 6≡ S , . . . . . . . . . . . . . . . . . . (20.2.3)

the usual derived operations of v and ≡

R1 u . . . u Rn . . . . . . . . . . . . . . . . . . . . . . . . . .(20.2.2 and 20.4.23)

the conjunction of compatible relations R1, . . . , Rn

R1 t . . . t Rn . . . . . . . . . . . . . . . . . . . . . . . . . .(20.2.2 and 20.4.23)

the disjunction of compatible relations R1, . . . , RnQ
R or

Q
R∈R

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(20.2.4)

the (big) conjunction of a compatible relation class R‘
R or

Q
R∈R

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(20.2.4)

the (big) disjunction of a compatible relation class R

R − S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20.5.2)

the subtraction of R by S, for compatible relations R and S

R → S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20.5.2)

the subjunctions of R and S, for compatible relations R and S

R ↔ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20.5.2)

the equijunctions of R and S, for compatible relations R and S

pr (R, J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.2.2)

the projection of a relation R onto a class J

cpj (R, J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.2.2)

the coprojection of a relation R onto a class J

R � J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.4.1)

the upper R without J or the supremum elimination of a class J

from a relation R

R � j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.4.1)

the upper R without j or the supremum elimination of a single j

from a relation R

R � J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.4.1)

the lower R without J or the infimum elimination of a class J from

a relation R

R � j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.4.1)

the lower R without j or the infimum elimination of a single j from

a relation R

R m Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.1.2 and 21.6.1)

the equivalent reduction of a relation R by a schema Y

R ⇓ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.6.1)

the supremum reduction of a relation R by a schema Y

R ⇑ Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.6.1)

the infimum reduction of a relation R by a schema Y

redAt (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.8.2)

the redundant attribute class of a relation R

irrAt (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21.8.2)

the irredundant attribute class of a relation R

f([a]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.2.1)

the generalized f–value of a, for every function f and each a

f[[A]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.2.1)

the generalized f–image class of A, for every function f and each

class A

rec (Π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.2.2)

the record of a pair class Π ⊆ A × B

gr (ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.2.2)

the graph of a record ξ

tr (ξ, τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.2.3)
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the (attribute) translation of a record ξ by a record τ

[ k ]ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(22.3.3)

the ξ–equivalence class of k, for a record ξ and attribute k

tr (R, τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.4.1)

the (attribute) translation of a relation R by a record τ

Trans (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22.5.2)

the translator class of a proper schema X

Chapter IX Theory algebras of relations

Prelv(X) =
˙
Prel (X) ,v,≡,⊥,>,u,t,

Q
,
‘
,¬
¸

. . . . . (23.1.1)

the semantic algebra on Prel (X)

Prel
E
ς (X) =

D
Prel (X) ,E,,, ∅ς , 1ς ,∧ς ,∨ς ,

V
ς ,
W
ς , -ς

E
(23.2.3)

the selective syntactic structure of ς over X

Prel
E
3 (X) =

*
Prel (X) ,Proj (X) ,P (I) ,
E,,,⊥©1 ,>©1 ,@, x, ‖,⇓,⇑, �, �

+
. . . . .(23.3.2)

the 3–carrier syntactic structure of X

Prel
E
3 (X) =

*Prel (X) ,Proj (X) ,P (I) ,
E,,,⊥©1 ,>©1 ,@, x, ‖,⇓,⇑, �, �,
≤, 〈〉, X,∧,∨,

V
,
W
, -,⊆, ∅, 1,∩,∪,

T
,
S
, {

+

(23.3.2)

the 3–structure syntactic structure of X

Prel
E
2 (X) =

*
Prel (X) ,P (I) ,
E,,, ⊥̈©1 , >̈©1 ,@, ‖̈, ⇓̈, ⇑̈, �, �

+
. . . . . . . (23.4.3)

the 2–carrier syntactic structure of X

Prel
E
2 (X) =

*Prel (X) ,P (I) ,
E,,, ⊥̈©1 , >̈©1 ,@, ‖̈, ⇓̈, ⇑̈, �, �,
⊆, ∅, I,∩,∪,

T
,
S
, {

+
. . . . . . (23.4.3)

the 2–structure syntactic structure of X

Prel
E
1 (X) =

D
Prel (X) ,E,,, ⊥̇©1 , >̇©1 , ‖̇, ⇓̇, ⇑̇, �̇, �̇

E
. (23.5.3)

the 1–carrier syntactic structure of X

Prel1(X) =

*Prel (X) ,
v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,, ⊥̇©1 , >̇©1 , ‖̇, ⇓̇, ⇑̇, �̇, �̇

+
. . . . . . . . . . (23.6.2)

the single–sort projection relation structure of X

Prel2(X) =

*Prel (X) ,P (I) ,
v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,, ⊥̈©1 , >̈©1 ,@, ‖̈, ⇓̈, ⇑̈, �, �,
⊆, ∅, I,∩,∪,

T
,
S
, {

+
. . . . . . (23.6.2)

the two–sort projection relation structure of X

Prel3(X) =

*Prel (X) ,Proj (X) ,P (I) ,
v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,,⊥©1 ,>©1 ,@, x, ‖,⇓,⇑, �, �,
≤, 〈〉, X,∧,∨,

V
,
W
, -,⊆, ∅, I,∩,∪,
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,
S
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(23.6.2)

the three–sort projection relation structure of X

Prelς (X) =

*Prel (X) ,
v,≡,⊥,>,u,t,

Q
,
‘
,¬,

E,,, ∅ς , 1ς ,∧ς ,∨ς ,
V
ς ,
W
ς , -ς

+
. . . . . . . . (23.6.2)

the selective projection relation structure of X
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injection, 26
injective, 26
instantiation, 19
integer ring, 30
integers, 25
intersection, 24, 84
inverse, 28
irredundant attribute class, 155
irredundant for, 155
irreflexive, 38
is a table, 103
is in, 24
is not in, 24
isomorph, 30
isomorphism, 30

join, 39, 63

Kleene closure, 25, 79
Kleene graph, 88
Kuratowski product construction, 81

lambda expression, 26
lambda expressions, 14
lattice, 40
least, 39
least upper bound, 39, 40
left unique, 158
length, 21
linar quasi–order, 38
linear order, 38
linearly ordered class, 38
linearly ordered field, 37
literal, 53, 105
local definition, 20
locally finite, 55
lower, 145, 173

map(ping) (expression), 26
map(ping) expression, 14
mapping, 14
maximum, 40
meet, 39, 63

meet semi–lattice, 60
member, 100
members, 23
membership, 24
minimum, 40
minus, 41

natural numbers, 25
negation, 22, 116
negator, 40
new word, 17
not, 22, 116
not in, 100
null value, 108
nullary, 53, 54
nullary product, 25

of, 26
open, 19
Operation, 13
operator expression, 20
operators, 20
opposed to, 63
opposition, 24, 63
or, 22, 63
order diagrams, 39
ordinal, 75
ordinary, 14, 15, 26, 27
ordinary map(ping) expression, 26
ordinary predicator (expression), 27
overloaded, 19

P–record, 53
paragraph, 13
partial function, 28
partial function class, 25
partial functions, 28
partial table, 108
partition, 38
pattern matching, 20
poclass, 38
power (product) of, 79
power algebra, 32
power class, 24
power class algebra, 118
predicator, 14
predicator (expression), 27
predicator expression, 14
predicator form, 102
product, 25, 75
projection, 56, 95, 135, 137
projection class, 56
projection relation class, 106
proper, 55, 73, 90–92, 100
proper incl., 24
proper subrecord, 57
property, 25
propositional formulas, 34

quadruples, 21
quasi–algebras, 41
quasi–boolean algebra, 41
quasi–boolean lattice, 41
quasi–chain, 38
quasi–class, 38
quasi–graph, 108
quasi–hierarchy, 38
quasi–lattice, 40
quasi–linear order, 38
quasi–linearly ordered class, 38
quasi–order, 38, 128
quasi–order diagrams, 39
quasi–ordered class, 38, 128
quasi–ordered field of fractions, 37
quasi–relation, 108
quasi–relation graph, 88
quotient class, 43
quotient function, 44
quotient relation, 44
quotient structure, 44

range, 101
rational numbers, 25, 37
real numbers, 25
record, 15, 53
record class, 60
record of Π, 158
record partition, 91
record projection structure, 70
record table, 73
record–record, 90
reduces, 135
reduction, 135
redundant, 136, 155
redundant attribute class, 155
redundant for, 155
reflexive, 38
rejected by, 63
rejector, 63
relation, 99, 102, 110
relation class, 100
relation graph, 88
relative complement, 41
relative complement function, 41
relatively distinct, 92, 120
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restriction, 38
right unique, 158

schema, 15, 54, 73, 87, 99
schema form, 102
schema partition, 91
schema record, 90
schemas, 53, 54
schematic, 15
section, 13
selective syntactic structure, 164
semantic algebra, 163
semantics, 102
set, 23
similar, 30
single–sort projection relation structure, 168
singleton, 25
singleton class, 24
singular, 53, 105
singular (or literal) record class, 73
singular finite, 55
singular graph, 88
smaller, 57
standard form of an ordinal function definition, 26
standard quasi–boolean algebra, 34
star graph, 88
star product, 73, 75
strict smaller, 57
strings, 25
structured class, 38
sub–schematic, 113
subatomic, 35
subclass algebra, 32
subjunction, 22, 134
subjunctor, 45
subrecord, 57
subsection, 13
substitution, 18
substructure, 30
subtraction, 63, 134
subvalence, 22, 34, 124
sum, 25
supremum, 40, 68
supremum elimination, 135
supremum reduction, 135, 136, 149
supremum reductor, 35
surjection, 26
surjective, 26
symbol, 17, 18
symmetric, 38
symmetric difference, 24
syntactic selector, 164
syntax, 102

table class, 103
terms, 20
the, 115
the algebra (on), 118
the equivalence (relation) of, 128
the graph of ξ, 158
then, 22
three–sort projection relation structure, 168
token, 18
top, 39, 115
total, 38, 105
total in i, 105
transitive, 38
translatable, 158, 160
translation, 158
translator class, 161
triples, 21
true, 22
truth, 22
tuple, 15
tuple class, 25, 79
tuples, 53
two–sort projection relation structure, 168
type, 19
type expression, 14, 19, 100
typed description, 21
typed form, 102

unary, 53
union, 24, 84
unit, 39, 115
unit bit, 22
univalent, 54
updated with, 63
updater, 63
upper, 145, 173

value, 19, 56, 68
value class, 53, 56
values, 53
variable (value), 19

without, 41, 63, 145, 173

zero, 39, 115
zero bit, 22


