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1 Introduction

We are going to define the concept of a world algebra on a given set A. One such world is a
function (A −→ B) −→ B, where A ⊆ A and B is the set of the two boolean or bit values.

Such a world algebra is a standard model of a theory algebra. Another example of such a
theory algebra is the set of (boolean or theory) formulas on A, equipped with the according
operations and relations. There is a kind of isomorphism between the world and the formula
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algebra: each formula represents a unique world and every (finite) world can be represented by
a formula. Worlds are — as the term suggests — very “meaningful” and intuitive. Formulas
on the other hand have the advantage that they can display certain properties of the according
world and that they are much more suitable as data structures for computer programs which
implement theory algebras. So, there is a productive interplay between formulas and worlds.

2 Worlds and their representation

2.1 Worlds

A denotes a pre–defined set of atoms. In our case A is made of all non–empty strings of
letters, digits and the understroke.

There is a strict linear order relation < defined on A.

Because A is linearly ordered by <, every finite atom set A of n atoms has a unique represen-
tation as an ordered atom list [ α1 α2 . . . αn ], with α1 < α2 < · · · < αn. There is a unique
bijection between the finite subsets of A and the set of all ordered atom lists on A. So the
standard set relations ∈, ⊆ and operations ∩, ∪, \ on sets are well–defined on ordered atom
lists as well, where the role of the empty set ∅ is taken by the empty list [ ].

B := {?, !} denotes the set of bitvalues. It has exactly two elements:
• ? the zero bit (also called false and written as 0 or f or ⊥)
• ! the unit bit (also called true and written as 1 or t or >)

B is linearly ordered by defining for all β, β′ ∈ B

β < β′ :iff β = ? and β′ = !

If A is a finite set or ordered list of atoms, a (binary) valuation of A is a function ω : A −→ B.
If A is the ordered list [ α1 . . . αn ], then ω is also written as

[ α1/ω(α1) . . . αn/ω(αn) ]

For example ω = [ a/? b/! c/! ] is a valuation of A = [ a b c ].

We assume that there is a strict linear order < defined on the set of all the valuations of A.
For example, for A = [ a b ] we put

[ a/? b/? ] < [ a/! b/? ] < [ a/? b/! ] < [ a/! b/! ]

V al(A) denotes the set or ordered list of all the valuations of A.

For example, for A = [ a b ]

V al(A) = [ [ a/? b/? ] [ a/! b/? ] [ a/? b/! ] [ a/! b/! ] ]

If A contains n different atoms, then V al(A) has 2n different valuations of A.

Note that V al([ ]) = [ [ ] ], i.e. the empty list [ ] of atoms has exactly one valuation, also
written [ ], which is the empty valuation.

A (finite binary) world τ (on A) is defined by
• A finite set or ordered list A of atoms.
• A function V al(A) −→ B.

In other words, τ is a function τ : (A −→ B) −→ B

A valuation ω in a world τ is also said to be a
• possible state in τ , if τ(ω) = !
• impossible state in τ , if τ(ω) = ?
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2.2 Special properties of worlds

A world τ on A is said to be
• valid or a tautology if every valuation is a possible state, i.e. if τ(ω) = ! for all ω ∈ V al(A)
• satisfiable if at least one valuation is a possible state,
• contradictory or a contradiction if every valuation is an impossible state.

2.3 Atom lists of worlds

If τ is a world on an ordered atoms list A, then

@τ := A

is the (ordered) atom list of τ .

2.4 Tables

If τ is a world on A, the table of τ is uniquely defined by

A
ω0 τ(ω0)
ω1 τ(ω1)

.

..
..
.

ω2n−1 τ(ω2n−1)

or

α1 . . . αn

ω0(α1) . . . ω0(αn) τ(ω0)
ω1(α1) . . . ω1(αn) τ(ω1)

.

..
.
..

..

.
ω2n−1(α1) . . . ω2n−1(αn) τ(ω2n−1)

where [ α1 . . . αn ] := A and [ ω0 ω1 . . . ω2n−1 ] := V al(A).

For example, let A := [ hot rain snow ] be an orderd list of three atoms. A world τ on A is
represented by the table

hot rain snow
? ? ? !
! ? ? !
? ! ? ?
! ! ? !
? ? ! !
! ? ! ?
? ! ! ?
! ! ! ?

A possible state in w is given by, say [ hot/! rain/? snow/? ]. In other word, the state “it is
hot, not raining, and not snowing” is a possible state in w, while for example “it is hot, it
does not rain, and it snows” is an impossible state in w.

2.5 Double tables

Let ω1 : A1 −→ B and ω2 : A2 −→ B be two valuations on disjunct atom sets, i.e. A1 ∩A2 is
empty. Then

ω1 · ω2 : A1 ∪A2 −→ B with ω1 · ω2(α) :=

{
ω1(α) if α ∈ A1

ω2(α) if α ∈ A2

For example
[ a/! c/! ] · [ b/? d/? ] = [ a/! b/? c/! d/? ]

Let τ be a world on an atom list A. We can split A in two atom lists: a left atom list AL and
an upper atom list AU . We can then represent τ by its double table on AL and AU , which
has the form
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ω′′0 . . . ω′′2u−1 AU

ω′0 τ(ω′0 · ω′′0 ) . . . τ(ω′0 · ω′′2u−1)

...
...

...
ω′

2l−1
τ(ω′

2l−1
· ω′′0 ) . . . τ(ω′

2l−1
· ω′′2u−1)

AL

where [ ω′0 . . . ω′
2l−1

] := V al(AL) and [ ω′′0 . . . ω′′2u−1 ] := V al(AU ).

For example let A = [ hot rain snow wet ] and τ be a world on A as given by the table below.
If we put AL := [ hot snow ] we get AU = A\AL = [ rain wet ] and the double table of τ on
AL and AU is well–defined:

hot rain snow wet
? ? ? ? !
! ? ? ? !
? ! ? ? ?
! ! ? ? ?
? ? ! ? ?
! ? ! ? ?
? ! ! ? ?
! ! ! ? ?
? ? ? ! ?
! ? ? ! ?
? ! ? ! ?
! ! ? ! !
? ? ! ! !
! ? ! ! ?
? ! ! ! ?
! ! ! ! ?

? ! ? ! rain
? ? ! ! wet

? ? ! ? ? ?
! ? ! ? ? !
? ! ? ? ! ?
! ! ? ? ? ?

hot snow

So, given a theory or a table, there is a unique double table for each specified left (or upper)
atom list. On the other hand, each double table represents a unique theory and table.

3 Operations on worlds and atoms lists

Tables and double tables are proper representations for worlds, but as the list of atoms in-
creases, their size grows exponentially. Another way of representing worlds is by means of
algebraic expressions (i.e. formulas): taking a subset of basic or atomic worlds, and defin-
ing a couple of operations, we can generate all possible worlds by recursively applying these
operations on atomic worlds and results of previous operations.

So the most important constants and operations we are going to define are:
• the set of atomic worlds,
• the zero and unit world
• the expansion (‖) and two reductions (⇑,⇓) to in– and decrease the atom sets of worlds, and
• the boolean junctions (¬,∧,∨,→,↔).

The theory of the last example can then be written in a more compact form as say

[¬[ rain ∧ snow ] ∧ [ wet ↔ [ rain ∨ snow ] ] ∧ [ rain → hot ] ∧ [ snow →6 hot ] ]

what can be read as

“It cannot rain and snow, it is wet if and only if it rains or snows, if it rains, it
is hot, and if it snows, it is not hot.”

3.1 Atomic worlds

For every atom α there is a unique atomic world (of α), given by the table
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α
? ?
! !

We don’t want to introduce a new notation for this atom world, so we simply write it as α as
well. Note that there is a bijection between the set A of atoms and the set of all the atomic
worlds generated from A and that should make this convention save against confusions.

3.2 The zero and unit world

If A is the empty set or list [ ] of atoms, there is exactly one valuation of A, namely the
valuation ω = [ ]. So there are two well–defined worlds on A, namely
• the zero world, written ⊥, which is given by

⊥ : V al([ ]) −→ B with ⊥(ω) := ?

and its table

?

• the unit world, written >, which is given by

> : V al([ ]) −→ B with >(ω) := !

and its table

!

3.3 Expansion

Let τ be a world on an atom list A and let B = [ α′1 . . . α′n ] a second atom list. The expansion
of τ with B is written

[ τ ‖ B ] or [ τ ‖ α′1 . . . α′n ]

and it is defined to be the theory on A ∪ B that is equivalent to the original theory τ . A
proper definition of the equivalence relation is given below and it is introduced by means of
the expansion operation. For now we only need to describe how to constuct the new world:
let B′ := B\A, so B′ and A are disjunct and A ∪B′ = A ∪B, then

[ τ ‖ B ] : (A ∪B′) −→ B with [ τ ‖ B ](ω · ω′) := τ(ω)

for every ω ∈ V al(A) and ω′ ∈ V al(B′).

This definition can be demonstrated with the use of double tables. Given A := [ a c ] and
B := [ a b d ] and a world τ on A defined by the table

a c
? ? !
! ? ?
? ! !
! ! !

In order to construct [ τ ‖ B ] we first subtract A from B and get B′ := B\A = [ b d ]. Then
we build the double table on A and B′, in which each row has the same bit values than the
original table, but multiplied over the whole row. Finally this double table can be transformed
into its table form, and that’s the result [ τ ‖ B ]. For our example that means
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a c
? ? !
! ? ?
? ! !
! ! !

becomes

? ! ? ! b
? ? ! ! d

? ? ! ! ! !
! ? ? ? ? ?
? ! ! ! ! !
! ! ! ! ! !
a c

which is

a b c d
? ? ? ? !
! ? ? ? ?
? ! ? ? !
! ! ? ? ?
? ? ! ? !
! ? ! ? !
? ! ! ? !
! ! ! ? !
? ? ? ! !
! ? ? ! ?
? ! ? ! !
! ! ? ! ?
? ? ! ! !
! ? ! ! !
? ! ! ! !
! ! ! ! !

3.4 Boolean junctions of worlds

For every world τ on A the negation of τ is the world ¬τ on A, defined by

¬τ : V al(A) −→ B with ¬τ1(ω) :=

{
? if τ(ω) = !

! if τ(ω) = ?

Let τ1, . . . , τn be worlds, n ≥ 0, all on the same atom list A. We define the following new
worlds on A, as results of operations on the given ones:

[ τ1 ∧ · · · ∧ τn ] : V al(A) −→ B with [ τ1 ∧ · · · ∧ τn ](ω) :=

{
? if ? ∈ {τ1(ω), . . . , τn(ω)}
! if ? 6∈ {τ1(ω), . . . , τn(ω)}

[ τ1 ∨ · · · ∨ τn ] : V al(A) −→ B with [ τ1 ∨ · · · ∨ τn ](ω) :=

{
? if ! 6∈ {τ1(ω), . . . , τn(ω)}
! if ! ∈ {τ1(ω), . . . , τn(ω)}

[ τ1 → τ2 ] : V al(A) −→ B with [ τ1 → τ2 ](ω) :=

{
? if τ1(ω) 6< τ2(ω)

! if τ1(ω) < τ2(ω)

[ τ1 ↔ τ2 ] : V al(A) −→ B with [ τ1 ↔ τ2 ](ω) :=

{
? if τ1(ω) 6= τ2(ω)

! if τ1(ω) = τ2(ω)

More general, for every list of worlds τ1, . . . , τn with n ≥ 0 we define

[ τ1 ∧ · · · ∧ τn ] := [ [ τ1 ‖ A ] ∧ · · · ∧ [ τn ‖ A ] ] with A :=
n⋃

i=1

@τi

[ τ1 ∨ · · · ∨ τn ] := [ [ τ1 ‖ A ] ∨ · · · ∨ [ τn ‖ A ] ] with A :=

n⋃
i=1

@τi

[ τ1 → τ2 ] := [ [ τ1 ‖ A ] → [ τ2 ‖ A ] ] with A := @τ1 ∪@τ2

[ τ1 ↔ τ2 ] := [ [ τ1 ‖ A ] ↔ [ τ2 ‖ A ] ] with A := @τ1 ∪@τ2

For example, let τ1 := [ a ‖ c ] and τ2 := [ c ‖ b ]. Their tables are

a c τ1
? ? ?
! ? !
? ! ?
! ! !

and

b c τ2
? ? ?
! ? ?
? ! !
! ! !

Their negations are

a c ¬τ1
? ? !
! ? ?
? ! !
! ! ?

and

b c ¬τ2
? ? !
! ? !
? ! ?
! ! ?
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We put A := @τ1 ∪@τ2 = [ a c ] ∪ [ b c ] = [ a b c ] and generate [ τ1 ‖ A ] and [ τ2 ‖ A ]:

a b c [ τ1 ‖ A ]
? ? ? ?
! ? ? !
? ! ? ?
! ! ? !
? ? ! ?
! ? ! !
? ! ! ?
! ! ! !

and

a b c [ τ2 ‖ A ]
? ? ? ?
! ? ? ?
? ! ? ?
! ! ? ?
? ? ! !
! ? ! !
? ! ! !
! ! ! !

We then obtain the worlds [ τ1 ∧ τ2 ], [ τ1 ∨ τ2 ], [ τ1 → τ2 ], [ τ1 ↔ τ2 ]:

a b c [ τ1 ∧ τ2 ]
? ? ? ?
! ? ? ?
? ! ? ?
! ! ? ?
? ? ! ?
! ? ! !
? ! ! ?
! ! ! !

a b c [ τ1 ∨ τ2 ]
? ? ? ?
! ? ? !
? ! ? ?
! ! ? !
? ? ! !
! ? ! !
? ! ! !
! ! ! !

a b c [ τ1 → τ2 ]
? ? ? !
! ? ? ?
? ! ? !
! ! ? ?
? ? ! !
! ? ! !
? ! ! !
! ! ! !

a b c [ τ1 ↔ τ2 ]
? ? ? !
! ? ? ?
? ! ? !
! ! ? ?
? ? ! ?
! ? ! !
? ! ! ?
! ! ! !

Results of operations can be used for new operations, so in this way we can recursively generate
the worlds and tables of more complex expressions like the earlier mentioned

[¬[ rain ∧ snow ] ∧ [ wet ↔ [ rain ∨ snow ] ] ∧ [ rain → hot ] ∧ [ snow →6 hot ] ]

3.5 Infimum and supremum reduction

Let τ be a world on A and B a second atom list.

The expansion [ τ ‖ B ] of τ with B was defined to be the world, uniquely defined by two
properties: it must be equivalent to τ and its atom list should be A ∪B.

Accordingly, we could define a reduction of τ with B by saying that the result must be
equivalent to τ and have the atom list A ∩ B. But there is a problem: such a world doesn’t
exist in general.

Comparing this phenomenon with integer arithmetic, the multiplication i · j is always well–
defined, but the division i/j isn’t, as for example in 7/4, where the result 1.75 is not an
integer anymore. But we could take the closest integers, here the lower 1 and upper 2 as
results of two modified operations, called infimum division ↗ and supremum division ↙, e.g.
1 = 7 ↗ 4 ≤ 7/4 ≤ 7 ↙ 4 = 2 and 9 = 10 ↗ 3 ≤ 10/3 ≤ 10 ↙ 3 = 10.

Back to worlds (where the role of the integer order ≤ is taken by the order relation ⇒), we
also define two reductions, the closest lower and upper reduction, called infimum reduction
[ τ ⇑ B ] of τ onto B and supremum reduction [ τ ⇓ B ] of τ onto B. It turns out to be
more convenient for later purposes, that the new atom list is not set to A∩B, but to B itself
(although the results of both approaches are always equivalent). So an atomic “reduction”
not necessarily “reduces” the atom list, but may also introduce new atoms.

The introduction of these operations can again be well demonstrated by using double tables:
First, put A′ := A\B and construct the double table of [ τ ‖ B ] with left atoms B and upper
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atoms A′. For the infimum reduction, the bit values of each row have to be replaced by their
conjunction. For the supremum reduction, the bit values of each row have to be replaced by
their disjunction. For example, let us reduce the last example theory τ onto B := [ hot rain ].
The table on B and A′ = [ snow wet ] is given by

? ! ? ! snow
? ? ! ! wet

? ? ! ? ? !
! ? ! ? ? ?
? ! ? ? ? ?
! ! ? ? ! ?

hot rain

The infimum reduction [ τ ⇑ B ] is then given by

hot rain [ τ ⇑ B ]
? ? [ ! ∧ ? ∧ ? ∧ ! ]
! ? [ ! ∧ ? ∧ ? ∧ ? ]
? ! [ ? ∧ ? ∧ ? ∧ ? ]
! ! [ ? ∧ ? ∧ ! ∧ ? ]

which is

hot rain [ τ ⇑ B ]
? ? ?
! ? ?
? ! ?
! ! ?

and the infimum reduction [ τ ⇓ B ] is then given by

hot rain [ τ ⇓ B ]
? ? [ ! ∨ ? ∨ ? ∨ ! ]
! ? [ ! ∨ ? ∨ ? ∨ ? ]
? ! [ ? ∨ ? ∨ ? ∨ ? ]
! ! [ ? ∨ ? ∨ ! ∨ ? ]

which is

hot rain [ τ ⇓ B ]
? ? !
! ? !
? ! ?
! ! !

A formal definition for arbitrary worlds τ and atom lists B are given by:
[ τ ⇑ B ] : V al(B) −→ B with

[ τ ⇑ B ](ω) := [ τ(ω · ω′1) ∧ · · · ∧ τ(ω · ω′n) ] for [ ω′1 . . . ω′n ] := V al(@τ\B)

[ τ ⇓ B ] : V al(B) −→ B with

[ τ ⇓ B ](ω) := [ τ(ω · ω′1) ∨ · · · ∨ τ(ω · ω′n) ] for [ ω′1 . . . ω′n ] := V al(@τ\B)

3.6 Remark about the chosen notations

The titles of these two new operations come from the fact that, of all theories on the new
atom list B, [ τ ⇑ B ] is the greatest lower bound (i.e. the infimum) and [ τ ⇓ B ] is the least
upper bound (i.e. the supremum), with respect to the subvalence relation ⇒ defined below.
So, [ τ ⇑ B ] ⇒ τ ⇒ [ τ ⇓ B ] always holds.

In lattice theory infimum is synonymous to conjunction, and that stipulates the notation ⇑
as “∧ and ‖”. The same holds for supremum, disjunction and the ⇓ symbol.

The ‖ symbol itself is chosen due to its similarities with the symbolism f |B, which usually
denotes the reduction of the domain A of a function f : A −→ C onto a subset B ⊆ A.

4 Relations between worlds

On the set of all worlds (on A) we define the following relations.
• The atomic order relations:

For every pair τ1, τ2 of worlds we put

τ1 ⊆̂ τ2 :iff @τ1 ⊆ @τ2

saying that τ1 is subatomic to τ2, and

τ1 =̂ τ2 :iff @τ1 = @τ2

saying that τ1 and τ2 are equiatomic.
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• The boolean order relations:
For every pair τ1, τ2 of worlds we put

τ1 ⇒ τ2 :iff [ τ1 ‖ A ] < [ τ2 ‖ A ], for all ω ∈ V al(A) with A := @τ1 ∪@τ2

:iff [ τ1 → τ2 ] is valid

saying that τ1 is subvalent to τ2, and

τ1 ⇔ τ2 :iff [ τ1 ‖ A ] = [ τ2 ‖ A ], for all ω ∈ V al(A) with A := @τ1 ∪@τ2

:iff [ τ1 ↔ τ2 ] is valid

saying that τ1 and τ2 are equivalent.
• The theory order relations:

For every pair τ1, τ2 of worlds we put

τ1 ⇒̂ τ2 :iff τ1 ⊆̂ τ2 and τ1 ⇒ τ2

saying that τ1 is bisubvalent to τ2, and

τ1 ⇔̂ τ2 :iff τ1 =̂ τ2 and τ1 ⇔ τ2

saying that τ1 and τ2 are biequivalent.

Each of the three relations ⊆̂ ,⇒, ⇒̂ is a quasi–order relation, i.e. it is reflexive and transitive
on the set of all worlds. Each of the three relations =̂ ,⇔, ⇔̂ is the according equivalence
relation of the given quasi–order, i.e. for example τ1 =̂ τ2 iff τ1 ⊆̂ τ2 and τ2 ⊆̂ τ1.

Note, that for the algebra of worlds the biequivalence is the identity relation, i.e.

τ1 ⇔̂ τ2 iff τ1 = τ2

Relations can be defined as binary operations with B as codomain. For example, ⇒ can be
defined as an operation [ · · · ⇒ . . . ] that takes two worlds τ1 and τ2 and returns a bit value

[ τ1 ⇒ τ2 ] :=

{
! if τ1 ⇒ τ2, i.e. if τ1 if subvalent to τ2

? if τ1 6⇒ τ2, i.e. if τ1 is not subvalent to τ2

5 More operations

5.1 Negative and positive atoms

An atom α is negative or redundant in a world τ if it doesn’t matter what bit value it takes:
for every ω ∈ V al(@τ\[ α ]), ω · [ α/? ] is a possible state iff ω · [ α/! ] is a possible state, too.
The term “redundant” emphasizes the fact that, if α is redundant in τ , there is an equivalent
world without α.

Using double tables, we can determine if α is negative in τ by representing it with the left
atoms @τ\[ α ] and upper atoms [ α ]. α is indeed negative in τ iff the two given bit values are
the same in each row.

For example, let τ := [ a ∨ [ c ∧ ¬c ] ∨ b ]. Obviously, c is redundant / negative in τ , because
τ ⇔ [ a ∨ b ]. The double table with c as the only upper atom shows that as well, each row is
made of just one bit value:

? ! c
? ? ? ?
! ? ! !
? ! ! !
! ! ! !
a b

For a full definition, let us put for every world τ and every atom α (where not necessarily
α ∈ @τ has to hold):
• α is negative or redundant for τ iff

[ τ ⇑ [ @τ\[ α ] ] ] ⇔ [ τ ⇓ [ @τ\[ α ] ] ]
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• α is positive or irredundant for τ iff

[ τ ⇑ [ @τ\[ α ] ] ] 6⇔ [ τ ⇓ [ @τ\[ α ] ] ]

If α is an atom in τ , we say that α is negative / positive in τ .

And for every world τ we introduce the notation

−@τ := the ordered list of all negative atoms in τ

+@τ := the ordered list of all positive atoms in τ

Obviously, for every world τ

−@τ ∪+@τ = @τ

−@τ ∩+@τ = [ ]

For example, for τ := [ a ∨ [ c ∧ ¬c ] ∨ b ] there is −@τ = [ c ] and +@τ = [ a b ].

5.2 Standard reduction

Due to the just given definition, every world τ has an equivalent world which is only made of
the positive atoms of τ . Such a world is called a standard reduction of τ and written @|τ .
We put

@|τ := [ τ ⇑ +@τ ] = [ τ ⇓ +@τ ]

Consequently, for every world τ there is

τ = [@|τ ‖ −@τ ]

This theorem is the basis for the so–called extended normal forms of the Bucanon program.
If τ is a theory formula, then the PDNF τd and PCNF τc of τ are made of irredundant atoms
only, so both forms are standard reductions of τ . In order to get not only an equivalent,
but also an equiatomic normal form of τ , the negative atoms −@τ are attached again, so
[ τd ‖ −@τ ] is the XPDNF (extended prime disjunctive normal form) of τ and [ τc ‖ −@τ ] is
its XPDNF (extended prime conjunctive normal form).

For example, for τ := [ a ∨ [ c ∧ ¬c ] ∨ b ]

[ [∧a ] ∨ [∧b ] ] is the PDNF of τ , so
[ [ [∧a ] ∨ [∧b ] ] ‖ c ] is the XPDNF of τ

[∧[ a ∨ b ] ] is the PCNF of τ , so
[ [∧[ a ∨ b ] ] ‖ c ] is the XPCNF of τ
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